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Abstract
We study the problem of constructing a linear sketch of minimum dimension that allows approximation
of a given real-valued function f : Fn2 → R with small expected squared error. We develop a
general theory of linear sketching for such functions through which we analyze their dimension
for most commonly studied types of valuation functions: additive, budget-additive, coverage, α-
Lipschitz submodular and matroid rank functions. This gives a characterization of how many bits of
information have to be stored about the input x so that one can compute f under additive updates
to its coordinates.

Our results are tight in most cases and we also give extensions to the distributional version of
the problem where the input x ∈ Fn2 is generated uniformly at random. Using known connections
with dynamic streaming algorithms, both upper and lower bounds on dimension obtained in our
work extend to the space complexity of algorithms evaluating f(x) under long sequences of additive
updates to the input x presented as a stream. Similar results hold for simultaneous communication
in a distributed setting.
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1 Introduction

Linear sketching is a fundamental tool in efficient algorithm design that has enabled many of
the recent breakthroughs in fast graph algorithms and computational linear algebra. It has a
wide range of applications, including randomized numerical linear algebra (see survey [56]),
graph sparsification (see survey [44]), frequency estimation [3], dimensionality reduction
[34], various forms of sampling, signal processing, and communication complexity. In fact,
linear sketching has been shown to be the optimal algorithmic technique [41, 2] for dynamic
data streams, where elements can be both inserted and deleted. Linear sketching is also
a frequently used tool in distributed computing – summaries communicated between the
processors in massively parallel computational models are often linear sketches.

In this paper we introduce a study of approximate linear sketching over F2 (approximate
F2-sketching). This is a previously unstudied but natural generalization of the work of [35],
which studies exact F2-sketching. For a set S ⊆ [n] let χS : Fn2 → F2 be a parity function
defined as χS(x) =

∑
i∈S xi. Given a function f : Fn2 → R, we are looking for a distribution

© Grigory Yaroslavtsev and Samson Zhou;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 69; pp. 69:1–69:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/231819198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gyarosla@iu.edu
mailto:samsonzhou@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.69
https://arxiv.org/pdf/1907.00524.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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over k subsets S1, . . . ,Sk ⊆ [n] such that for any input x, it should be possible to compute
f(x) with expected squared error at most ε from the parities χS1(x), χS2(x), . . . , χSk

(x)
computed over these sets. While looking only at linear functions over F2 as candidate
sketches for evaluating f might seem restrictive, this view turns out to be optimal in a
number of settings. In the light of recent results of [35, 32], the complexity of F2-sketching
also characterizes the space complexity of streaming algorithms in the XOR-update model
as well as communication complexity of one-way multiplayer broadcasting protocols for
XOR-functions.

In matrix form, F2-sketching corresponds to multiplication over F2 of the row vector
x ∈ Fn2 by a random n× k matrix whose i-th column is the characteristic vector of χSi

:

(
x1 x2 . . . xn

) 
...

...
...

...
χS1 χS2 . . . χSk

...
...

...
...

 =
(
χS1(x) χS2(x) . . . χSk

(x)
)

The goal is to minimize k, ensuring that the sketch alone is sufficient for computing f
with expected squared error at most ε for any fixed input x. For a fixed distribution D of x,
the definition of error is modified to include an expectation over D in the error guarantee.
We give formal definitions below.

I Definition 1 (Exact F2-sketching, [35]). The exact randomized F2-sketch complexity with
error δ of a function f : Fn2 → R (denoted as Rlinδ (f)) is the smallest integer k such that there
exists a distribution χS1 , χS2 , . . . , χSk

over k linear functions over Fn2 and a post-processing
function g : Fk2 → R that satisfies:

∀x ∈ Fn2 : Pr
S1,...,Sk

[g(χS1(x), χS2(x), . . . , χSk
(x)) = f(x)] ≥ 1− δ.

The number of parities k in the definition above is referred to as the dimension of the
F2-sketch.

I Definition 2 (Approximate F2-sketching). The ε-approximate randomized F2-sketch com-
plexity of a function f : Fn2 → R (denoted as R̄linε (f)) is the smallest integer k such that there
exists a distribution χS1 , χS2 , . . . , χSk

over k linear functions over Fn2 and a post-processing
function g : Fk2 → R that satisfies:

∀x ∈ Fn2 : E
S1,...,Sk

[
(g(χS1(x), χS2(x), . . . , χSk

(x))− f(x))2] ≤ ε
If g is an unbiased estimator of f , then this corresponds to an upper bound on the

variance of the estimator. For example, functions with small spectral norm (e.g. cover-
age functions, [57]) admit such approximate F2-sketches. Moreover, observe that Defini-
tion 2 is not quite comparable with an epsilon-delta guarantee, which only promises that
|g(χS1(x), χS2(x), . . . , χSk

(x))− f(x)| ≤ ε with probability 1− δ, but guarantees nothing for
δ fraction of the inputs.

In addition to this worst-case guarantee, we also consider the same problem for x from a
certain distribution. In this case, a weaker guarantee is required, i.e. the bound on expected
squared error should hold only over some fixed known distribution D. An important case is
D = U(Fn2 ), the uniform distribution over all inputs.
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I Definition 3 (Approximate distributional F2-sketching). For a function f : Fn2 → R, we
define its ε-approximate randomized distributional F2-sketch complexity with respect to a
distribution D over Fn2 (denoted as D̄lin,Dε (f)) as the smallest integer k such that there exists
a distribution χS1 , χS2 , . . . , χSk

over k linear functions over F2 and a post-processing function
g : Fk2 → F2 that satisfies:

E
x∼D

E
S1,...,Sk

[
(g(χS1(x), χS2(x), . . . , χSk

(x))− f(x))2] ≤ ε.
1.1 Applications to Streaming and Distributed Computing

One of the key applications of our results is to the dynamic streaming model. In this model,
the input x is generated via a sequence of additive updates to its coordinates, starting with
x = 0n. If x ∈ Rn, then updates are of the form (i,∆i) (turnstile model), where i ∈ [n], and
∆i ∈ R, which adds ∆i to the i-th coordinate of x. For x ∈ Fn2 , only the coordinate i is
specified and the corresponding bit is flipped, which is known as the XOR-update model [52]1.
Dynamic streaming algorithms aim to minimize space complexity of computing a given
function f for an input generated through a sequence of such updates while also ensuring
fast update and function evaluation times.

Note that linear sketching over the reals and F2-sketching can be used directly in the
respective streaming update models. Most interestingly, these techniques turn out to achieve
almost optimal space complexity. It is known that linear sketching over the reals gives
(almost) optimal space complexity for processing dynamic data streams in the turnstile model
for any function f [41, 2]. However, the results of [41, 2] require adversarial streams of length
triply exponential in n. In the XOR-update model, space optimality of F2-sketching has been
shown recently in [32]. This optimality result holds even for adversarial streams of much
shorter length Ω(n2). Hence, lower bounds on F2-sketch complexity obtained in our work
extend to space complexity of dynamic streaming algorithms for streams of quadratic length.

