
Weighted Maximum Independent Set of
Geometric Objects in Turnstile Streams
Ainesh Bakshi
Carnegie Mellon University, Pittsburgh, PA, USA
abakshi@cs.cmu.edu

Nadiia Chepurko
MIT, Cambridge, MA, USA
nadiia@mit.edu

David P. Woodruff
Carnegie Mellon University, Pittsburgh, PA, USA
dwoodruf@cs.cmu.edu

Abstract
We study the Maximum Independent Set problem for geometric objects given in the data stream
model. A set of geometric objects is said to be independent if the objects are pairwise disjoint.
We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let α be the
cardinality of the largest independent set. Our goal is to estimate α in a small amount of space, given
that the input is received as a one-pass stream. We also consider a generalization of this problem by
assigning weights to each object and estimating β, the largest value of a weighted independent set.
We initialize the study of this problem in the turnstile streaming model (insertions and deletions)
and provide the first algorithms for estimating α and β.

For unit-length intervals, we obtain a (2 + ε)-approximation to α and β in poly(log(n)
ε

) space. We
also show a matching lower bound. Combined with the 3/2-approximation for insertion-only streams
by Cabello and Perez-Lanterno [11], our result implies a separation between the insertion-only and
turnstile model. For unit-radius disks, we obtain a

(
8

√
3

π

)
-approximation to α and β in poly

(log(n)
ε

)
space, which is closely related to the hexagonal circle packing constant.

Finally, we provide algorithms for estimating α for arbitrary-length intervals under a bounded
intersection assumption and study the parameterized space complexity of estimating α and β, where
the parameter is the ratio of maximum to minimum interval length.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Streaming models

Keywords and phrases Weighted Maximum Independent Set, Geometric Graphs, Turnstile Streams

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.64

Category APPROX

Related Version https://arxiv.org/abs/1902.10328

Funding Ainesh Bakshi and David Woodruff acknowledge support in part from NSF No. CCF-
1815840.

Acknowledgements Part of this work was done while Ainesh Bakshi and David Woodruff were
visiting the Simons Institute for the Theorem of Computing.

1 Introduction

Maximum Independent Set (MIS) is a fundamental combinatorial problem and in general,
is NP-Hard to approximate within a n1−ε factor, for any constant ε > 0 [34]. We focus on
the MIS problem for geometric objects: we are given as input n intervals on the real line
or disks in the plane and our goal is to output the largest set of non-overlapping intervals

© Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 64; pp. 64:1–64:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:abakshi@cs.cmu.edu
mailto:nadiia@mit.edu
mailto:dwoodruf@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.64
https://arxiv.org/abs/1902.10328
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Weighted MIS of Geometric Objects

or disks. Computing the Maximum Independent Set of intervals and disks has numerous
applications in scheduling, resource allocation, cellular networks, map labellings, clustering,
wireless ad-hoc networks and coding theory, where it has been extensively studied [31] [4],
[50], [12], [6], [5], [1], [33], [45].

In the one dimensional setting, the MIS problem, also known as the Interval Scheduling1
problem, has a simple greedy algorithm that picks intervals in increasing order of their right
endpoint to obtain an optimal solution. The variant with weighted intervals can also be
solved in polynomial time using dynamic programming, which is shown in a number of
modern algorithms textbooks [21], [41]. These algorithms have considerable applications in
resource allocation and scheduling, where offline and online variants have been extensively
studied and we refer the reader to [42] for a survey.

In the two dimensional setting, MIS of geometric objects, such as line segments [35],
rectangles [30], [37] and disks [19], is NP-Hard. However, in the offline setting (polynomial
space), a PTAS is known for fat objects (squares, disks) and pseudo-disks [15] (who also
provide a recent survey). The MIS problem for arbitrary rectangles has also received
considerable attention: [13] show a log log(n) approximation in polynomial time and [18]
obtain a (1 + ε)-approximation in npoly(log(n))ε−1 time for axis-aligned rectangles.

Streaming Model. The increase in modern computational power has led to massive amounts
of available data. Therefore, it is unrealistic to assume that our data fits in RAM. Instead,
working with the assumption that data can be efficiently accessed in a sequential manner
has led to streaming algorithms for a number of problems. Several classical problems such as
heavy-hitters and lp sampling [38], lp estimation [39], entropy estimation [44], [20], maximum
matching [43] etc. have been studied in the turnstile model and recent work has led to
interesting connections with linear sketches [2].

In this paper, we study the streaming complexity of the geometric MIS problem, where
the input is a sequence of n updates, either inserting a new object or deleting a previously
inserted object. We assume that the algorithm has poly-logarithmic bounded memory and at
the end of the stream, the algorithm should output an estimate of the (weighted) cardinality
of the MIS. Since most real world scheduling applications are dynamic, and scheduling
constraints expire, it is crucial to allow for both insertions and deletions, while operating in
the low-space setting. Consider the following concrete application: automatic point-label
conflict resolution on interactive maps [48]. In this problem, the goal is to label features
(geometric objects such as points, lines and polygons) on a map such that no two features
with the same label overlap. Labelling maps in visual analytic software requires such labelling
to be fast and dynamic, since features can be added and removed.

1.1 Our Contributions
We provide the first algorithmic and hardness results for the Weighted Maximum Independent
Set (WMIS) problem for geometric objects in turnstile streams (where previously inserted
objects may also be deleted). The aim of our work is to understand the MIS and WMIS
problems in this common data stream model and we summarize the state of the art in Table 1.
Our contributions are as follows:
1. Unit-length Intervals. Our main algorithmic contribution is a turnstile streaming

algorithm achieving a (2 + ε)-approximation to α and β in poly
(

log(n)
ε

)
space. We also

show a matching lower bound, i.e., any (possibly randomized) algorithm approximating

1 See https://en.wikipedia.org/wiki/Interval_scheduling.

https://en.wikipedia.org/wiki/Interval_scheduling

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:3

Table 1 The best known upper and lower bounds for estimating α and β in insertion-only and
turnstile streams (defined below). Note, the weight and length above are still polynomially bounded
in n. The folklore result follows from partitioning the input into O(log(n)) weight classes, estimating
α on each one in parallel and taking the maximum estimate.

Problem Insertion-Only Streams Turnstile Streams
upper bound lower bound upper bound lower bound

Unit Intervals 3/2 + ε 3/2− ε 2 + ε 2− ε
Unit Weight [10] [10] Thm 8 Thm 16
Unit Intervals 3/2 + ε 3/2− ε 2 + ε 2− ε

Arbitrary Weight Thm 22 [10] Thm 8 Thm 16
Unit Disks 8

√
3

π
+ ε 2− ε 8

√
3

π
+ ε 2− ε

Arbitrary Weight Thm 21 Thm 25 Thm 21 Thm 16

α up to a (2− ε) factor requires Ω(n) space. Interestingly, this shows a strict separation
between insertion-only and turnstile models since [10] show that a 3/2 approximation is
tight in the insertion-only model.
An unintuitive yet crucial message here is that attaching polynomially bounded weights
to intervals does not affect the approximation factor. Along the way, we also obtain new
algorithms for estimating β in insertion-only streams which are presented in Section C.

2. Arbitrary Length Intervals. For arbitrary length intervals, we give a one-pass turnstile
streaming algorithm that achieves a (1 + ε)-approximation to α under the assumption
that the degree of the interval intersection graph is bounded by poly

(
log(n)
ε

)
. Our

algorithm achieves poly
(

log(n)
ε

)
space. We also study the problem for arbitrary lengths

by parameterizing the ratio of the longest to the shortest interval. We give a one-pass
turnstile streaming algorithm that achieves a (2 + ε)-approximation to α, where the space
complexity is parameterized by Wmax, which is an upper bound on the length of an
interval assuming the minimum interval length is 1. Here, the space complexity of our
algorithm is poly

(
Wmax

log(n)
ε

)
and this algorithm gives sublinear space whenever Wmax

is sublinear.
3. Unit-radius Disks. We show that we can extend the ideas developed for unit-length

intervals in turnstile streams to unit disks in the 2-d plane. We describe an algorithm
achieving an

(
8
√

3
π + ε

)
-approximation to α and β in poly

(
log(n)
ε

)
space. One key idea

in the algorithm is to use the hexagonal circle packing for the plane, where the fraction
of area covered is π√

12 and our approximation constant turns out to be 4 ·
√

12
π .

We also show a lower bound that any (possibly randomized) algorithm approximating α
or β for disks in insertion-only streams, up to a (2− ε) factor requires Ω(n) space. This
shows a strict separation between estimating intervals and disks in insertion-only streams.

2 Related Work

There has been considerable work on streaming algorithms for graph problems. Well-studied
problems include finding sparsifiers, identifying connectivity structure, building spanning
trees, and matchings; see the survey by McGregor [46]. Recently, Cormode et. al. [22]
provide guarantees for estimating the cardinality of a maximum independent set of general
graphs via the Caro-Wei bound. Emek, Halldorsson and Rosen [24] studied estimating the
cardinality of the maximum independent set for interval intersection graphs in insertion-only

APPROX/RANDOM 2020

64:4 Weighted MIS of Geometric Objects

streams. They output an independent set that is a 3
2 -approximation to the optimal (OPT)

for unit-length intervals and a 2-approximation for arbitrary-length intervals in O(|OPT|)
space. Note that |OPT| could be Θ(n) which is a prohibitive amount of space.

