85 research outputs found

    New Characterizations in Turnstile Streams with Applications

    Get PDF
    Recently, [Li, Nguyen, Woodruff, STOC 2014] showed any 1-pass constant probability streaming algorithm for computing a relation f on a vector x in {-m, -(m-1), ..., m}^n presented in the turnstile data stream model can be implemented by maintaining a linear sketch Ax mod q, where A is an r times n integer matrix and q = (q_1, ..., q_r) is a vector of positive integers. The space complexity of maintaining Ax mod q, not including the random bits used for sampling A and q, matches the space of the optimal algorithm. We give multiple strengthenings of this reduction, together with new applications. In particular, we show how to remove the following shortcomings of their reduction: 1. The Box Constraint. Their reduction applies only to algorithms that must be correct even if x_{infinity} = max_{i in [n]} |x_i| is allowed to be much larger than m at intermediate points in the stream, provided that x is in {-m, -(m-1), ..., m}^n at the end of the stream. We give a condition under which the optimal algorithm is a linear sketch even if it works only when promised that x is in {-m, -(m-1), ..., m}^n at all points in the stream. Using this, we show the first super-constant Omega(log m) bits lower bound for the problem of maintaining a counter up to an additive epsilon*m error in a turnstile stream, where epsilon is any constant in (0, 1/2). Previous lower bounds are based on communication complexity and are only for relative error approximation; interestingly, we do not know how to prove our result using communication complexity. More generally, we show the first super-constant Omega(log(m)) lower bound for additive approximation of l_p-norms; this bound is tight for p in [1, 2]. 2. Negative Coordinates. Their reduction allows x_i to be negative while processing the stream. We show an equivalence between 1-pass algorithms and linear sketches Ax mod q in dynamic graph streams, or more generally, the strict turnstile model, in which for all i in [n], x_i is nonnegative at all points in the stream. Combined with [Assadi, Khanna, Li, Yaroslavtsev, SODA 2016], this resolves the 1-pass space complexity of approximating the maximum matching in a dynamic graph stream, answering a question in that work. 3. 1-Pass Restriction. Their reduction only applies to 1-pass data stream algorithms in the turnstile model, while there exist algorithms for heavy hitters and for low rank approximation which provably do better with multiple passes. We extend the reduction to algorithms which make any number of passes, showing the optimal algorithm is to choose a new linear sketch at the beginning of each pass, based on the output of previous passes

    Pseudo-Deterministic Streaming

    Get PDF
    A pseudo-deterministic algorithm is a (randomized) algorithm which, when run multiple times on the same input, with high probability outputs the same result on all executions. Classic streaming algorithms, such as those for finding heavy hitters, approximate counting, ?_2 approximation, finding a nonzero entry in a vector (for turnstile algorithms) are not pseudo-deterministic. For example, in the instance of finding a nonzero entry in a vector, for any known low-space algorithm A, there exists a stream x so that running A twice on x (using different randomness) would with high probability result in two different entries as the output. In this work, we study whether it is inherent that these algorithms output different values on different executions. That is, we ask whether these problems have low-memory pseudo-deterministic algorithms. For instance, we show that there is no low-memory pseudo-deterministic algorithm for finding a nonzero entry in a vector (given in a turnstile fashion), and also that there is no low-dimensional pseudo-deterministic sketching algorithm for ?_2 norm estimation. We also exhibit problems which do have low memory pseudo-deterministic algorithms but no low memory deterministic algorithm, such as outputting a nonzero row of a matrix, or outputting a basis for the row-span of a matrix. We also investigate multi-pseudo-deterministic algorithms: algorithms which with high probability output one of a few options. We show the first lower bounds for such algorithms. This implies that there are streaming problems such that every low space algorithm for the problem must have inputs where there are many valid outputs, all with a significant probability of being outputted