A major open question in this area is the conjecture of [35] that the same holds even for
streams of length only 2n. We thus complement our lower bounds on dimension of F2-sketches
with one-way two-player communication complexity lower bounds for the corresponding
XOR functions f+(x, y) = f(x + y). Such lower bounds translate to dynamic streaming
lower bounds for streams of length 2n. Furthermore, whenever our communication lower
bounds hold for the uniform distribution, the corresponding streaming lower bound applies
to streaming algorithms under uniformly random input updates.

Finally, our upper bounds can be used for distributed algorithms computing f(x1 + · · ·+
xM ) over a collection of distributed inputs x1, . . . , xM ∈ Fn2 as F2-sketches can be used for
distributed inputs. On the other hand, our communication lower bounds also apply to the
simultaneous message passing (SMP) communication model, since it is strictly harder than
one-way communication.

1 By slightly changing the function to f ′(x1, . . . , xn, y1, . . . , yn) = f(x1 + y1, x2 + y2, . . . , xn + yn), it is
easy to see that there are functions for which knowledge of the sign of the update (i.e. whether it is +1 or
-1) is not a stronger model than the XOR-update model. For some further motivation of the XOR-update
model, consider dynamic graph streaming algorithms, i.e the setting when x represents the adjacency
matrix of a graph and updates correspond to adding and removing the edges. Almost all known dynamic
graph streaming algorithms (except spectral graph sparsification of [36]) are based on the `0-sampling
primitive [26]. As shown recently, `0-sampling can be implemented optimally using F2-sketches [37] and
hence almost all known dynamic graph streaming algorithms can handle XOR-updates, i.e. knowing
whether an edge was inserted or deleted does not help.

APPROX/RANDOM 2019
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1.2 Valuation Functions and Sketching
Submodular valuation functions, originally introduced in the context of algorithmic game
theory and optimization, have received a lot of interest recently in the context of learning
theory [10, 9, 18, 29, 47, 23, 22, 24, 25]2, approximation [27, 7] and property testing [16, 49, 12].
As we show in this work, valuation functions also represent an interesting study case for
linear sketching and streaming algorithms. While a variety of papers exists on streaming
algorithms for optimizing various submodular objectives, e.g. [48, 20, 8, 17, 15, 21, 30, 4, 11],
to the best of our knowledge no prior work considers the problem of evaluating such functions
under a changing input.

A systematic study of F2-sketching has been initiated for Boolean functions in [35].
This paper can be seen as a next step, as we introduce approximation into the study of
F2-sketching. One of the consequences of our work is that the Fourier `1-sampling technique,
originally introduced by Bruck and Smolensky [14] (see also [28, 45]), turns out to be optimal
in its dependence on both spectral norm and the error parameter. For Boolean functions,
a corresponding result is not known as Boolean functions with small spectral norm and
necessary properties are hard to construct. Another technical consequence of our work is
that the study of learning and sketching algorithms turn out to be related on a technical
level despite pursuing different objectives (in learning the specific function is unknown, while
in sketching it is). In particular, our hardness result for Lipschitz submodular functions
uses a construction of a large family of matroids from [10] (even though in a very different
parameter regime), who designed such a family to fool learning algorithms.

1.3 Our Results
A function f : 2[n] → R is α-Lipschitz if for any S ⊆ [n] and i ∈ [n], it holds that |f(S ∪
{i})− f(S)| ≤ α for some constant α > 0. A function f : 2[n] → R is submodular if:

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B) ∀A ⊆ B ⊆ [n] and i /∈ B.

We consider the following classes of valuation functions of the form f : Fn2 → R (all of
them submodular) sometimes treating them as f : 2[n] → R and vice versa. These classes
mostly cover all of existing literature on submodular functions3. See Table 1 for a summary
of the results.

Additive (linear). f(x) =
∑n
i=1 wixi, where wi ∈ R.

Our results: For additive functions, it is easy to show that dimension of F2-sketches is
O(min(‖w‖2

1/ε, n)) and give a matching communication lower bound for all ε ≥ ‖w‖2
2 [57].

Budget-additive. f(x) = min(b,
∑n
i=1 wixi) where b, wi ∈ R. An example of such

functions is the “hockey stick” function hsα(x) = min(α, 2α
n

∑n
i=1 xi).

Our results: For budget-additive functions, it is easy to show that dimension of F2-
sketches is O(min(‖w‖2

1/ε, n)) [57]. We give a matching communication bound for the
“hockey stick” function for constant ε [57], which holds even under the uniform distribution
of the input.

2 We remark that in this literature the term “sketching” is used to refer to the space complexity of
representing the function f itself under the assumption that it is unknown but belongs to a certain
class. This question is orthogonal to our work as we assume f is known and fixed while the input x
is changing.

3 We do not discuss some other subclasses of subadditive functions because they are either superclasses of
classes for which we already have an Ω(n) lower bound (e.g. submodular, subadditive, etc.) or because
such a lower bound follows trivially (e.g. for OXS/XOS since for XS-functions a lower bound of Ω(n) is
easy to show, see [57]).
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Table 1 Linear sketching complexity of classes of valuation functions. We defer the proofs of
several results to the full version [57].

Class Error Distribution Complexity Result

Additive/Budget additive
ε any Θ

(
‖w‖2

1
ε

)
[57]

min(b,
∑n

i=1 wixi)

min(c
√
n, 2c√

n

∑n

i=1 xi) constant uniform Ω(n) [57]

Coverage ε any O
(

1
ε

)
[57]

Matroid Rank 2 exact any Θ(1) Theorem 12

Graphic Matroids Rank r exact any O(r2 log r) Theorem 16

Matroid Rank r exact any Ω(r) Corollary 35

Matroid Rank r exact uniform O((r log r + c)r+1) [57]

Matroid Rank 1/
√
n uniform Θ(1) [57]

c
n
-Lipschitz Submodular constant any Θ(n) Theorem 28

Coverage. A function f is a coverage function on some universe U of sizem if there exists
a collection A1, . . . , An of subsets of U and a vector of non-negative weights (w1, . . . , wm)
such that:

f(S) =
∑

i∈∪j∈SAj

wi.

Our results: We show a simple upper bound of O(1/ε) for such functions [57].
Matroid rank. A pair M = ([n], I) is called a matroid if I ⊆ 2[n] is a non-empty set
family such that the following two properties are satisfied:

If I ∈ I and J ⊆ I, then J ∈ I
If I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J such that J ∪ {i} ∈ I.