Subsequently, Cabello and Perez-Lantero [10] studied the problem of estimating the
cardinality of OPT, which we denote by α, for unit-length and arbitrary length intervals
in one-pass insertion-only streams. For unit-length intervals in insertion-only streams,
Cabello and Perez-Lantero [10] give a (3

2 + ε) approximation to α in poly
(

log(n)
ε

)
space.

Additionally, they show that this approximation factor is tight, since any algorithm achieving
a (3

2 − ε)-approximation to α requires Ω(n) space. For arbitrary-length intervals they give
a (2 + ε)-approximation to α in poly

(
log(n)
ε

)
space. Additionally, they show that the

approximation factor is tight, since any algorithm achieving a (2 − ε)-approximation to
α requires Ω(n) space. Recently, [23] studied MIS of intersection graphs in insertion-only
streams. They show achieving a (5/2− ε)-approximation to MIS of squares requires Ω(n)
space.

To the best of our knowledge there is no prior work on the problem of Maximum
Independent Set of unit disks in turnstile streams. In the offline setting, the first PTAS
for MIS of disks was developed by [26] and later improved in running time by Chan [14],
while [36] shows a PTAS for MIS of k × k squares. We note that these algorithms require
space linear in the number of disks and use a dynamic programming approach that is not
suitable for streaming scenarios.

We note that MIS can also be viewed as a natural generalization of the distinct elements
problem that has received considerable attention in the streaming model. This problem
was first studied in the seminal work of [29] and a long sequence of work has addressed its
space complexity in both insertion-only and turnstile streams [3], [7], [32], [27], [28], [40], [9]
and [23].

3 Notation and Problem Definitions

We let D(dj , rj , wj) be a disk in Rd, where d ∈ {1, 2}, such that it is centered at a point
dj ∈ Rd with radius rj ∈ N and weight wj . We represent D(dj , rj , wj) using the short form
Dj when dj , rj and wj are clear from context. Note, we use the same notation to denote
intervals in d = 1. For a set P ⊆ Rd of n disks (unweighted or weighted), let G be the
induced graph formed by assigning a vertex to each disk and adding an edge between two
vertices if the corresponding disks intersect. We call G an intersection graph. The Maximum
Independent Set (MIS) and Weighted Maximum Independent Set (WMIS) problems in the
context of intersection graphs are defined as follows:

I Definition 1 (Maximum Independent Set). Let P = {D1, D2 . . . , Dn} ⊆ R be a set of n
disks such that each weight wj = 1 for j ∈ [n]. The MIS problem is to find the largest disjoint
subset S of P (i.e., no two objects in S intersect). We denote the cardinality of this set by α.

I Definition 2 (Weighted Maximum Independent Set). Let P = {D1, D2 . . . , Dn} ⊆ Rd be a
set of n weighted disks. We let the weight wS of a subset S ⊆ P be wS =

∑
Dj∈S wj. The

WMIS Problem is to find a disjoint (i.e., non overlapping) subset S of P whose weight wS is
maximum. We denote the weight of the WMIS by β.

For a set P of disks, let OPTP denote MIS or WMIS of P. We use |OPTP | to denote
the cardinality of MIS as well as the weight of WMIS for P. When the set P is clear from
context, we omit it. Next, we define the two streaming models we consider. In our context,

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:5

an insertion-only stream provides sequential access to the input, which is an ordered set
of objects such that at any given time step a new interval arrives. Turnstile streams are
an extension of this model such that at any time step, previously inserted objects can be
deleted. An algorithm in the streaming model has access to space sublinear in the size of the
input and is restricted to making one pass over the input.

For proving our lower bounds, we work in the two player one-way randomized commu-
nication complexity model, where the players are denoted by Alice and Bob, who have
private randomness. The input of Alice is denoted by X and the input for Bob is denoted
by Y . The objective is for Alice to communicate a message to Bob and compute a function
f : X × Y → {0, 1} on the joint inputs of the players. The communication is one-way and
w.l.o.g. Alice sends one message to Bob and Bob outputs a bit denoting the answer to the
communication problem. Let Π (X,Y) be the random variable that denotes the transcript
between sent from Alice to Bob when they execute a protocol Π.

A protocol Π is called a δ-error protocol for function f if there exists a function Πout

such that for every input Pr [Πout (Π(X,Y)) = f(X,Y)] ≥ 1− δ. The communication cost
of a protocol, denoted by |Π|, is the maximum length of Π (X,Y) over all possible inputs
and random coin flips of the two players. The randomized communication complexity of a
function f , Rδ(f), is the communication cost of the best δ-error protocol for computing f .

4 Technical Overview

In this section, we summarize our results and briefly describe the main technical ideas in
our algorithms and lower bounds. We note that our results hold in the recently introduced
Sketching Model [49]. This model captures applications of sketches in turnstile streams,
distributed computing, communication complexity and property testing. While Sun et. al.
study graph problems such as dynamic connectivity and triangle detection, we initiate the
study of dynamic Maximum Independent Set in this model. While we state our results in for
turnstile streams, they immediately extend to the sketching model.

4.1 Unit-length Intervals
Our main algorithmic contribution is to provide an estimate that obtains a (2 + ε)-approxima-
tion to WMIS of unit-length intervals in turnstile streams :

I Theorem 3 (Theorem 8, informal). For any ε > 0, there exists a turnstile streaming
algorithm that outputs an estimate such that with probability at least 99/100, it is a (2 + ε)-
approximation to WMIS of unit intervals (polynomially bounded weights) and the algorithm
requires poly

(
log(n)
ε

)
space.

A naïve approximation. We start by describing a simple approach (Algorithm 1) to obtain
a 9-approximation. The algorithm proceeds by imposing a grid of side length 1 and shifts it
by a random integer. This is a standard technique used in geometric algorithms. We then
snap each interval to the cell containing the center of the interval and partition the real
line into odd and even cells. This partitions the input space such that intervals landing in
distinct odd (even) cells are pairwise independent. Let Ce be the set of all even cells and Co
be the set of all odd cells.

By averaging, either |OPTCe
| or |OPTCo

| is at least OPT
2 , where |OPT| is the max weight

independent set of intervals. We develop an estimator that gives a (1 + ε)-approximation to
|OPTCe

| as well as |OPTCo
|. Therefore, taking the max of the two estimators, we obtain a

(2 + ε)-approximation to |OPT|.

APPROX/RANDOM 2020

64:6 Weighted MIS of Geometric Objects

Having reduced the problem to estimating |OPTCe |, we observe that for each even cell
only the max weight interval landing in the cell contributes to OPTCe

. Then, partitioning
the cells in Ce into poly(log(n)) geometrically increasing weight classes based on the max
weight interval in each cell and approximately counting the number of cells in each weight
class suffices to estimate |OPTCe

| up to a (1 + ε)-factor.

Algorithm 1 Naïve Approximation.
Input: Given a turnstile stream P with weighted unit intervals, where the weights are
polynomially bounded, ε and δ > 0, Naïve Approximation outputs a (9 + ε)-approximation
to β with probability 1− δ.

1. Randomly shift a grid ∆ of side length 1. Partition the cells into even and odd, denoted
by Ce and Co.

2. Consider a partition of cells in Ce into b = poly(log(n)) weight classes Wi = {c ∈
Ce|(1 + 1/2)i ≤ m(c) < (1 + 1/2)i+1}, where m(c) is the maximum weight of an interval
in c (this is not an algorithmic step since we do not know this partition a priori). Create
a substream for each weight class Wi denoted by W ′i.

3. For each new interval D(dj , 1, wj), feed it to substreamW ′i if wj ∈ [(1+1/2)i, (1+1/2)i+1).
For each substream W ′i, maintain a (1± ε)-approximate `0-estimator (described below).

4. Let ti be the `0 estimate corresponding to W ′i. Let Xe = 2
9(1+ε)

∑
i∈[b](1 + 1/2)i+1ti.

5. Repeat Steps 2-6 for the odd cells Co to obtain the corresponding estimator Xo.

Output: max(Xe, Xo)

Given such a partition, we can approximate the number of cells in each weight class by
running an `0 norm estimator. Estimating the `0 norm of a vector in turnstile streams is
a well studied problem and a result of Kane, Nelson and Woodruff [40] obtains a (1 ± ε)-
approximation in poly(log(n)

ε) space. However, we do not know the partition of the cells into
the weight classes a priori and this partition can vary drastically over the course of a stream
given that intervals can be deleted. Therefore, the main technical challenge is to simulate
this partition in turnstile streams.

