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Abstract
Recently, [Li, Nguyen, Woodruff, STOC’2014] showed any 1-pass constant probability streaming
algorithm for computing a relation f on a vector x ∈ {−m,−(m− 1), . . . ,m}n presented in the
turnstile data stream model can be implemented by maintaining a linear sketch A · x mod q,
where A is an r×n integer matrix and q = (q1, . . . , qr) is a vector of positive integers. The space
complexity of maintaining A · x mod q, not including the random bits used for sampling A and
q, matches the space of the optimal algorithm1.

We give multiple strengthenings of this reduction, together with new applications. In partic-
ular, we show how to remove the following shortcomings of their reduction:
1. The Box Constraint. Their reduction applies only to algorithms that must be correct even if
‖x‖∞ = maxi∈[n] |xi| is allowed to be much larger thanm at intermediate points in the stream,
provided that x ∈ {−m,−(m − 1), . . . ,m}n at the end of the stream. We give a condition
under which the optimal algorithm is a linear sketch even if it works only when promised
that x ∈ {−m,−(m − 1), . . . ,m}n at all points in the stream. Using this, we show the first
super-constant Ω(logm) bits lower bound for the problem of maintaining a counter up to
an additive εm error in a turnstile stream, where ε is any constant in (0, 1

2 ). Previous lower
bounds are based on communication complexity and are only for relative error approximation;
interestingly, we do not know how to prove our result using communication complexity. More
generally, we show the first super-constant Ω(logm) lower bound for additive approximation
of `p-norms; this bound is tight for 1 ≤ p ≤ 2.

2. Negative Coordinates. Their reduction allows xi to be negative while processing the stream.
We show an equivalence between 1-pass algorithms and linear sketches A ·x mod q in dynamic
graph streams, or more generally, the strict turnstile model, in which for all i ∈ [n], xi ≥ 0 at
all points in the stream. Combined with [Assadi, Khanna, Li, Yaroslavtsev, SODA’2016], this
resolves the 1-pass space complexity of approximating the maximum matching in a dynamic
graph stream, answering a question in that work.

3. 1-Pass Restriction. Their reduction only applies to 1-pass data stream algorithms in the
turnstile model, while there exist algorithms for heavy hitters and for low rank approximation
which provably do better with multiple passes. We extend the reduction to algorithms which
make any number of passes, showing the optimal algorithm is to choose a new linear sketch
at the beginning of each pass, based on the output of previous passes.

1 Note the [LNW14] reduction does not lose a log m factor in space as they claim if it maintains A ·x mod q
rather than A · x over the integers.
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1 Introduction

In the turnstile streaming model [6, 10], there is an underlying n-dimensional vector x which
is initialized to ~0. The data stream consists of updates of the form x← x+ ei or x← x− ei,
where ei is the i-th standard unit vector in Rn. The goal of a streaming algorithm is to make
one or more passes over the stream and use limited memory to approximate a function of x
with high probability.

1.1 Linear Sketches and Simultaneous Communication Complexity
All known algorithms for problems in the turnstile model have a similar form: they first
choose a (possibly random) integer matrix A, then maintain the “linear sketch” A · x in
the stream, and finally output a function of A · x. Li et al. [9] showed that any 1-pass
constant probability streaming algorithm for approximating an arbitrary function f of x in
the turnstile model can be reduced to an algorithm which, before the stream begins, samples
a matrix A uniformly from O(n logm) hardwired integer matrices, then maintains the linear
sketch A · x mod q, where q = (q1, . . . , qr) is a vector of positive integers and r is the number
of rows of A. Furthermore, the logarithm of the number of all possibilities for A · x mod q,
as x ranges over {−m,−(m− 1), . . . ,m}n, plus the number of random bits for sampling A,
is larger than the space used by the original algorithm for approximating f by at most an
additive O(logn+ log logm) bits. Here the extra O(logn+ log logm) bits are used only for
sampling A and q. We refer to this as the LNW reduction2.