The sets in I are called independent. A maximal independent set is called a base of M .
All bases have the same size, which is called the rank of the matroid and is denoted as
rk(M). The rank function of the matroid is the function rankM : 2[n] → N+ defined as:

rankM (S) := max{|I| : I ⊆ S, I ∈ I}.

It follows from the definition that rankM is always a submodular 1-Lipschitz function.
Our results: In order to have consistent notation with the rest of the manuscript we
always assume that matroid rank functions are scaled so that their values are in [0, 1].
Some of our results are exact, i.e. the corresponding matroid rank function is computed
exactly (and in this case rescaling does not matter) while others allow approximation of
the function value. In the latter case, the approximation guarantees are multiplicative
with respect to the rescaled function.
Our main theorem regarding sketching of matroid rank functions is as follows:
I Theorem 4 (Sketching matroid rank functions). For (scaled) matroid rank functions:

There exists an exact F2-sketch of size O(1) for matroids of rank 2 (Theorem 12) and
graphic matroids (Theorem 16).
There exists c = Ω(1) and a matroid of rank r such that a c-approximation of its
matroid rank function has randomized linear sketch complexity Ω(r). Furthermore,
this lower bound also holds for the corresponding one-way communication problem
(Theorem 34, Corollary 35).

APPROX/RANDOM 2019
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This can be contrasted with the results under the uniform distribution for which matroids
of rank r have an exact F2-sketch of size O

((
r log r + log 1

ε

)r+1
)
, where ε is the probability

of failure ([57], follows from the junta approximation of [13]). Furthermore, matroids of
high rank Ω(n) can be trivially approximately sketched under product distributions, due
to their concentration around their expectation (see [57] for details).
Lipschitz submodular. A function f : 2[n] → R is α-Lipschitz submodular if it is both
submodular and α-Lipschitz.
Our results: We show an Ω(n) communication lower bound (and hence a lower bound
on F2-sketch complexity) for constant error for monotone non-negative O(1/n)-Lipschitz
submodular functions (Theorem 28). We note that this hardness result crucially uses a
non-product distribution over the input variables since Lipschitz submodular functions are
tightly concentrated around their expectation under product distributions (see e.g. [55, 10])
and hence can be approximated using their expectation without any sketching at all.

1.4 Overview and Techniques

1.4.1 Basic Tools: XOR Functions, Spectral Norm, Approximate
Fourier Dimension

In Section 2, we introduce the basics of approximate F2-sketching. Most definitions and
results in this section can be seen as appropriate generalizations regarding Boolean functions
(such as in [35]) to the case of real-valued functions where we replace Hamming distance
with expected squared distance. We then define the randomized one-way communication
complexity of the two-player XOR-function f+(x, y) = f(x+ y) corresponding to f . This
communication problem plays an important role in our arguments as it gives a lower bound
on the sketching complexity of f . We then introduce the notion of approximate Fourier
dimension developed in [35]. The key structural results of [35], which characterize both
the sketching complexity of f and the one-way communication complexity of f+ under
the uniform distribution using the approximate Fourier dimension, can be extended to the
real-valued case as shown in Proposition 10 and Theorem 11. This characterization is our
main tool for showing lower bounds under the uniform distribution of x.

Another useful basic tool is a bound on the linear sketching complexity based on the
spectral norm of f , which we develop in [57]. In particular, as we show in [57], analogously to
the Boolean case, we can leverage properties of the Fourier coefficients of a function f to show
that the ε-approximate randomized sketching complexity of f is at most O(‖f̂‖2

1/ε). Thus,
we can determine the dimension of F2-sketches for classes of functions whose spectral norms
are well-bounded as well as functions which can be computed as Lipschitz compositions of
a small number of functions with bounded spectral norm [57]. Examples of such classes
include additive (linear), budget-additive and coverage functions. Finally, we argue that the
dependence on the parameters in the spectral norm bound cannot be substantially improved
in the real-valued case by presenting a subclass of linear functions which require sketches of
size Ω(‖f̂‖2

1/ε) [57]. This is in contrast with the case of Boolean functions studied in [35] for
which such tightness result is not known.

1.4.2 Matroid Rank Functions, LTF, LTF◦OR
In Section 3, we present our results on sketching matroid rank and Lipschitz submodular
functions. In Section 3.1 we show that matroid rank functions of matroids of rank 2 and
graphic matroids have constant randomized sketching complexity. This is done by first
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observing that rank functions of such matroids can be expressed as a threshold function over
a number of disjunctions. Therefore, it remains to determine the sketching complexity of
the threshold function on a collection of disjunctions. Unfortunately, known upper bounds
for the sketching complexity of even the simpler class of linear threshold functions have a
dependence on n and hence one cannot get a constant upper bound directly.

Hence we show how to remove this dependence in Section 3.1.1, also resolving an open
question of Montanaro and Osborne [45]. Recall that a linear threshold function (LTF) can
be represented as f(x) = sgn (

∑n
i=1 wixi − θ) for some weights wi and threshold θ, where

we slightly alter the traditional definition of the sign function sgn to output 0 if the input
is negative and 1 otherwise. An important parameter of an LTF is its margin m, which
corresponds to the difference between the threshold and the value of the linear combination
closest to it. We first observe that the terms with insignificant coefficients, i.e. weights that
are small in absolute value, do not contribute to the final output and thus, we can ignore
them. Similarly, the remaining weights can be rounded, without altering the output of the
function, to a collection of weights whose size is bounded, independent of n. Furthermore,
f(x) = 0 only if xi = 1 for at most θ

2m of these “significant” indices i of x. Thus, we hash
the significant indices to a large, but independent of n, number of buckets. As a result, either
there are a small number of significant indices i with x1 = 1 and there are no collisions,
or there is a large number of significant indices i with xi = 1. Since we can differentiate
between these two cases, the sketch can output whether f(x) = 0 or f(x) = 1 with constant
probability. With a more careful choice of hash functions this idea can be extended to linear
thresholds of disjunctions. We show in Section 3.1.2 that a threshold function over a number
of disjunctions (LTF◦OR) also has linear sketch complexity independent of n.

In Section 3.2.1, we show that there exists an Ω(n)-Lipschitz submodular function f that
requires a randomized linear sketch of size Ω(n). We construct such a function probabilistically
by using a large family of matroid rank functions constructed by [10] with an appropriately
chosen set of parameters. We show any fixed deterministic sketch fails on a matroid chosen
uniformly at random from this parametric family with very high probability. In fact, even
if we take a union bound over all possible sketches of bounded dimension, the failure of
probability is still negligibly close to 1. By Yao’s principle, the randomized linear sketch
complexity follows. We then extend this result to a communication lower bound for f+ in
Section 3.2.2. In the one-way communication complexity setting, we show that there exists
an Ω(n)-Lipschitz submodular function f whose f+ requires communication Ω(n).