As a first attempt, consider a partition of cells in Ce into b = poly(log(n)) weight classes
Wi = {c ∈ Ce|(1 + 1/2)i ≤ m(c) < (1 + 1/2)i+1}, where m(c) is the maximum weight of an
interval in c. Create a substream for each weight class Wi and feed an input interval into this
substream if its weight lies in the range [(1 + 1/2)i, (1 + 1/2)i+1). Let ti be the corresponding
`0 estimate for this substream. Approximate the contribution of Wi by (1 + 1/2)i+1 · ti. Sum
up the estimates for all i ∈ [b] to obtain an estimate for |OPTCe |.

We note that there are two issues with our algorithm. First, we overestimate the weight
of intervals in class Wi by a factor of 3/2 and second, for a given cell we sum up the
weights of all intervals landing in it, instead of taking the maximum weight for the cell. In
the worst case, we approximate the true weight of a contributing interval, (3/2)i+1, with∑i
i′=1(3/2)i′+1 ≤ 3((3/2)i+1 − 1). Note, we again overestimate the weight, this time by

a factor of 3. Combined with the approximation for the `0 norm, we obtain a weaker
(9

2 + ε)-approximation to |OPTCe
| in the desired space. From our discussion above, this

implies a (9 + ε)-approximation to |OPT|. We also note that this attempt is not futile as we
use the above algorithm as a subroutine subsequently.

A refined attempt. Next, we describe an algorithm that estimates |OPTCe | up to a (1 + ε)-
factor. Here, we use more sophisticated techniques to simulate a finer partition of the cells in
Ce into geometrically increasing weight classes in turnstile streams. One key algorithmic tool

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:7

we use here is a streaming algorithm for k-Sparse Recovery: given an input vector x such
that x receives coordinate-wise updates in the turnstile streaming model and has at most k
non-zero entries at the end of the stream of updates, there exist data structures that exactly
recover x at the end of the stream. As mentioned in Berinde et al. [8], the k-tail guarantee
is a sufficient condition for k-Sparse Recovery, since in a k-sparse vector, the elements of the
tail are 0. We note that the Count-Sketch Algorithm [17] has a k-tail guarantee in turnstile
streams.

This time around, we consider partitioning cells in Ce into poly
(
ε−1 log(n)

)
weight classes,

creating a substream for each one and computing the corresponding `0 norm. We also assume
we know |OPTCe | up to a constant (this can be simulated in turnstile streams). Formally,
given b = poly

(
log(n), ε−1) weight classes, for all i ∈ [b], let Wi denote the set of even

cells with maximum weight sandwiched in the range [(1 + ε)i, (1 + ε)i+1). We then simulate
sampling from the partition by subsampling cells in each Wi at the start of the stream,
agnostic to the input. We do this at different sampling rates , i.e. for all i ∈ [b], we subsample
the cells in Wi with probability roughty (1 + ε)i/|OPTCe |.

This presents several issues, as we cannot subsample non-empty cells in turnstile streams
a priori. Further, if a weight class has a small number of non-empty cells, we cannot recover
accurate estimates for the contribution of this weight class to |OPTCe

| at any level of the
subsampling. To address the first issue, we agnostically sample cells from Ce according to
a carefully chosen range of sampling rates and create a substream for each one. We then
run a sparse recovery algorithm on the resulting substreams. At the right subsampling rate,
we note that the resulting substream is sparse since we can filter out cells that belong to
smaller weight classes. Further, we can ensure that the number of cells that survive from the
relevant weight class (and larger classes) is small. Therefore, we recover all such cells using
the sparse recovery algorithm.

To address the second issue, we threshold the weight classes that we consider in the
algorithm based on the relative fraction of non-empty cells in them. This threshold can be
computed in the streaming algorithm using the `0-norm estimates for each weight class. All
the weight classes below the threshold together contribute at most an ε-fraction of |OPTCe

|
and though we cannot achieve concentration for such weight classes, we show that we do not
overestimate their contribution. Further, for all the weight classes above the threshold, we
can show that sampling at the right rate can recover enough cells to achieve concentration.

We complement the above algorithmic result with a matching lower bound, i.e., a (2− ε)-
approximation to MIS, for any ε > 0, requires Ω(n) space. This follows from an easy
application of the Augmented Indexing problem. We note that our result combined with
the 3/2-approximation by [11] implies an unexpected separation between insertion-only and
turnstile streams.

4.2 Parametrized Algorithms for Arbitrary Length Intervals
In light of the lower bound discussed above, we identify two sources contributing to the
streaming hardness of MIS for arbitrary length intervals : the number of pair-wise intersections
(max-degree) and the ratio of the longest to shortest interval (scale). We show that when
either of these quantities is poly-logarithmically bounded, we can approximate MIS for
arbitrary length intervals.

Instead of assuming the max-degree or scale is bounded, we instead provide algorithms
paramterized by these quantities. First, let the number of pair-wise intersections be bounded
by κmax. Then,

APPROX/RANDOM 2020

64:8 Weighted MIS of Geometric Objects

I Theorem 4 (Theorem 17, informal). For ε > 0, there exists a turnstile streaming algorithm
that takes as input a set of unit-weight arbitrary-length intervals, with at most κmax pair-
wise intersections and with probability 99/100, outputs a (1 + ε)-approximation to MIS in
poly(log(n), ε−1, κmax) space.

This result requires several new algorithmic ideas. Observe, placing a unit grid no longer
suffices since the intervals now span different lengths. Therefore, we impose a nested grid on
our input, where the grid size is geometrically increasing, and randomly shift it. Further,
observe that the natural strategy that partitions the interval into geometrically increasing
length classes and estimates each partition up to 1 + ε does not work since the intervals
overlap.

We therefore define the following object that uniquely determines intervals of a particular
length class contributing to the MIS :

I Definition 5 (ri-Structure). We define an ri-Structure to be a subset of the Nested Grid,
such that there exists an interval at the ith grid level, there exist no intervals in the grid at
any level i′ > i and all the intervals in the grid at levels i′ < i intersect the interval at the
ith level.

It is easy to see any interval that contributes to MIS corresponds to an ri-Structure for
some i. Therefore, it suffices to estimate the number of ri-Structures for all i. Following
our approach for unit intervals, we again use k-Sparse Recovery as our main tool. At a high
level, we sub-sample poly(log(n), ε−1) ri-Structures from the set of all such structures at level
i, and create a new substream for each i. We then run a κmax-Sparse Recovery Algorithm
on each substream. We show that at the end of the stream, we obtain an estimate of the
number of ri-Structures at level i that concentrates. Since the structures form a partition,
our overall estimate is simply the sum of the estimates obtained for each i.

The main algorithmic challenge here is to show that we can indeed detect and subsample
the ri-structures. These structures are defined in a way that takes into account how many
intervals appear in the nested grid both above and below a given interval. Therefore, it is
unclear how to track such updates as they constantly change over the stream. However,
observe that since our space is parameterized by the max-degree, we can afford to store an
ri-Structure completely in memory.

Given a randomly sampled cell from the i-th level of the nested grid, we assume this
cell contributes an ri-structure. We then run κmax-Sparse Recovery on this cell. Our main
insight is that at the end of the stream we can verify whether this cell indeed contributed an
ri-structure since we recover the nested intervals exactly. The final remaining challenge is to
ensure that our sub-sample contains a sufficient number of non-empty structures for each
level and the resulting estimate concentrates. We describe these details in Section A.1.

Finally, we show that similar algorithmic ideas also result in a turnstile streaming
algorithm, if parametrize the input by the Wmax, the ratio of the largest to smallest interval :

I Theorem 6 (Theorem 20, informal). For ε > 0, there exists a turnstile streaming algorithm
that takes as input a set of unit-weight arbitrary-length intervals, with Wmax being an upper
bound on the ratio of the largest to smallest interval, and with probability 99/100, outputs a
(2 + ε)-approximation to MIS in poly(log(n), ε−1,Wmax) space.

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:9

Hexagonal Packing of Circles in the Plane

Figure 4.1 We illustrate the hexagonal circle packing in the Euclidean Plane. Each color
represents an equivalence class. Observe that input disks that are centered in distinct circles of the
same equivalence class are independent, since the circles are at least 2 units apart.

4.3 Unit-Radius Disks
We generalize the WMIS turnstile streaming algorithm for unit length intervals to unit
radius disks in R2. The approximation ratio for disks is closely related to the optimal circle
packing constant. We leverage the hexagonal packing of circles in the 2-D plane to obtain
the following result:

I Theorem 7 (Theorem 21, informal). There exists a turnstile streaming algorithm achieving
a
(

8
√

3
π + ε

)
-approximation to estimate WMIS of unit disks with constant probability and in

poly
(

log(n)
ε

)
space.

We note that a greedy algorithm for unweighted disks obtains a 5-approximation to
α [25] and the space required is O (α). The greedy algorithm can be extended to obtain
a (5 + ε)-approximation in poly

(
logn
ε

)
space using the sampling approach we presented

in Section 5. However, beating the approximation ratio achieved by the greedy algorithm
requires geometric insight. Critically, we use the hexagonal packing of unit circles in a plane
introduced by Lagrange , which was shown to be optimal by Toth [16].