The LNW reduction is non-uniform, i.e., the space complexity does not count the number
of bits to store the O(n logm) hardwired possible sketching matrices A, nor does it count
the space to compute the output given A · x. The space counts only the space of storing
A · x. Thus, the LNW reduction is mostly useful in proving lower bounds, which only become
stronger by not counting some parts in the space complexity. A widely used technique for
proving lower bounds on the space of streaming algorithms is communication complexity
[15]. One can get a 1-pass space lower bound for any streaming algorithm A by constructing
a communication problem in which the players create data streams based on their inputs
and run A on these streams sequentially. At the end of each stream, the current player
passes the memory contents of A to the next player, and the next player continues with the
received intermediate state. If A outputs the correct answer for the communication problem
with constant probability at the end of the stream of the last player, then the space of A is
at least the one-way communication complexity of the communication problem divided by
(the number of players− 1).

The LNW reduction makes it possible to instead consider the simultaneous communication
model. Compared to one-way communication, the simultaneous communication model is a

2 In [9] the linear sketch of the form A · x mod q is further reduced to the form A · x, which leads to a
multiplicative O(log m) factor loss in the space complexity, assuming m = poly(n); we do not consider
that further reduction in this paper.
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more restrictive model in which each player can only send a single message to an additional
player called the referee, who receives no input in the communication problem. The referee
then announces its output. By reducing an algorithm in an arbitrary form to a linear sketch
and exploiting the linearity of matrix multiplication, the LNW reduction shows that to obtain
lower bounds in the turnstile model, it suffices to consider the simultaneous communication
model. This technique was applied in the original paper [9] and followup work for estimating
frequency moments [13].

1.2 Shortcomings of the LNW Reduction
The LNW reduction has several drawbacks, which we now describe.

The Box Constraint. First, the reduction can only be performed under the assumption that
the algorithm works as long as the underlying vector x belongs to {−m,−(m− 1), . . . ,m}n
at the end of the stream, while in certain settings a more natural requirement may be that x
belongs to {−m,−(m − 1), . . . ,m}n at all intermediate points of the stream. We refer to
the restriction that the algorithm must be correct (with constant probability) provided that
x ∈ {−m,−(m− 1), . . . ,m}n at the end of the stream, even if ‖x‖∞ > m at an intermediate
point, as the box constraint. It is possible that there are more space-efficient algorithms,
not based on linear sketches, which abort if ‖x‖∞ ever becomes larger than m. Due to this
reason, the lower bounds obtained via simultaneous communication complexity only apply
to the class of streaming algorithms assuming the box constraint.

Negative Coordinates. The second drawback is that the reduction works only in the
turnstile model which allows negative frequencies, and does not work in the strict turnstile
model in which the underlying vector always has no negative entries. For graph problems, a
multi-graph with n vertices is defined as a stream in which each update corresponds to the
addition or the deletion of an edge between two vertices. The multiplicity of every edge is
naturally required to be always non-negative, so the strict turnstile model is standard for
graph problems. The input for graphs in this model is called a dynamic graph stream. Similar
to the turnstile model, linear sketching is the only existing technique for designing streaming
algorithms in dynamic graph streams. It is unknown whether there is an equivalence between
linear sketches and single-pass algorithms in the strict turnstile model.

1-Pass Restriction. Another shortcoming of the LNW reduction is that it only applies to
1-pass data stream algorithms in the turnstile model, while there exist algorithms for heavy
hitters and for low rank approximation which provably do better with multiple passes. It is
unknown if there exists a similar characterization for multi-pass algorithms.