1.4.3 Uniform Distribution

In [57], we show lower bounds for a budget additive “hockey stick” function under the
uniform distribution. The lower bounds follow from a characterization of communication
complexity using approximate Fourier dimension, and to complete the analysis, we lower
bound the Fourier spectrum of the hockey stick function in [57]. Although our approach
for matroids of rank 2 does not seem to immediately generalize to matroids of higher rank
under arbitrary distributions, we show in [57] that under the uniform distribution, we can
use ε-approximations of disjunctive normal forms (DNFs) by juntas to obtain a randomized
linear sketch whose size is independent of n. Furthermore, rank functions of matroids of very
high rank admit trivial approximate sketches under the uniform distribution as follows from
standard concentration results [55] (see [57]).

APPROX/RANDOM 2019
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2 Basics of Approximate F2-Sketching

2.1 Communication Complexity of XOR functions
In order to analyze the optimal dimension of F2-sketches, we need to introduce a closely
related communication complexity problem. For f : Fn2 → R define the XOR-function
f+ : Fn2 × Fn2 → R as f+(x, y) = f(x+ y) where x, y ∈ Fn2 . Consider a communication game
between two players Alice and Bob holding inputs x and y respectively. Given access to
a shared source of random bits Alice has to send a single message to Bob so that he can
compute f+(x, y). This is known as the one-way communication complexity problem for
XOR-functions (see [50, 58, 45, 39, 40, 51, 42, 53, 43, 31, 35] for related communication
complexity results).

I Definition 5 (Randomized one-way communication complexity of XOR function). For a
function f : Fn2 → R, the randomized one-way communication complexity with error δ
(denoted as R→δ (f+)) of its XOR-function is defined as the smallest size4 (in bits) of the
(randomized using public randomness) message M(x) from Alice to Bob, which allows Bob
to evaluate f+(x, y) for any x, y ∈ Fn2 with error probability at most δ.

It is easy to see that R→δ (f+) ≤ Rlinδ (f) as using shared randomness Alice can just send
k bits χS1(x), χS2(x), . . . , χSk

(x) to Bob, who can for each i ∈ [k] compute χSi
(x + y) =

χSi(x)+χSi(y), which is an F2-sketch of f on x+y and hence suffices for computing f+(x, y)
with probability 1− δ.

Replacing the guarantee of exactness of the output in the above definition with an upper
bound on expected squared error, we obtain the following definition.

I Definition 6 (Randomized one-way communication complexity of approximating an XOR
function). For a function f : Fn2 → R, the randomized one-way communication complexity
(denoted as R̄→ε (f+)) of approximating its XOR-function with error ε is defined as the
smallest size(in bits) of the (randomized using public randomness) message M(x) from Alice
to Bob, which allows Bob to evaluate f+(x, y) for any x, y ∈ Fn2 with expected squared error
at most ε.

Distributional communication complexity is defined analogously for the corresponding XOR
function and is denoted as Dε.

Finally, in the simultaneous model of computation [6, 5], also called simultaneous message
passing (SMP) model, there exist two players and a coordinator, who are all aware of a
function f . The two players maintain x and y respectively, and must send messages of
minimal size to the coordinator so that the coordinator can compute f(x⊕ y).

I Definition 7 (Simultaneous communication complexity of XOR function). For a function
f : Fn2 → R, the simultaneous one-way communication complexity with error δ (denoted
as Rsimδ (f+)) of its XOR-function is defined as the smallest sum of the sizes (in bits) of
the (randomized using public randomness) messages M(x) and M(y) from Alice and Bob,
respectively, to a coordinator, which allows the coordinator to evaluate f+(x, y) for any
x, y ∈ Fn2 with error probability at most δ.

Observe that a protocol for randomized one-way communication complexity of XOR function
translates to a protocol for the simultaneous model of computation.

4 Formally the minimum here is taken over all possible protocols where for each protocol the size of the
message M(x) refers to the largest size (in bits) of such message taken over all inputs x ∈ Fn2 . See [38]
for a formal definition.
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2.2 Distributional Approximate F2-Sketch Complexity
Fourier analysis plays an important role in the analysis of distributional F2-sketch complexity
over the uniform distribution. In our discussion below, we make use of some standard facts
from Fourier analysis of functions over Fn2 . For definitions and basics of Fourier analysis
of functions of such functions we refer the reader to the standard text [46] and [57]. In
particular, Fourier concentration on a low-dimensional subspace implies existence of a small
sketch which satisfies this guarantee:

I Definition 8 (Fourier concentration). A function f : Fn2 → R is γ-concentrated on a linear
subspace Ad of dimension d if for this subspace it satisfies:∑

S∈Ad

f̂(S)2 ≥ γ.

We also use the following definition of approximate Fourier dimension from [35], adapted
for the case of real-valued functions.

I Definition 9 (Approximate Fourier dimension). Let Ak be the set of all linear subspaces of
Fn2 of dimension k. For f : Fn2 → R and ε ∈ (0, ‖f‖2

2] the ε-approximate Fourier dimension
dimε(f) is defined as:

dimε(f) = min
k

{
∃A ∈ Ak :

∑
α∈A

f̂2(α) ≥ ε
}
.

I Proposition 10. For any f : Fn2 → R, it holds that:

D̄lin,Uε (f) ≤ dim‖f‖22−ε(f).

Furthermore, approximate Fourier dimension can be used as a lower bound on the one-way
communication complexity of the corresponding XOR-function. We defer the proof of the
following result to [57] as it is follows closely an analogous result for Boolean functions
from [35].

I Theorem 11. For any f : Fn2 → R, δ ∈ [0, 1/2] and ξ = ‖f‖2
2 − ε(1 + 2δ) it holds that:

D̄→,Uε (f+) ≥ δ

2 · dimξ(f).

3 Sketching Matroid Rank Functions

In this section we analyze sketching complexity of matroid rank functions. We start by
considering the most fundamental possible matroids (of rank 2) in Section 3.1 and showing
that exactly sketching the matroid rank function requires O(1) complexity. Similarly, we
show that exactly sketching the rank of graphic matroids only uses O(1) complexity. On the
other hand, we show a lower bound in Section 3.2.1 that even approximating the rank r of
general matroids up to certain constant factors requires Ω(r) complexity.

To sketch matroids of rank 2, we leverage a result by Acketa [1] which characterizes the
collection of independent sets of such matroids. This allows us to represent matroid rank
functions for matroids of rank 2 as a linear threshold of disjunctions. Thus, we first show the
randomized linear sketch complexity of (θ,m)-linear threshold functions, resolving an open
question by Montanaro and Osborne [45].
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3.1 Matroids of Rank 2 and Graphic Matroids
In this section, we show that there exists a constant-size sketch that can be used to compute
exact values of matroid rank functions for matroids of rank 2.