The hexagonal packing covers a π√
12 fraction of the area in two dimensions. We then

partition the unit circles in the hexagonal packing into equivalence classes such that two
circles in the same equivalence class are at least a unit distance apart. Formally, let c1, c2 be
two unit circles in the hexagonal packing of the plane lying in the same equivalence class.
Then, for all points p1 ∈ c1, pi ∈ c2, ‖p1 − p2‖2 ≥ 1. Therefore, if two input disks of unit
radius have centers lying in distinct circles belong to the same equivalence class, the disks
must be independent, as long as the disk are not centered on the boundary of the circles.

Randomly shifting the underlying hexagonal packing ensures this happens with probability
1. We then show that we can partition the hexagonal packing into four equivalence classes
such that their union covers all the circles in the packing and disks lying in distinct circles of
the same equivalence class are independent.

Algorithmically, we first impose a grid ∆ of the hexagonal packing of circles with radius
1 and shift it by a random integer. We discard all disks that do not have centers lying
inside the grid ∆. Given that a hexagonal packing covers a π/

√
12 fraction of the area,

in expectation, we discard a (1 − π/
√

12) fraction of |OPT|. We note that if we could
accurately estimate the remaining WMIS, and scale the estimator by

√
12/π, we would obtain

a (
√

12/π)-approximation to |OPT|. Let ||OPT|hp| denote the remaining WMIS. By Theorem
16 such an approximation requires Ω(n) space.

APPROX/RANDOM 2020

64:10 Weighted MIS of Geometric Objects

We then observe that the hexagonal circle packing grid can be partitioned into four
equivalence classes. We use C1, C2, C3 and C4 to denote these equivalence classes. Since
the equivalence classes form a partition of the hexagonal packing, at least one of them
must contain a 1/4-fraction of the remaining maximum independent set. W.l.o.g, let C1 be
the partition that contributes the most to |OPT|. Then, |OPTC1 | ≥ 1

4 |OPThp|. Therefore,
we focus on designing an estimator for C1. We show a (1 + ε)-approximation to C1 in
poly

(
log(n), ε−1) space generalizing the algorithmic ideas we introduced for Theorem 8. This

implies an overall
(

4
√

12
π + ε

)
=
(

8
√

3
π + ε

)
approximation for |OPT|.

5 Weighted Interval Selection for Unit Intervals

In this section, we present an algorithm to approximate the weight of the maximum inde-
pendent set, β, for unit-length intervals in turnstile streams. Interestingly, we note that
estimating β has the same complexity as approximating α for unit-length intervals. That is,
we obtain a (2 + ε)-approximation to β in the turnstile model, which immediately implies
(2 + ε)-approximation for α, where the weights are identical. We complement this result with
a lower bound that shows any (2− ε)-approximation to α requires Ω(n) space. The main
algorithmic guarantee we achieve is as follows:

I Theorem 8. Let P be a turnstile stream of weighted unit intervals such that the weights
are polynomially bounded in n and let ε ∈ (0, 1/2). There exists an algorithm that outputs an
estimator Y such that with probability at least 9/10 the following guarantees hold:
1. β

2(1+ε) ≤ Y ≤ β.

2. The total space used is poly
(

log(n)
ε

)
.

We first impose a grid ∆ of side length 1 and shift it by a random integer. We then
snap each interval to the cell containing the center of the interval and partition the real line
into odd and even cells. Let Ce be the set of all even cells and Co be the set of all odd cells.
By averaging, either |OPTCe

| or |OPTCo
| is at least β

2 . We describe an estimator that gives a
(1 + ε)-approximation to |OPTCe

| and |OPTCo
|. W.l.o.g let |OPTCe

| ≥ |OPTCo
|. Therefore, taking

the max of the two estimators, we obtain a (2 + ε)-approximation to β.
Having reduced the problem to estimating |OPTCe |, we observe that each even cell has at

most 1 interval, namely the max weight interval landing in the cell, contributing to OPTCe
.

Then, partitioning the cells in Ce into poly(log(n)) weight classes based on the max weight
interval in each cell and approximately counting the number of cells in each weight class
suffices to estimate |OPTCe | up to a (1 + ε)-factor. Given such a partition, we can create a
substream for each weight class in the partition and compute the `0 norm of each substream.
However, we do not know the partition of the cells into the weight classes a priori and this
partition can vary drastically over the course of stream given that intervals can be deleted.
The main technical challenge is to simulate this partition. A key tool we use is to estimate
the `0 norm of a vector in turnstile streams. Kane, Nelson and Woodruff [40] showed how to
obtain a (1± ε)-approximation to the `0-norm of a vector in poly(log(n)

ε) space.

I Theorem 9 (`0-Norm Estimation [40]). In the turnstile model, there is an algorithm for
(1± ε)-approximating the `0-norm (number of non-zero coordinates) of a vector using space
poly

(
log(n)
ε

)
with success probability 2/3.

We begin by describing a simple algorithm which obtains a weaker (9/2+ε)-approximation
to |OPTCe

| and in turn a (9 + ε)-approximation to β. Formally, consider a partition of cells
in Ce into b = poly(log(n)) weight classes Wi = {c ∈ Ce|(1 + 1/2)i ≤ m(c) < (1 + 1/2)i+1},

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:11

where m(c) is the maximum weight of an interval in c. Create a substream for each weight
class Wi, denoted by W ′i, and feed an input interval into this substream if its weight lies in
the range [(1 + 1/2)i, (1 + 1/2)i+1). Let ti be the corresponding `0 estimate for substream
W ′i. Then, we can approximate the contribution of Wi by (1 + 1/2)i+1 · ti. Summing over
the b weight classes gives an estimate for |OPTCe

|.
Given access to an algorithm for estimating the `0-norm, the Naïve Approximation

Algorithm (1) satisfies the following guarantee:

I Lemma 10. The Naïve Approximation Algorithm (1) outputs an estimate X such that
with probability 99/100, β

9(1+ε) ≤ X ≤ β and runs in space poly
(

log(n
ε

)
.

Proof. We observe that for each non-empty cell c ∈ Ce, there is exactly 1 interval that can
contribute to |OPTCe

| since each cell of the grid has side length 1 and all intervals falling in
a given cell pairwise intersect. This contributing interval lies in some weight class Wi and
our estimator approximates its weight as (1 + 1/2)i+1. Here, the weights of the intervals are
sandwiched between (1 + 1/2)i and (1 + 1/2)i+1. Therefore, we overestimate the weight by a
factor of at most 3/2.

Further, instead of taking the maximum over each cell c, we may have inserted intervals
that lie in c into all substreams W ′i. Therefore, we take the sum of our geometrically
increasing weight classes over that cell. In the worst case, we approximate the true weight
of a contributing interval, (3/2)i+1, with

∑i
i′=1(3/2)i′+1 = 3((3/2)i+1 − 1). Note, we again

overestimate the weight, this time by a factor of 3.
Finally, Theorem 9 overestimates the `0-norm of Wi by at most 1 + ε with probability

at least 2/3. We boost this probability by running O(log(n)) estimators and taking the
median. Union bounding over all i ∈ [b], we simultaneously overestimate the `0-norm of
all Wi by at most 1 + ε with probability at least 99/100. Therefore, the overall estimator
is a (9/2 + ε)-approximation to |OPTCe

|. Rescaling our estimator by the above constant
underestimates |OPTCe

|. Finally, |OPTCe
| ≥ β/2 and β

(9+ε) ≤ X ≤ β.
Since our weights are polynomially bounded, we create poly

(
log1+ε(n)

)
substreams and

run an `0 estimator from Theorem 9 on each substream. Therefore, the total space used by
Algorithm 1 is poly

(
log(n
ε

)
. J

We can thus assume we know β and |OPTCe
| up to a constant by initially making O (log(n))

guesses and running the Naïve Approximation Algorithm for each guess in parallel. At the
end of the stream, we know the correct guess up to a constant factor, and thus can output the
estimator corresponding to that branch of computation. A key tool we use in this algorithm
is k-Sparse Recovery. As mentioned in Berinde et al. [8], the k-tail guarantee is a sufficient
condition for k-Sparse Recovery, since in a k-sparse vector, the elements of the tail are 0.
We note that the Count-Sketch Algorithm [17] has a k-tail guarantee in turnstile streams.

I Definition 11 (k-Sparse Recovery). Let x be the input vector such that x is updated
coordinate-wise in the turnstile streaming model. Then, x is k-sparse if x has at most k
non-zero entries at the end of the stream of updates. Given that x is k-sparse, a data structure
that exactly recovers x at the end of the stream is referred to as a k-Sparse Recovery data
structure.