    The Sketching Complexity of Graph and Hypergraph Counting

    Full text link
    Subgraph counting is a fundamental primitive in graph processing, with applications in social network analysis (e.g., estimating the clustering coefficient of a graph), database processing and other areas. The space complexity of subgraph counting has been studied extensively in the literature, but many natural settings are still not well understood. In this paper we revisit the subgraph (and hypergraph) counting problem in the sketching model, where the algorithm's state as it processes a stream of updates to the graph is a linear function of the stream. This model has recently received a lot of attention in the literature, and has become a standard model for solving dynamic graph streaming problems. In this paper we give a tight bound on the sketching complexity of counting the number of occurrences of a small subgraph HH in a bounded degree graph GG presented as a stream of edge updates. Specifically, we show that the space complexity of the problem is governed by the fractional vertex cover number of the graph HH. Our subgraph counting algorithm implements a natural vertex sampling approach, with sampling probabilities governed by the vertex cover of HH. Our main technical contribution lies in a new set of Fourier analytic tools that we develop to analyze multiplayer communication protocols in the simultaneous communication model, allowing us to prove a tight lower bound. We believe that our techniques are likely to find applications in other settings. Besides giving tight bounds for all graphs HH, both our algorithm and lower bounds extend to the hypergraph setting, albeit with some loss in space complexity

    Approximate F_2-Sketching of Valuation Functions

    Get PDF
    We study the problem of constructing a linear sketch of minimum dimension that allows approximation of a given real-valued function f : F_2^n - > R with small expected squared error. We develop a general theory of linear sketching for such functions through which we analyze their dimension for most commonly studied types of valuation functions: additive, budget-additive, coverage, alpha-Lipschitz submodular and matroid rank functions. This gives a characterization of how many bits of information have to be stored about the input x so that one can compute f under additive updates to its coordinates. Our results are tight in most cases and we also give extensions to the distributional version of the problem where the input x in F_2^n is generated uniformly at random. Using known connections with dynamic streaming algorithms, both upper and lower bounds on dimension obtained in our work extend to the space complexity of algorithms evaluating f(x) under long sequences of additive updates to the input x presented as a stream. Similar results hold for simultaneous communication in a distributed setting

    Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams

    Get PDF
    We study the Maximum Independent Set problem for geometric objects given in the data stream model. A set of geometric objects is said to be independent if the objects are pairwise disjoint. We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let α\alpha be the cardinality of the largest independent set. Our goal is to estimate α\alpha in a small amount of space, given that the input is received as a one-pass stream. We also consider a generalization of this problem by assigning weights to each object and estimating β\beta, the largest value of a weighted independent set. We initialize the study of this problem in the turnstile streaming model (insertions and deletions) and provide the first algorithms for estimating α\alpha and β\beta. For unit-length intervals, we obtain a (2+ϵ)(2+\epsilon)-approximation to α\alpha and β\beta in poly(log(n)ϵ)(\frac{\log(n)}{\epsilon}) space. We also show a matching lower bound. Combined with the 3/23/2-approximation for insertion-only streams by Cabello and Perez-Lanterno [CP15], our result implies a separation between the insertion-only and turnstile model. For unit-radius disks, we obtain a (83π)\left(\frac{8\sqrt{3}}{\pi}\right)-approximation to α\alpha and β\beta in poly(log(n),ϵ1)(\log(n), \epsilon^{-1}) space, which is closely related to the hexagonal circle packing constant. We provide algorithms for estimating α\alpha for arbitrary-length intervals under a bounded intersection assumption and study the parameterized space complexity of estimating α\alpha and β\beta, where the parameter is the ratio of maximum to minimum interval length.Comment: The lower bound for arbitrary length intervals in the previous version contains a bug, we are updating the submission to reflect thi

    A Simple Proof of a New Set Disjointness with Applications to Data Streams

    Get PDF

    Linear Sketching over F_2

    Get PDF
    We initiate a systematic study of linear sketching over F_2. For a given Boolean function treated as f : F_2^n -> F_2 a randomized F_2-sketch is a distribution M over d x n matrices with elements over F_2 such that Mx suffices for computing f(x) with high probability. Such sketches for d << n can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between F_2-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that F_2-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree F_2-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that F_2-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over F_2 can be constructed as F_2-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC\u2714) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require the stream length to be triply exponential in n and holds for streams of length O(n) constructed through uniformly random updates
    corecore