I Theorem 12. For every matroid M of rank 2 it holds that Rlin1
3

(rankM ) = O(1).

It is well-known that matroids of rank 2 admit the following characterization (see e.g. [1]).

I Fact 13. The collection of size 2 independent sets of a rank 2 matroid can be represented
as the edges in a complete graph that has edges of some number of disjoint cliques removed.

We define the following function as a threshold on the Hamming weight of a binary vector x

HAM≤d(x) =
{

0, if
∑n
i=1 xi ≤ d+ 1

2

1, otherwise.

We use a series of technical lemmas in the following section to prove the following result,
which says that linear threshold functions can be succinctly summarized:

I Theorem 14. The function HAM≤d
(∨

i∈S1
xi,
∨
i∈S2

xi, . . .
)
has a randomized linear sketch

of size O(d2 log d).

The following fact that upper bounds the sketch complexity for functions with small support:

I Fact 15 (Folklore, see e.g. [45, 35]). For any function f : {0, 1}n → {0, 1} with
minz∈{0,1}Prx∈{0,1}n(f(x) = z) ≤ ε it holds that Rlinδ (f) ≤ log 2n+1ε

δ .

Using Fact 13, Theorem 14, and Fact 15, we prove Theorem 12 by writing the matroid rank
function for M as a linear threshold function of disjunctions.

Proof of Theorem 12. We first claim F2-sketching complexity of the rank function of any
rank 2 matroid M is essentially the same as the complexity of the corresponding Boolean
function that takes value 1 if rankM (x) = 2 and takes value 0 otherwise. Indeed, let
the function above be denoted as fM . Without loss of generality, we can assume that
all singletons are independent sets in M as otherwise the rank function of M does not
depend on the corresponding input. Hence rankM (x) = 0 if and only if x = 0n. Thus
Rlinδ (rankM ) = Rlinδ (fM ) + O(log 1/δ) as by Fact 15 we can use O(log 1/δ)-bit sketch to
check whether x = 0n first and then evaluate rankM using fM . Recall from Fact 13 that
matroids of rank 2 can be represented as edges in a complete graph with edges corresponding
to some disjoint union of cliques removed.

Let S1, . . . , St be the collection of vertex sets of disjoint cliques defining a rank 2 matroid
M in Fact 13. Without loss of generality, we can assume that | ∪ti=1 Si| = n by adding
singletons. Then:

fM (x) = HAM≥2

 ∨
j∈S1

xj ,
∨
j∈S2

xj , . . . ,
∨
j∈St

xj

 ,

where HAM≥2(z1, . . . , zt) = 1 if and only if
∑t
i=1 zi ≥ 2 is the threshold Hamming weight

function. By Theorem 14, the sketch complexity of fM (x) is O(1), since the Hamming weight
threshold is d = 2. J



G. Yaroslavtsev and S. Zhou 69:11

Since the independent bases of a graphic matroid M(G) are the spanning forests of G, the
matroid rank function of a graphic matroid of rank r can be expressed as

fM (x) = HAM≥r

 ∨
j∈S1

xj ,
∨
j∈S2

xj , . . . ,
∨
j∈St

xj

 ,

where each Si is a separate spanning forest. Therefore, Theorem 14 yields a O(r2 log r) space
linear sketch for graphic matroids of rank r.

I Theorem 16. For every graphic matroid M of rank r, it holds that Rlin1
3

(rankM ) =
O(r2 log r).

We use the remainder of the Section 3.1 to prove Theorem 14, while resolving an open
question by Montanaro and Osborne [45].

3.1.1 Linear Threshold Functions
We first define linear threshold functions (LTFs) and (θ,m)-LTFs.

I Definition 17. A function f : {0, 1}n → {0, 1} is a linear threshold function (LTF) if there
exist constants θ, w1, w2, . . . , wn such that f(x) = sgn (−θ +

∑n
i=1 wixi), where sgn (y) = 0

for y < 0 and sgn (y) = 1 for y ≥ 0 is the Heaviside step function.

I Definition 18. A monotone linear threshold function f : {0, 1}n → {0, 1} is a (θ,m)-LTF
if m ≤ minx∈{0,1}n |−θ +

∑n
i=1 wixi|, where θ is referred to as the threshold and m as the

margin of the LTF.

Although (θ,m)-LTFs have previously been shown to have randomized linear sketch com-
plexity O

(
θ
m logn

)
[42], Montanaro and Osborne asked whether any (θ,m)-LTF can be

represented in the simultaneous model with O
(
θ
m log θ

m

)
communication.

I Question 19 ([45]). Let g(x, y) = f(x⊕ y), where f is a (θ,m)-LTF. Does there exist a
protocol for g in the simultaneous model with communication complexity O

(
θ
m log θ

m

)
?

Note that the difference between logn and log θ
m is crucial for obtaining constant randomized

linear sketch complexity for functions for matroid rank 2. We answer Question 19 in the
affirmitive and show the stronger result that (θ,m)-LTFs admit a randomized linear sketch
of size O

(
θ
m log θ

m

)
. We first show that we can completely ignore all variables whose weights

are significantly smaller than 2m in evaluating a (θ,m)-LTF.

I Lemma 20. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. For 1 ≤ i ≤ n, let w′i = wi

if wi ≥ 2m and w′i = 0 otherwise. Then f(x) = sgn (−θ +
∑n
i=1 w

′
ixi).

As noted, Lemma 20 implies that we can ignore not only variables with zero weights, but all
variables whose weights are less than 2m. We now bound the support of the set {x | f(x) = 0},
where f is a (θ,m)-LTF, and apply Fact 15.

I Lemma 21. For any (θ,m)-LTF, there exists a randomized linear sketch of size O
(
θ
m logn

)
.

Proof. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. By Lemma 20, the output of f

remains the same even if we only consider the variables S with weight at least 2m. On the
other hand, if f(x) = 0, then at most θ

2m variables in S can have value 1. Equivalently, at
most θ

2m indices i can have xi = 1 if f(x) = 0. Thus, the number of x ∈ {0, 1}n with f(x) = 0
is at most

∑
0≤i≤θ/2m

(
n
i

)
≤ (n + 1)dθ/2me. Applying Fact 15, there exists a randomized

linear sketch for f , of size O
(
θ
m logn

)
. J
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In order to fully prove Question 19 and obtain a dependence on log θ
m rather than logn,

we use the following two observations. First, we show in Lemma 22 that the weights of
a (θ,m)-LTF can be rounded to a set that contains O

(
θ
m

)
elements. Second, we show in

Theorem 25 that we can then use hashing to reduce the number of variables down to poly
(
θ
m

)
before applying Lemma 21.