Intuitively, we again simulate partitioning cells in Ce into poly
(

log(n)
ε

)
weight classes

according to the maximum weight occurring in each cell. Since we do not know this partition
a priori, we initially create b = O

(
log(n)
ε

)
substreams, one for each weight class and run the

APPROX/RANDOM 2020

64:12 Weighted MIS of Geometric Objects

`0-estimator on each one. We then make O
(

log(n)
ε

)
guesses for |OPTCe

| and run the rest of
the algorithm for each branch in parallel. Additionally, we run the Naïve Approximation
Algorithm to compute the right value of |OPTCe

| up to a constant factor, which runs in space
poly

(
log(n)
ε

)
. Then, we create b = poly

(
log(n)
ε

)
substreams by agnostically sampling cells

with probability pi = Θ
(
b(1+ε)i log(n)

ε3X

)
, where X is the right guess for |OPTCe |. Sampling at

this rate preserves a sufficient number of cells from weight class Wi. We then run a sparse
recovery algorithm on the resulting substreams.

We note that the resulting substreams are sparse. To see this, note we can filter out cells
that belong weight classes Wi′ for i′ < i by simply checking if the maximum interval seen so
far lies in weight classes Wi and higher. Further, sampling with probability proportional to
Θ
(
b(1+ε)i log(n)
ε3|OPTCe |

)
ensures that the number of cells that survive from weight classes Wi and

above are small. Therefore, we recover all such cells using the sparse recovery algorithm.
Note, we limit the algorithm to considering weight classes that have a non-trivial contribution
to OPTCe

.
Using the `0 norm estimates computed above, we can determine the number of non-empty

cells in each of the weight classes. Thus, we create a threshold for weight classes that
contribute, such that all the weight classes below the threshold together contribute at most
an ε-fraction of |OPTCe | and we can set their corresponding estimators to 0. Further, for all
the weight classes above the threshold, we can show that sampling at the right rate leads to
recovering enough cells to achieve concentration in estimating their contribution.

Next, we show that the total space used by Algorithm 2 is poly
(

log(n)
ε

)
. We initially

create b = O
(

log(n)
ε

)
substreams, one for each weight class and run an `0-estimator on each

one. Recall, this requires poly
(

log(n)
ε

)
. We then make O

(
log(n)
ε

)
guesses for |OPTCe | and

run the rest of the algorithm for each branch in parallel. Additionally, we run Algorithm 1 to
compute the right value of |OPTCe

| up to a constant factor, which runs in space poly
(

log(n)
ε

)
.

Then, we create b substreams by sampling cells with probability pi = Θ
(
b(1+ε)i log(n)

ε3X

)
, for

i ∈ [b]. Subsequently, we run a poly
(

log(n)
ε

)
-sparse recovery algorithm on each one. Note, if

each sample is not too large, this can be done in poly
(

log(n)
ε

)
space. Therefore, it remains

to show that each sample Si is small.

I Lemma 12. Given a turnstile stream P, with probability at least 99/100, the Weighted
Unit Interval Turnstile Sampling procedure (Algorithm 2) samples poly

(
log(n)
ε

)
cells from

the grid ∆.

Proof. For i ∈ [b], let Si be a substream of cells in Ce, sampled with probability pi and
having an interval with weight at least (1 + ε)i since we filter out all cells with smaller
weight. Then, by an averaging argument, the total number of cells with an interval of weight
at least (1 + ε)i is at most β

(1+ε)i . Sampling with probability pi = Θ
(
b(1+ε)i log(n)

ε3X

)
, the

expected number of cells from Wi that survive in Si is at most pi β
(1+ε)i = poly

(
log(n)
ε

)
in

expectation. Next, we show that they are never much larger than their expectation. Let
Xc be the indicator random variable for cell c ∈ Wi to be sampled in Si and let µ be the
expected number of cells in Si. By Chernoff bounds,

Pr
[∑

c

Xc ≥ (1 + ε)µ
]
≤ exp

(
−2ε2poly(log(n))

poly(ε)

)
≤ 1/nk

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:13

for some large constant k. A similar argument holds for the number of cells from weight
class Wi′ , for i′ > i, surviving in substream Si. Note, for all i′ < i, we never include such
a cell from weight class Wi′ in our sample Si, since the filtering step rejects all cells that
do not contain an interval of weight at least (1 + ε)i. Union bounding over the events that
cells c ∈ Wi′ get sampled in Si, for i′ ≥ i, the cardinality of Si is at most poly

(
log(n)
ε

)
with probability at least 1− 1/nk′ for an appropriate constant k′. Since we create b such
substreams for Ce, we can union bound over such events in each of them and thus

⋃
i∈[b] |Si|

is at most poly
(

log(n)
ε

)
with probability at least 99/100. Since |Ce| is |∆|/2, the same result

holds for the total cells sampled from ∆. Therefore, the overall space used by Algorithm 2 is
poly

(
log(n)
ε

)
. J

Algorithm 2 Weighted Unit Interval Turnstile Sampling.

Input: Given a turnstile stream P with weighted unit intervals, where the weights are
polynomially bounded, ε and δ > 0, the sampling procedure outputs a (2 + ε)-approximation
to β.

1. Randomly shift a grid ∆ of side length 1. Partition the cells into Ce and Co.
2. For cells in Ce, snap each interval in the input to a cell c that contains its center. Consider a

partitioning of the cells in Ce into b = poly
(

log(n)
ε

)
weight classesWi = {c ∈ Ce|(1+ ε)i ≤

m(c) ≤ (1 + ε)i+1 }, where m(c) is the maximum weight of an interval in c (we do not
know this partition a priori.) Create a substream for each weight class Wi denoted by
W ′i.

3. Feed interval D(dj , 1, wj) along substream W ′i such that wj ∈ [(1 + ε)i, (1 + ε)i+1).
Maintain a (1 ± ε)-approximate `0-estimator for each substream. Let |W ′i| denote the
number of non-empty cells in substream W ′i and XW′

i
be the corresponding estimate

returned by the `0-estimator.
4. Create O(log(n)) substreams, one for each guess of |OPTCe

|. Let X be the guess for the
current branch of the computation. In parallel, run Algorithm 1 estimates |OPTCe

| up
to a constant factor. Therefore, at the end of the stream, we know a constant factor
approximation to the correct value of |OPTCe

| and use the estimator from the corresponding
branch of the computation.

5. In parallel, for i ∈ [b], create substream Si by subsampling cells in Ce with probability
pi = Θ

(
b(1+ε)i log(n)

ε3X

)
. Note, this sampling is done agnostically at the start of the stream.

6. Run a poly
(

log(n)
ε

)
-sparse recovery algorithm on each substream Si. For substream Si,

filter out cells c such that m(c) < (1 + ε)i. Let S ′i be the set of cells recovered by the
sparse recovery algorithm. Let S ′i|Wi

be the cells in S ′i that belong to weight class Wi.
7. Let XW′ =

∑
i∈[b]XW′i . Let Zc be a random variable such that Zc = (1+ε)i+1

pi
if

c ∈ S ′i|Wi
and 0 otherwise. If XW′

i
≥ εXW′

(1+ε)i+1b , set the estimator for the ith subsample,
Yi =

∑
c∈S′

i|Wi

XW′
i
Zc/S ′i|Wi

. Otherwise, set Yi = 0. Let Ye =
∑
i Yi.

8. Repeat Steps 2-7 for the set Co and let Yo be the corresponding estimator.

Output: Y = max(Ye, Yo).

Next, we show that the estimate returned by our sampling procedure is indeed a (2 + ε)-
approximation. We observe that the union of the Wi’s form a partition of Ce. Therefore,
it suffices to show that we obtain a (1 + ε)-approximation to the WIS for each Wi with

APPROX/RANDOM 2020

64:14 Weighted MIS of Geometric Objects

good probability. Let c denote a cell in Wi and OPTc denote the WIS in cell c. We create
a substream for each weight class Wi denoted by W ′i and let XW′

i
be the corresponding

estimate returned by the `0 norm of W ′i. Let XW′ =
∑
i∈[b]XW′i denote the sum of the

estimates across the b substreams.
We say that weight class Wi contributes if XW′

i
≥ εXW′

(1+ε)i+1b . Note, if we discard all the
weight classes that do not contribute we lose at most an ε-fraction of β (as shown below).
Therefore, setting the estimators corresponding to classes that do not contribute to 0 suffices.
The main technical hurdle remaining is to show that if a weight class contributes we can
accurately estimate |OPTWi

|.

I Lemma 13. Let Ye =
∑
i Yi be the estimator returned by Algorithm 2 for the set Ce. Then,

Ye = (1± ε)|OPTCe
| with probability at least 99/100.