I Lemma 22. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. Then there exists a set W

with |W | = O
(
θ
m log θ

m

)
, and a margin m′ = Θ(m) such that f(x) = sgn (−θ +

∑n
i=1 w

′
ixi),

where each w′i ∈W and f is a (θ,m′)-LTF.

The following result is also useful for our construction of a sketch for a (θ,m)-LTF.

I Lemma 23 ([33]). There is a randomized linear sketch with size O(1) for the function

HAMn,d|2d(x) =
{

1, if ||x||0 ≤ d
0, if ||x||0 ≥ 2d

on instances {x|x ∈ {0, 1}n and ||x||0 ≤ d or ||x||0 ≥ 2d}.

I Fact 24. If h : [n]→ [M ] is a random hash function and S ⊆ [n], then the probability that
there exist x, y ∈ S with h(x) = h(y) is at most |S|

2

M .

I Theorem 25. Any (θ,m)-LTF admits a randomized linear sketch of size O
(
θ
m log θ

m

)
.

Proof. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. By Lemma 22, we can assume

that wi ∈ W = {2m(1 + ε)i}ti=0 so that the new margin m′ = 4
5m and t =

⌈
log1+ε

θ
m

⌉
for

ε = θ
10m . Recall from Lemma 21, f(x) = 0 only if xi = 1 for at most θ

2m indices i of x. From
Lemma 23, we can detect the instances where at least θ

2m indices i of x satisfy xi = 1.
On the other hand, if less than θ

2m indices i of x satisfy xi = 1, we can identify these
indices and corresponding weights via hashing. Let h : [n]→ [M ], where M = 5

(
θ
m

)2, and
S be a set of indices of x, of size at most θ

m . Then by Fact 24, the probability of a collision
in h under elements of S is at most 1

5 . We partition [n] into sets Sw,j where w ∈ W and
j ∈ [M ] so that Sw,j = {i|h(i) = j ∧ wi = w}. Therefore with probability at least 4

5 , there
are no collisions in h under elements of S and |Sw,j | ≤ 1 for all w ∈W and j ∈ [M ].

Let yw,j =
∑
i∈Sw,j

xi and note that if there are no collisions in h under elements of S,
then

n∑
i=1

wixi =
∑

(j,w)∈[M ]×W

w

 ∑
i∈Sw,j

xi

 =
∑

(j,w)∈[M ]×W

w · yw,j .

Thus, f(x) is equivalent to the function g(y) = sgn
(
−θ +

∑
w,j w · yw,j

)
. Since |W | =

O
(
θ
m log θ

m

)
, M = 5

(
θ
m

)2 and m′ = 4
5m is the margin for g(y), then g(y) depends on

O
((

θ
m

)3 log θ
m

)
variables yw,j . By Lemma 21, there exists a randomized sketch for g(y) of

size O
(
θ
m log θ

m

)
. J

We can also show that Theorem 25 is tight by recalling the function

HAM≤d(x) =
{

0, if
∑n
i=1 xi ≤ d+ 1

2

1, otherwise.
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Since this function is a
(
d+ 1

2 ,
1
2
)
-LTF, it can be represented by a randomized linear sketch

of size O(d log d). On the other hand, Dasgupta, Kumar and Sivakumar [19] notes that the
one-way complexity of small set disjointness for two vectors x and y of weight d, which
reduces to the function HAM≤d(x⊕ y), is Ω(d log d). Thus, HAM≤d(x⊕ y) also requires a
sketch of size Ω(d log d).

3.1.2 Linear Threshold of Disjunctions

In this section, we describe a randomized linear sketch for functions that can be rep-
resented as 2-depth circuits where the top gate is a monotone linear threshold function
with threshold θ and margin m, and the bottom gates are OR functions. Formally, if
gS(x) =

∨
i∈S

xi, q is a linear threshold function, and wS ≥ 0, then f(x) = q(. . . , gS(x), . . .) =

sgn
(
−θ +

∑
S∈2[n] wS · gS(x)

)
.

I Lemma 26. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF where wi ∈ W for some

set W . Let h : [n]→ [M ] be a random hash function where M = 50θ2

m2 and

fh(x) = sgn

−θ +
∑

(j,w)∈[M ]×W

w

 ∨
i:h(i)=j
wi=w

xi


 .

Then for all x, Pr [fh(x) 6= f(x)] ≤ 1
50 .

I Theorem 27. Let gS(x) =
∨
i∈S xi with wS ≥ 0, q be a (θ,m)-LTF, and

f(x) = q(. . . , gS(x), . . .) = sgn

−θ +
∑
S∈2[n]

wS · gS(x)

 .

Then there is a randomized linear sketch for f of size O
((

θ
m

)4 log2 θ
m

)
, where m is the

margin of q.

Proof. We first apply Lemma 20 and Lemma 22 to q so that weights wi can be rounded
to elements of a set W with |W | = O

(
θ
m log θ

m

)
. For each wi ∈ W , it again suffices to

detect whether Θ( θm ) disjunctions are nonzero. Hence to hash O
((

θ
m

)2 log θ
m

)
disjunctions,

it suffices to use a hash function with M = O
((

θ
m

)4 log2 θ
m

)
buckets. By Lemma 26, our

resulting randomized linear sketch has size O
((

θ
m

)4 log2 θ
m

)
. J

Proof of Theorem 14. Recall that HAM≤d(x) is a
(
d+ 1

2 ,
1
2
)
-LTF. Furthermore, the set

of weights W for HAM≤d(x) consists of a single element {1}, since the coefficient of each
disjunction is one. Since M = O(d2 log d), we can construct a randomized linear sketch with
size O(d2 log d) by Lemma 26. J

We note that our approach can be easily generalized to the case where the disjunction include
the negations of some variables as well.
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3.2 Communication Complexity of Lipschitz Submodular Functions
We discuss the communication complexity of Lipschitz submodular functions in this section.
We first show in Section 3.2.1 that there exists an Ω(n)-Lipschitz submodular function f that
requires a randomized linear sketch of size Ω(n). We then show in Section 3.2.2 that in the
one-way communication complexity model for XOR functions, there exists an Ω(n)-Lipschitz
submodular function f that has communication complexity Ω(n).

3.2.1 Approximate F2-Sketching of Lipschitz Submodular Functions
I Theorem 28. There exist constants c1, c2, ε ≥ 0 and a monotone non-negative ( c1n )-
Lipschitz submodular function f (a scaling of a matroid rank function) such that R̄linε (f) ≥
c2n.

Proof. Our proof uses a construction of a large family of matroid rank functions given in [10],
Theorem 8. The construction uses the following notion of lossless bipartite expanders:

I Definition 29 (Lossless bipartite expander). Let G = (U ∪ V,E) be a bipartite graph. For
J ⊆ U let Γ(J) = {v|∃u ∈ U : {u, v} ∈ E}. Graph G is a (D,L, ε)-lossless expander if:

|Γ({u})| = D ∀u ∈ U
|Γ(J)| ≥ (1− ε)D|J | ∀J ⊆ U, |J | ≤ L.

Here we need different parameters than in [10] so we restate their theorem as follows:

I Theorem 30 ([10]). Let (U ∪ V,E) be a (D,L, ε)-lossless expander with |U | = k and
|V | = n and let b = 8 log k. If D ≥ b, L = 4D/b− 2 and ε = b

4D then there exists a family of
sets A ⊆ 2[n] and a family of matroids {MB : B ⊆ A} with the following properties:
|A| = k and for every A ∈ A it holds that |A| = D.
For every B ⊆ A and every A ∈ A, we have:

rankMB(A) =
{
b if A ∈ B
D if A ∈ A \ B

We use the following construction of lossless expanders from [54], see also [10].

I Theorem 31 ([54]). Let k ≥ 2 and ε ≥ 0. For any L ≤ k, let D ≥ 2 log k/ε and n ≥ 6DL/ε.
Then a (D,L, ε)-lossless expander exists.

In the above theorem we can set parameters as follows:

D = n

3 · 27 , L = 23, ε = 2−3, k = 2n/3·211
, b = n

3 · 28 .

Note that under this choice of parameters we have 6DL/ε = n and 2 log k
ε = D and hence a

(D,L, ε)-lossless expander with parameters set above exists.
Now consider the family of matroids M given by Theorem 30 using the expander

construction above. The rest of the proof uses the probabilistic method. We will show
non-constructively that there exists a matroid in this family whose rank function does not
admit a sketch of dimension d = o(n). Let D = U(A) be the uniform distribution over A.
By Yao’s principle it suffices to show that there exists a matroid rank function for which
any deterministic sketch fails with a constant probability over this distribution. In the
proof below we first show that any fixed deterministic sketch succeeds on a randomly chosen
matroid fromM with only a very tiny probability, probability 22−Ω(n) , and then take a union
bound over all 2dn sketches of dimension at most d.
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Indeed, fix any deterministic sketch S of dimension d = n/211. Let {b1, . . . , b2d} be the
set of all possible binary vectors of length d corresponding to the possible values of the sketch,
so that each bi ∈ {0, 1}d.

Let Sbi
= {A ∈ A : S(A) = bi}. Let t = 1

4 2n/211 and G = {bi ∈ {0, 1}d||Sbi
| ≥ t}. The

following proposition follows by a simple calculation.

I Proposition 32. If t = 1
4 2n/211 then 1

k

∑
bi∈G |Sbi | ≥ 3

4 .

Proof. We have:

1
k

∑
bi∈G

|Sbi
| ≥ 1− 1

k

∑
bi : |Sbi

|< k

4·2d

|Sbi
| ≥ 1− 1

k
· k

4 · 2d · 2
d ≥ 3

4 . J

Let S1
bi

= {A ∈ Sbi
: rankMB(A) = b} and S2

bi
= {A ∈ Sbi

: rankMB(A) = D}. We require
the following lemma.

I Lemma 33. Let t = 1
4 2n/211 and d = n/211. There exists a matroid MB ∈ M such that

for all deterministic sketches S of dimension d and all bi ∈ G, min(|S1
bi
|, |S2

bi
|) ≥ 1

4 |Sbi
|.

Fix the set B constructed in Lemma 33 and consider the function rankMB . Consider
distribution D over the inputs. The probability that any deterministic sketch over this
distribution makes error at least D − b is at least:

1
k

∑
bi∈{0,1}n

min(|S1
bi
|, |S2

bi
|) ≥ 1

k

∑
bi∈G

min(|S1
bi
|, |S2

bi
|) ≥ 1

k

∑
bi∈G

1
4 |Sbi

|,

where the last inequality holds by Lemma 33. Thus by Proposition 32, the probability is at
least 3

4 ×
1
4 ≥

1
6 .

Finally, the construction of [10] ensures that the function rankMB takes integer values
between 0 and D. Using this and the fact that matroid rank functions are 1-Lipschitz, we
can normalize it by dividing all values by D and ensure that the resulting function is O(1/n)-
Lipschitz and takes values in [0, 1], while the sketch makes error at least (D− b)/D = 1

2 . J

3.2.2 One-Way Communication of Lipschitz Submodular Functions

In this section, we strengthen the lower bound shown above, extending it to the corresponding
one-way communication problem. We use the same notation as in the previous section.

I Theorem 34. There exists a constant c1 > 0 and a c1
n -Lipschitz submodular function such

that R→1/3 = Ω(n).

By restricting the n-dimensional elements to r coordinates and observing that the
construction outputs matroids of rank b or D that are separated by a constant gap, we obtain
the following result using the same proof:

I Corollary 35. There exists c = Ω(1) such that a c-approximation of matroid rank functions
has randomized one-way communication complexity R→1/3 = Ω(r) where r is the rank of the
underlying matroid.
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A Missing Proofs

Proof of Proposition 10. Indeed, let Ad be a d-dimensional subspace such that∑
S∈Ad

f̂2(S) ≥ ‖f‖2
2 − ε and consider the function g(x) =

∑
S∈Ad

f̂(S)χS(x). Note that in
order to compute all values χS(x) for S ∈ Ad it suffices to evaluate d parities corresponding
to sets S1, . . . , Sd forming a basis in Ad. Values of all other parities can be computed as
linear combinations. Let ∆(x) = f(x)− g(x). Then the desired guarantee follows from the
following calculation:

E
x∼U({0,1}n)

[∆(x)2] = E
S∼U({0,1}n)

[∆̂(S)2] =
∑

S∈{0,1}n

(f̂(S)− ĝ(S))2 =
∑
S/∈Ad

f̂(S)2 ≤ ε,

where the first equality holds from Parseval’s identity. J

Proof of Lemma 20. We show the stronger result that for any j such that wj < 2m, then
f(x) = f(x⊕ ej), where ej is the elementary unit vector with one in the jþ position, and
zeros elsewhere. This implies the lemma since it shows that any variable whose weight is less
than 2m does not affect the output of the function or the margin of the function and thus
might as well have weight zero.

Suppose, by way of contradiction, that f(x) 6= f(x⊕ ej) and without loss of generality,
f(x) = 0 with xj = 0. Since f is a linear threshold function and f(x) = 0, then −θ +∑n
i=1 wixi < 0. Moreover, f is a (θ,m)-LTF, so −θ +

∑n
i=1 wixi < −m. Because wj < 2m,

−θ + wj +
∑n
i=1 wixi < −θ + 2m +

∑n
i=1 wixi < m. But because m is the margin of the

function, if −θ + wj +
∑n
i=1 wixi < m, then it must hold that −θ + wj +

∑n
i=1 wixi < −m.