Proof. We first consider the case when Wi contributes, i.e., XW′
i
≥ εXW′

(1+ε)i+1b . Note, XW′ =∑
i∈[b]XW′i is a (1±ε)-approximation to the number of non-empty cells inW with probability

at least 1−n−k, whereW =
⋃
i∈[b]Wi, since the `0-estimator is a (1±ε)-approximation to the

number of non-empty cells inWi simultaneously for all i with high probability and theWi’s are
disjoint. Recall, X is the correct guess for |OPTCe

|. Therefore, (1+ε)iXW′
i

= Ω
(

εX
(1+ε)b

)
. Then,

sampling at a rate pi = Θ(b(1+ε)i log(n)
ε3X) implies at least Ω

(
εX

(1+ε)i+1b

)
· Θ(b(1+ε)i log(n)

ε3X) =

Ω
(

log(n)
(1+ε)ε2

)
cells fromWi survive in expectation. Let Xc denote an indicator random variable

for cell c ∈ Wi being in substream Si. Then, by a Chernoff bound,

Pr
[∑
c∈Wi

Xc ≤ (1− ε)
(

log(n−c)
2ε2

)]
≤ exp

(
−2ε2 log(n−c)

2ε2

)
≤ n−c

for some constant c. Union bounding over all the random events similar to the one above for
i ∈ [b], simultaneously for all i, the number of cells from Wi in Si is at least Ω

(
log(n)
ε2

)
with

probability at least 1− 1/nk for some constant k. Note, for i′ < i, no cell c ∈ Wi′ exists in
Si since the filter step removes all cells c such that m(c) < (1 + ε)i.

Next, consider a weight class Wi′ for i′ > i such that it contributes. We upper bound the
number of cells from Wi′ that survive in substream Si. Note, weight class Wi′ contains at
most β

(1+ε)i+1 non empty cells for i′ > i. In expectation, at most β
(1+ε)i+1 · pi = O

(
b log(n)

(1+ε)ε3

)
cells fromWi′ survive in sample Si, for i′ > i. By a Chernoff bound, similar to the one above,
simultaneously for all i′ > i, at most O

(
b log(n)

(1+ε)ε3

)
cells from Wi′ survive, with probability at

least 1− 1/nk′ .
Now, we observe that the total number of cells that survive the sampling process in

substream Si is poly
(

log(n)
ε

)
and therefore, they can be recovered exactly by the poly

(
log(n)
ε

)
-

sparse recovery algorithm. Let the resulting set be denoted by S ′i. We can also compute
the number of cells that belong to weight class Wi that are recovered in the set S ′i and we
denote this by |S ′i|Wi

|. Recall, the corresponding estimator is Yi =
∑
c∈S′

i|Wi

XW′
i
Zc∣∣S′

i|Wi

∣∣ , where
Zc = (1+ε)i+1

pi
if c ∈ S ′i|Wi

and 0 otherwise. We first show we obtain a good estimator for
|OPTWi

| in expectation: E [Yi] = E
∑
c∈S′

i|Wi

XW′
i
Zc/S ′i|Wi

= (1± 4ε)|OPTWi
|.

Since we know that |S ′i|Wi
| = Ω(log(n)

(1+ε)ε2), we show that our estimator concentrates. Note,

E [Yi] = (1 + ε)i+1XW′
i

= Ω(εX
log(n)). Further, 0 ≤ Zc ≤ (1+ε)i+1

pi
= O

(
(1+ε)i+1ε3X
b(1+ε)i log(n)

)
. By a

Hoeffding bound, Pr
[
|Yi − E [Yi] | ≥ εE [Yi]

]
≤ 2exp

(
Ω(log(n))

1+ε

)
≤ 1/nk for some constant

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:15

k. Therefore, union bounding over all i, Yi is a (1 ± ε)2-approximation to |OPTWi | with
probability at least 1− 1/n. Therefore, if Wi contributes we obtain a (1± ε)-approximation
to |OPTWi

|.
In the case where Wi does not contribute, we set the corresponding estimator to 0. Note,

XW′
i
< εXW′

(1+ε)i+1b = ε(1±ε)|OPTW |
b = O(εβb). Note, since there are at most b weight classes,

discarding all weight classes that do not contribute discards at most O(εβ). We therefore
lose at most an ε-fraction of β by setting the Yi corresponding to non-contributing weight
classes to 0. J

Combining Lemmas 10 and 13 finishes the proof for Theorem 8.

5.1 Lower bound for Unit Intervals
Here, we describe a communication complexity lower bound for estimating α for unit-length
interval in turnstile streams and thus show the optimality of Theorem 8. Our starting point
is the Augmented Index problem and its communication complexity is well understood in
the two-player one-way communication model. In this model, we have two players Alice and
Bob who are required to compute a function based on their joint input and Alice is allowed
to send messages to Bob that are a function of her input and finally Bob announces the
answer. Note, Bob isn’t allowed to send messages to Alice.

I Definition 14 (Augmented Indexing). Let AIn,j denote the communication problem where
Alice receives as input x ∈ {0, 1}n and Bob receives an index j ∈ [n], along with the xj′ for
j′ > j. The objective is for Bob to output xj in the one-way communication model.

I Theorem 15 (Communication Complexity of AIn,j , [47]). The randomized one-way com-
munication complexity of AIn,j with error probability at most 1/3 is Ω(n).

Let Alg be a one-pass turnstile streaming algorithm that estimates α. We show that Alg
can be used as a subroutine to solve AIn,j , in turn implying a lower bound on the space
complexity of Alg. We formalize this idea in the following theorem:

I Theorem 16. Any randomized one-pass turnstile streaming algorithm Alg which approx-
imates α to within a (2− ε)-factor, for any ε > 0, for unit intervals, with at least constant
probability, requires Ω(n) space.

Proof. Given her input x, Alice constructs a stream of unit-length intervals and runs Alg on
the stream. For i ∈ [n], Alice inserts the interval

[2i−xi

n2 , (2i−xi

n2) + 1
]
. She then communicates

the state of Alg to Bob. Bob uses the message received from Alice as the initial state of the
algorithm and continues the stream. Since Bob’s input includes an index j and xi for all i > j,
Bob deletes all intervals corresponding to such i. Bob then inserts

[
(2j−0.5

n2)− 1, 2j−0.5
n2

]
.

Let us consider the case where xj = 1. We first note that Bob’s interval is the leftmost
interval in the remaining set. The right endpoint of this interval is 2j−0.5

n2 . Next, the rightmost
interval corresponds to the jth interval inserted by Alice. The left endpoint of this interval
is 2j−1

n2 . Clearly, these intervals intersect each other and intersect all the intervals between
them. Therefore, α = 1.

Let us now consider the case where xj = 0. Again, Bob’s interval is the leftmost with its
right endpoint at 2j−0.5

n2 . However, the left endpoint of Alice’s rightmost interval is 2j
n2 and

thus these two intervals are independent. Therefore, α ≥ 2. Observe, any (2− ε)-approximate
algorithm can distinguish between these two cases and solve AIn,j . By Theorem 15, any such
algorithm requires Ω(n) communication and in turn Ω(n) space. J

APPROX/RANDOM 2020

64:16 Weighted MIS of Geometric Objects

References
1 Pankaj K Agarwal, Marc Van Kreveld, and Subhash Suri. Label placement by maximum

independent set in rectangles. Computational Geometry, 11(3-4):209–218, 1998.
2 Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New characterizations in turnstile streams

with applications. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, pages 20:1–20:22, 2016. doi:10.4230/LIPIcs.CCC.2016.20.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 20–29. ACM, 1996.

4 Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Competitive non-preemptive call
control. In SODA, volume 94, pages 312–320, 1994.

5 Yossi Azar and Oren Gilon. Buffer management for packets with processing times. In
Algorithms-ESA 2015, pages 47–58. Springer, 2015.

6 Unnar Th Bachmann, Magnús M Halldórsson, and Hadas Shachnai. Online scheduling intervals
and t-intervals. Full version, 2010.

7 Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. In International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 1–10. Springer, 2002.

8 Radu Berinde, Graham Cormode, Piotr Indyk, and Martin J. Strauss. Space-optimal heavy
hitters with strong error bounds. In Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 - July 1, 2009,
Providence, Rhode Island, USA, pages 157–166, 2009. doi:10.1145/1559795.1559819.

9 Jarosław Błasiok. Optimal streaming and tracking distinct elements with high probability.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2432–2448. SIAM, 2018.

10 Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model.
In Algorithms and Data Structures - 14th International Symposium, WADS 2015, Vic-
toria, BC, Canada, August 5-7, 2015. Proceedings, pages 127–139, 2015. doi:10.1007/
978-3-319-21840-3_11.

11 Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model. Theoretical
Computer Science, 702:77–96, 2017.

12 Ran Canetti and Sandy Irani. Bounding the power of preemption in randomized scheduling.
SIAM Journal on Computing, 27(4):993–1015, 1998.

13 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages
892–901. Society for Industrial and Applied Mathematics, 2009.

14 Timothy M Chan. Polynomial-time approximation schemes for packing and piercing fat objects.
Journal of Algorithms, 46(2):178–189, 2003.

15 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

16 Hai-Chau Chang and Lih-Chung Wang. A simple proof of thue’s theorem on circle packing.
arXiv preprint, 2010. arXiv:1009.4322.

17 Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in
data streams. In Automata, Languages and Programming, 29th International Colloquium,
ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, pages 693–703, 2002. doi:10.
1007/3-540-45465-9_59.

18 Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles.
In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
820–829. IEEE, 2016.