Therefore, f(x⊕ ej) = 0, so xj does not affect the output of the function or the margin of
the function. J

Proof of Lemma 22. Observe that for any wi ≥ 2θ, if xi = 1, then f(x) = 1. Thus, if
f(x) = 1, it suffices to consider 2m ≤ wi ≤ 2θ.

Let W = {2m(1 + ε)i}ti=0 for t =
⌈
log1+ε

(
θ
m

)⌉
, where ε is some fixed constant that we

set at a later time. For each i, let w′i be the largest element in W that does not exceed wi.
Thus, w′i ≤ wi < (1 + ε)w′i. Observe that since w′i ≤ wi and f is a (θ,m)-LTF, then f(x) = 0
implies −m > −θ +

∑n
i=1 wixi ≥ −θ +

∑n
i=1 wixi, so that sgn (−θ +

∑n
i=1 w

′
ixi) = 0 = f(x)

and a margin of m remains.
On the other hand, if f(x) = 1, then

∑n
i=1 wixi > θ + m as f is a (θ,m)-LTF. Since

w′i ≤ wi < (1 + ε)w′i, then
∑n
i=1 w

′
ixi >

θ+m
1+ε > (1 − ε)(θ + m). Observe that θ ≥ m

and hence,
∑n
i=1 w

′
ixi > θ − εθ + m − εm ≥ θ + m − 2εθ. Setting ε = θ

10m shows that
sgn (−θ +

∑n
i=1 w

′
ixi) = 1 = f(x) and a margin of m′ = 4

5m remains. J

Proof of Lemma 26. As by Lemma 22, we can assume without loss of generality that
wi ≥ 2m and w ≥ 2m. Let S = {i|xi = 1} so that if there are no collisions under h in S,
then

∑
(j,w)∈[M ]×W

w

 ∨
i:h(i)=j
wi=w

xi

 =
∑
i

wixi.

If f(x) = 0, then |S| ≤ θ
2m so that the probability there are collisions under h in S is at most

1
200 by Fact 24. Thus if f(x) = 0, then fh(x) = 0 with probability at least 1− 1

200 .
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If f(x) = 1, then either |S| < θ
m or |S| ≥ θ

m . If |S| < θ
m , then the probability there are

collisions under h in S is at most 1
50 by Fact 24, so then fh(x) = 1 with probability at least

1− 1
50 . If |S| ≥

θ
m , with probability at least 1− 1

50 , there exist θ
m values j such that there

exists xi = 1 and h(i) = j. Therefore, we set fh(x) = 1 whenever at least θ
m buckets of h are

non-empty. In all cases, fh(x) = f(x) with probability at least 1− 1
50 . J

Proof of Lemma 33. The proof uses the probabilistic method to show the existence of B
with desired properties. Consider drawing a random matroid from the familyM, i.e. pick B
to be a uniformly random subset of A and consider MB. Fix any deterministic sketch S and
any bi ∈ G. Since |Sbi

| ≥ t, by the Chernoff bound, it holds that:

Pr
B⊆A

[∣∣S1
bi

∣∣ > (1
2 + δ

)
|Sbi
|
]
≤ e−cδ

2|Sbi
| ≤ e−cδ

2t.

Setting δ = 1/4, we have that the above probability is at most e−Ct for some constant C > 0.
Applying the argument above to both S1

bi
and S2

bi
, we have that:

Pr
B⊆A

[
min(

∣∣S1
bi

∣∣ , ∣∣S2
bi

∣∣) < 1
4 |Sbi

|
]
≤ 2e−Ct.

Let E denote the event that min(
∣∣S1
bi

∣∣ , ∣∣S2
bi

∣∣) ≥ 1
4 |Sbi

|.
Note that the total number of deterministic sketches of dimension d is at most 2dn,

since each sketch is specified by a collection of d linear functions over Fn2 . Also note
that for each sketch |G| ≤ 2d. Taking a union bound over all sketches and all sets G
by the choice of t and d event E holds for all S and bi ∈ G with probability at least
1− 2(n+1)d+1e−Ct ≥ 1− 2(n+1)d+12−C

4 2n/211

= 1− o(1). Thus, there exists some set B for
which the statement of the lemma holds. J

Proof of Theorem 34. Let α = 1
3·211 and |A| = k = 2αn. Suppose Alice holds x ∈ A ⊆

{0, 1}n and Bob holds y ∈ {0, 1}n. Recall that in the one-way communication model for
XOR functions, Alice must pass a message of minimal length to Bob, who must then compute
f(x⊕ y) with some probability, say 2

3 . Here, we let specifically let f be a scaling of a matroid
rank function, which is some monotone non-negative

(
c1
n

)
-Lipschitz submodular function. By

Yao’s principle, it suffices to show that every deterministic one-way communication protocol
using at most α

4 n bits fails with probability greater than 1
3 over A. Suppose by way of

contradiction, that Alice and Bob succeed through a deterministic one-way communication
protocol, using at most α

4 n bits. For the purpose of analysis, we furthermore suppose that
Bob’s input is fixed.

We now claim that if Alice passes a message to Bob using at most α
4 n bits, then there

are at least 2αn − 4 · 2αn/4 points in A that are represented by the same message as at least
five other points. Note that Alice can partition the input space A into at most 2αn/4 parts,
each part with its own distinct representative message. The number of points not in parts
containing at least five other points is at most 4 · 2αn/4. The remaining points, at least
2αn − 4 · 2αn/4 in quantity, are represented by the same message as at least five other points.

Let S be the set of points in A represented by a given message from Alice. Hence, Alice
assigns the same message to each of these points and passes the state of the protocol to
Bob. Because Bob cannot distinguish between these points and must perform a deterministic
protocol, then Bob must output the same result for each of these points. Recall that we
consider Bob’s input y ∈ {0, 1}n as fixed. Consider the family of functions

F = {f : f(x⊕ y) = b or f(x⊕ y) = D for all x ∈ A}.
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Thus, if S contains at least five points, there exists f ∈ F such that Bob errs on at least 2
5

fraction of the points in S by setting f(x⊕ y) = b to at least
⌊
|S|−1

2

⌋
of the points x ∈ S and

similarly for f(x⊕ y) = D. Moreover, since Alice partitions the points in A, then there exists
an f ∈ F such that Bob errs on at least 2

5 fraction on all points that are represented by the
same message as at least five other points. Hence, the total number of inputs that Bob errs
is at least 2

5
(
2αn − 6 · 2αn/4) > 1

3 · 2
αn for sufficiently large values of n. This contradicts

the assumption that the communication protocol, using at most α
4 n bits, succeeds with

probability 2
3 . J
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