19 Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. Discrete
mathematics, 86(1-3):165–177, 1990.

https://doi.org/10.4230/LIPIcs.CCC.2016.20
https://doi.org/10.1145/1559795.1559819
https://doi.org/10.1007/978-3-319-21840-3_11
https://doi.org/10.1007/978-3-319-21840-3_11
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
http://arxiv.org/abs/1009.4322
https://doi.org/10.1007/3-540-45465-9_59
https://doi.org/10.1007/3-540-45465-9_59

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:17

20 Peter Clifford and Ioana Cosma. A simple sketching algorithm for entropy estimation over
streaming data. In Artificial Intelligence and Statistics, pages 196–206, 2013.

21 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

22 Graham Cormode, Jacques Dark, and Christian Konrad. Independent set size approximation
in graph streams. CoRR, abs/1702.08299, 2017. arXiv:1702.08299.

23 Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival
streams. arXiv preprint, 2018. arXiv:1807.08331.

24 Yuval Emek, Magnús M. Halldórsson, and Adi Rosén. Space-constrained interval selection.
In Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012,
Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 302–313, 2012. doi:10.1007/
978-3-642-31594-7_26.

25 Thomas Erlebach and Jirı Fiala. The maximum independent set problem in unit disk graphs,
2003.

26 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.

27 Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active
flows on high speed links. In Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 153–166. ACM, 2003.

28 Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm. In Discrete Mathematics and
Theoretical Computer Science, pages 137–156. Discrete Mathematics and Theoretical Computer
Science, 2007.

29 Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of computer and system sciences, 31(2):182–209, 1985.

30 Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and covering
in the plane are np-complete. Information processing letters, 12(3):133–137, 1981.

31 Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972.

32 Phillip B Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of data
streams. In Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and
architectures, pages 281–291. ACM, 2001.

33 William K Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

34 Johan Håstad. Clique is hard to approximate within n1-epsilon. In 37th Annual Symposium
on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 627–636, 1996. doi:10.1109/SFCS.1996.548522.

35 Petr Hliněnỳ. Contact graphs of line segments are np-complete. Discrete Mathematics,
235(1-3):95–106, 2001.

36 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

37 Hiroshi Imai and Takao Asano. Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. Journal of algorithms, 4(4):310–323, 1983.

38 Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 49–58. ACM, 2011.

39 Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity of
sketching and streaming small norms. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 1161–1178. Society for Industrial and Applied
Mathematics, 2010.

APPROX/RANDOM 2020

http://arxiv.org/abs/1702.08299
http://arxiv.org/abs/1807.08331
https://doi.org/10.1007/978-3-642-31594-7_26
https://doi.org/10.1007/978-3-642-31594-7_26
https://doi.org/10.1109/SFCS.1996.548522

64:18 Weighted MIS of Geometric Objects

40 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis,
Indiana, USA, pages 41–52, 2010. doi:10.1145/1807085.1807094.

41 Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.
42 Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma.

Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007.
43 Christian Konrad. Maximum matching in turnstile streams. In Algorithms-ESA 2015, pages

840–852. Springer, 2015.
44 Ping Li and Cun-Hui Zhang. A new algorithm for compressed counting with applications in

shannon entropy estimation in dynamic data. In Proceedings of the 24th Annual Conference
on Learning Theory, pages 477–496, 2011.

45 Ewa Malesinska. Graph theoretical models for frequency assignment problems. Shaker, 1997.
46 Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20,

2014.
47 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures

and asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998. doi:
10.1006/jcss.1998.1577.

48 Kevin Mote. Fast point-feature label placement for dynamic visualizations. Information
Visualization, 6(4):249–260, 2007.

49 Xiaoming Sun, David P Woodruff, Guang Yang, and Jialin Zhang. Querying a matrix through
matrix-vector products. arXiv preprint, 2019. arXiv:1906.05736.

50 Gerhard J Woeginger. On-line scheduling of jobs with fixed start and end times. Theoretical
Computer Science, 130(1):5–16, 1994.

A Arbitrary Length Intervals in Turnstile Streams

We now focus on estimating α and β for arbitrary-length intervals in turnstile streams.
While we cannot obtain streaming algorithms in general, we show it is possible to estimate
α and β when the maximum degree of the interval intersection graph or the maximum
length of an interval arre bounded. In particular, we show an algorithm that achieves a
(1 + ε)-approximation to α given that the maximum degree is upper bounded by poly

(
log(n)
ε

)
.

We also parameterize the problem with respect to the maximum length of an interval, Wmax

(assuming the minimum length is 1), and give an algorithm using poly
(
Wmax

log(n)
ε

)
space.

A.1 Algorithms under Bounded Degree Assumptions
In light of the lower bound, we study the problem of estimating α for arbitrary-length
intervals assuming the number of pair-wise intersections are bounded by κmax = poly

(
log(n)
ε

)
.

In this section we show the following theorem:

I Theorem 17. Let P be an turnstile stream of unit-weight arbitrary-length intervals with
lengths polynomially bounded in n and let ε ∈ (0, 1/2). Let κmax = poly

(
log(n)
ε

)
be the

maximum number of pairwise intersections in P. Then, there exists an algorithm that outputs
an estimator Y such that the following guarantees hold:
1. α

(1+ε) ≤ Y ≤ α with probability at least 2/3.

2. The total space used is poly
(

log(n)
ε

)
.

https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1006/jcss.1998.1577
https://doi.org/10.1006/jcss.1998.1577
http://arxiv.org/abs/1906.05736

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:19

Algorithm 3 Level Estimator.
Input: Given a turnstile stream P with unit weight arbitrary length intervals, where
the length is polynomially bounded, ε > 0 and δ > 0, the algorithm outputs a (1 + ε)-
approximation to α, assuming that κmax = poly

(
log(n)
ε

)
.

1. Let t = O
(

log(n)
ε

)
be the number of level-classes. Let ∆ =

⋃
i∈[t] ∆i be a randomly

shifted Nested Grid, where ∆i is a grid of side length (1+ε)i+1

ε .
2. For i ∈ [t], let Ri be the set of all ri-Structures at level i, where a ri-Structure is a subset

of the Nested Grid, ∆, such that there exists an interval at the ith level of the structure,
there exist no intervals in the structure at any level i′ > i and all the intervals in the
structure at levels i′ < i intersect the interval at the ith level.

3. For all i ∈ [t], using Algorithm 4, sample poly
(

log(n)
ε

)
ri-Structures from the set Ri to

create a substream Rsi . Note, this sampling is carried out with probability pi defined
below.

4. At the end of the stream, we recover Rsi , for all i ∈ [t]. Let Yi =
|OPTRs

i
|

pi
(where pi is the

sampling probability for the ith level), where |OPTRs
i
| can be computed using an offline

algorithm.

Output: Y =
∑
i∈[t] Yi.

Let W be the maximum length of the intervals in our input. We split our input into
t = O

(
log(n)
ε

)
length classes Wi such that for all i ∈ [t], Wi = {Dj ∈ P|(1 + ε)i ≤ rj ≤

(1 + ε)i+1}. Let W denote
⋃
i∈[t]Wi. We note that the partition here is over the input to

the problem.
We can estimate the number of non-empty cells in each weight class up to a (1± ε)-factor

by creating a substream for each one and running an `0 estimator on them. At the end of
the stream, we can discard classes that are not within log(W) non-empty cells of each other.
Therefore, we can assume the remaining classes have the same number of non-empty cells up
to a log(W) factor.

We then make O(log(n)) guesses for the number of non-empty cells for any fixed level
and run our algorithm in parallel for each guess. Since there are t levels, this gives rise to an
O (t log(n)) factor blowup in space. At the end of the stream we know the correct value for
each level via the `0 estimates. Let the number of non-empty cells at every level be denoted
by Xi.

In contrast with our previous algorithm, we note that placing a grid on the input with
side length 1 no longer suffices since our intervals may now lie in multiple cells. Therefore,
we impose a nested grid over the input space:

I Definition 18 (Nested Grid). Given a partition W, let grid ∆i, corresponding to Wi ∈ W,
be a set of cells over the input space with length (1+ε)i+1

ε . Then a Nested Grid, denoted by ∆,
is defined to be

⋃
i∈[t] ∆i.

We then randomly shift the nested grid such that at most an ε-fraction of intervals in the
ith length class lie within a distance (1 + ε)i+1 of the ith grid. Since this holds for all Wi,
and Wi are a partition of our input, we lose at most an ε-fraction of α. We then define the
following object that enables us to obtain accurate estimates for each length class.

APPROX/RANDOM 2020

64:20 Weighted MIS of Geometric Objects

I Definition 19 (ri-Structure). We define an ri-Structure to be a subset of the Nested Grid,
∆, such that there exists an interval at the ith level of the structure, there exist no intervals in
the structure at any level i′ > i and all the intervals in the structure at levels i′ < i intersect
the interval at the ith level.

Algorithm 4 Sampling ri-Structures from Ri.
Input: Given a turnstile stream P with unit weight arbitrary length intervals, with the
length being polynomially bounded, ε > 0 and δ > 0, the sampling procedure creates a
poly

(
log(n)
ε

)
size sample of the set Ri.

1. Let ∆i be the ith level of a randomly shifted Nested Grid ∆. Let Ri be the set of
ri-Structures where the topmost cells lie in ∆i. Let Xi be the correct guess for the number
of non-empty cells in ∆i up to a constant.

2. Agnostically sample cells from ∆i with probability pi = max
(
poly

(
log(n)
ε

)
1
Xi
, 1
)
. Let

Si be the corresponding substream created.
3. For each cell c ∈ Si, let rci be a structure (as defined in 5) with c at the topmost level.

Run κmax-Sparse Recovery on substream Si.
4. At the end of the stream, verify that rci is a valid ri-Structure. Let Rsi be the set of all

such structures.
5. If Xi >

ε
∑

i∈[t]
Xi

t , keep Rsi , else discard it.

Output:
⋃
i∈[t]R

s
i .

Let Ri denote the set of all ri-Structures at level i. Observe that, taking the union over
i ∈ [t] of Ri gives a partition of the input. Therefore, estimating |OPTRi

| separately and
summing up the estimates is a good estimator for α.

Similar to the algorithm in Section 5 a key tool we use is k-Sparse Recovery. Intuitively,
we subsample poly

(
log(n)
ε

)
ri-Structures from the set Ri to create a substream Rsi and

run a κmax-Sparse Recovery Algorithm on each substream. At the end of the stream, we
get an estimate of |OPTRi

| that concentrates. We then add up the estimates across all the
levels to form our overall estimate. We formally describe the Level Estimator Algorithm in
Algorithm 3, assuming we are given access to a black-box sampling algorithm for sampling
an ri-Structure. We describe how to sample ri-Structures in turnstile streams in Algorithm 4.

Next, we consider the problem of estimating α for arbitrary-length intervals assuming
that the space available is at most poly

(
Wmax log(n)

ε

)
, where Wmax is an upper bound on

the ratio of the max to the min length of an interval. We note that this regime is interesting
when Wmax is sublinear in n. We obtain the following result:

I Theorem 20. Let P be an turnstile stream of unit-weight arbitrary-length intervals s.t.
the length is polynomially bounded in n and let ε ∈ (0, 1/2). Let Wmax be an upper bound on
the ratio of the max to the min length of intervals in P. Then, there exists an algorithm that
outputs an estimator Y s.t. the following guarantees hold:

1. α
(2+ε) ≤ Y ≤ α with probability at least 2/3.

2. The total space used is poly
(
Wmax log(n)

ε

)
.

A. Bakshi, N. Chepurko, and D. P. Woodruff 64:21

B Unit Radius Disks in Turnstile Streams

In this section, we state our main result for approximating α and β for unit-radius disks in
R2 that are received in a turnstile stream. Given space constraints, we defer the exposition
to the full version.

The main algorithmic result we prove is the following:

I Theorem 21. Let P be a sequence of unit-radius disks that are received as a turnstile
stream and let ε ∈ (0, 1/2). Then, there exists an algorithm that outputs an estimator Y such
that with probability at least 9/10,

(
π

8
√

3 + ε
)
β ≤ Y ≤ β where α is the cardinality of the

largest independent set in P. Further, the total space used is O
(
poly

(
logn
ε

))
.

C Insertion-Only Streams

In this section, we state our results for estimating the maximum weighted independent
set of intervals in insertion-only streams. Recall, [10] show that

(3
2 + ε

)
is tight for the

unweighted case in insertion-only streams. We also show a lower bound for estimating the
maximum independent set of disks in insertion-only streams. The lower bound for intervals
in [10] shows that

(3
2 − ε

)
-approximation requires Ω(n) space and this naturally extends to

disks. We improve this to 2− ε, implying a strict separation between intervals and disks for
insertion-only streams. Note, this is not yet known to be the case for turnstile streams.

Our theorem for weighted MIS of unit interval in insertion-only streams is as follows:

I Theorem 22. Let P be an insertion-only stream of weighted unit intervals s.t. the weights
are polynomially bounded in n and let ε ∈ (0, 1/2). Then, there exists an algorithm that
outputs an estimator Y s.t. with probability at least 9/10 the following guarantees hold:
1. 2β

3+ε ≤ Y ≤ β.

2. The total space used is poly
(

log(n)
ε

)
bits.

Next, we describe a lower bound for estimating α for unit disks in insertion-only streams
via a reduction from the communication complexity of the Indexing problem, which we use as
the starting point. We consider the one-way communication model between two players Alice
and Bob and each player has access to private randomness. The randomized communication
complexity of Indexing is well understood in the two-player one-way communication model.

I Definition 23 (Indexing). Let In,j denote the communication problem where Alice receives
as input a bit vector x ∈ {0, 1}n and Bob receives an index j ∈ [n]. The objective is for Bob
to output xj under the one-round one-way communication model with error probability at
most 1/3.

I Theorem 24 (Communication Complexity of In,j). The randomized one-round one-way
communication complexity of In,j with error probability at most 1/3 is Ω(n).

We begin with considering the stream of disks P. Let Alg be a one-pass insertion-only
streaming algorithm that estimates the cardinality of the maximum independent set denoted
by α. We then show that Alg can be used as a subroutine to solve the communication
problem In,j . Therefore, a lower bound on the communication complexity in turn implies a
lower bound on the space complexity of Alg. Formally,

APPROX/RANDOM 2020

64:22 Weighted MIS of Geometric Objects

I Theorem 25. Given a stream of disks P, any randomized one-pass insertion-only streaming
algorithm Alg which approximates α to within a (2− ε)-factor, for any ε > 0, with error at
most 1/3, requires Ω(n) space.

Proof. We show that any such insertion-only streaming algorithm Alg can be used to
construct a randomized protocol Π to solve the communication problem. Given her input
x, Alice constructs a stream of unit disks and runs Alg on the stream. Consider the unit
circle around the origin. Divide the half-circle above the x-axis into n equally spaced points,
denoted by vectors p1, p2, . . . , pn. For i ∈ [n], if xi = 0, Alice streams a unit disk centered
at pi. If xi = 1, Alice streams a unit disk centered at −pi. After streaming n disks, Alice
communicates the memory state of Alg to Bob. Bob uses the message received from Alice as
the initial state of the algorithm and continues the stream. Recall, Bob’s input only consists
of a single index j. Therefore, Bob inserts a unit disk centered at (1 + 1/n2)pj .

We first observe that all disks inserted by Alice pairwise intersect. Since all her unit
radius disks are centered on the unit circle around the origin, the distance between their
center and the origin is 1. Since all the disks contain the origin, they pairwise intersect. Now,
let us consider the case where xj = 0. Recall, in this case, Alice inserts the disk centered
pj and Bob inserts the disk centered at (1 + 1/n2)pj . The distance between their centers
is 1/n2 and they clearly intersect. Let us now consider the other disks inserted by Alice,
centered at points pi for i 6= j. The distance between their centers is

||pi − (1 + 1/n2)pj ||22 = ||pi||22 + (1 + 1/n2)2||pj ||22 ± 2(1 + 1/n2)〈pi, pj〉
≤ 1 + (1 + 3/n2)± 2(1 + 1/n2)〈pi, pj〉 (C.1)

where the last inequality follows from (1+1/n2)2 = 1+1/n4 +2/n2 ≤ 1+3/n2 for sufficiently
large n. Since i 6= j, 〈pi, pj〉 ≤ 1 − Θ(1/n). Note, (1 + 1/n2)(1 − Θ(1/n)) ≤ 1 − Θ(n) for
sufficiently large n. Substituting this above, we get

||pi − (1 + 1/n2)pj ||22 ≤ 1 + (1 + 3/n2)± 2(1 + 1/n2)(1−Θ(1/n))
≤ 2 + 3/n2 ± 2(1−Θ(1/n))
≤ 4−Θ(1/n) (C.2)

where the last inequality follows from Θ(1/n) ≥ 3/n2 for sufficiently large n. Therefore,
the squared distance between the centers is strictly less 4 and the disks do intersect. As a
consequence, all disks pairwise intersect and α = 1.

Let us now consider the case where xj = 1. Recall Alice inserts a disk centered at
−pj and Bob inserts a disk centered at (1 + 1/n2)pj . The distance between the centers is
(2 + 1/n2), therefore the two disks do not intersect. Then, α is at least 2. We observe that
any (2 − ε)-approximate algorithm Alg can distinguish between these two cases because
in the first case Alg outputs at most 1 and in the second case Alg outputs at least 1 + ε.
Therefore it is a valid protocol for solving In,j . If Alg has error at most 1/3, the protocol
has error at most 1/3. By Theorem 24, any such protocol requires Ω(n) communication and
in turn Alg requires Ω(n) space. J

	Introduction
	Our Contributions

	Related Work
	Notation and Problem Definitions
	Technical Overview
	Unit-length Intervals
	Parametrized Algorithms for Arbitrary Length Intervals
	Unit-Radius Disks

	Weighted Interval Selection for Unit Intervals
	Lower bound for Unit Intervals

	Arbitrary Length Intervals in Turnstile Streams
	Algorithms under Bounded Degree Assumptions

	Unit Radius Disks in Turnstile Streams
	Insertion-Only Streams