1.3 Our Contributions
We make significant progress on removing the above shortcomings of the LNW reduction.

The Box Constraint. We give a condition under which the box constraint on the algorithm
can be removed. Under this condition, we show that the streaming algorithm can be reduced
to a linear sketch if it is correct with constant probability for streams whose underlying
vector x always belongs to {−m,−(m − 1), . . . ,m}n at any point in the stream. In other
words, we do not require algorithms to be correct when ‖x‖∞ > m at intermediate points in
the stream. Consequently, when our condition is satisfied, the lower bounds obtained via
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simultaneous communication complexity are stronger since the box constraint on algorithms
is removed. Our condition for removing the box constraint is that the algorithm has space
complexity at most O((logm)/n); so it is most useful when m� n or n = O(1). Note that
while this does not apply to a number of data stream problems, it does apply to some very
fundamental ones, described below, such as maintaining a counter in a stream, for which
n = 1. We also show our condition that the space be O((logm)/n) bits is tight in the sense
that for larger space algorithms, the LNW reduction fails unless one allows ‖x‖∞ > m at
intermediate points. That is, we give an example of an algorithm with Ω((logm)/n) bits of
space for which if one applies the LNW reduction, to argue correctness one needs ‖x‖∞ > m.

Negative Coordinates. We show in the strict turnstile model, there is a reduction from a
general 1-pass algorithm to a linear sketch, that is, the optimal algorithm is a linear sketch
even if promised that xi ≥ 0 at all points in the stream. Here we assume the space complexity
of the algorithm depends only on n, even if the underlying vector is allowed to have very
large entries at intermediate points in the stream. This assumption is suitable for graph
problems for which the desired lower bounds are usually in terms of n [2]. Note that for
graph and multi-graph problems with edge weight multiplicity bounded by poly(n), such a
condition does not affect known upper bounds. Indeed, known algorithms are linear sketches,
for which each coordinate can be maintained modulo poly(n).

1-Pass Restriction. We extend the reduction to algorithms which make any number of
passes, showing the optimal algorithm is to choose a new linear sketch at the beginning of
each pass, based on the output of previous passes. We note that in [7], significantly better
bounds for finding `2-heavy hitters were found using multiple passes, while in [3] the 2-round
protocol in the arbitrary partition model there can be implemented as a 2-pass streaming
algorithm with better space than possible of any 1-pass algorithm [14].

1.4 Applications
Norm Approximation and Maintaining a Counter

A fundamental problem in the turnstile streaming model is norm approximation [1], in which
the goal is to output an approximation of the `p-norm ‖x‖p = (

∑n
i=1 |xi|p)

1
p , for given p > 0.3

In particular, we are interested in proving space lower bounds for any 1-pass algorithm
that outputs additive error approximation of the `p-norm: for x ∈ {−m,−(m− 1), . . . ,m}n,
the algorithm outputs a number in

[
‖x‖p − εn1/pm, ‖x‖p + εn1/pm

]
with high probability.

Since we have ‖x‖p ≤ n1/pm for all x ∈ {−m,−(m − 1), . . . ,m}n, a (1 ± ε)-relative error
approximation implies an (±εn1/pm)-additive error approximation; however, an additive
error approximation is much weaker. In some applications, relative error is too restrictive
and one may only be interested in the value of a norm if it is sufficiently large. However, all
previous lower bounds, e.g., [8], only apply if the norm is allowed to be very small, that is,
they do not apply to additive error approximation.

We obtain the first super-constant Ω(logm) lower bound for approximating ‖x‖p up to
an additive εn1/pm error in the turnstile model, without any assumptions such as the box
constraint, where ε is any constant in (0, 1/2). Our lower bound of Ω(logm) bits is optimal
for the important case of p ∈ [1, 2], which includes the Manhattan and Euclidean norms.

3 For 0 < p < 1, ‖x‖p is not a norm, though it is still a well-defined function.
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Indeed, for p ∈ [1, 2] one can obtain a relative error approximation using O(logm) bits of
space [1, 5].

Previous lower bound techniques are based on two-player communication complexity
in which the players, Alice and Bob, hold inputs x ∈ {−m,−(m − 1), . . . ,m}n and y ∈
{−m,−(m− 1), . . . ,m}n respectively, and should output an approximation to ‖x− y‖p. But
for an additive error approximation, it suffices for Alice to send the most significant O(1)
bits of x to Bob, and thus only an Ω(1) lower bound can be proved via communication
complexity.

For the special case of n = 1, the data stream is composed of +1’s and −1’s and
the underlying vector x is an integer, i.e., a “counter”. When x is promised to stay in
{−m,−(m− 1), . . . ,m}, we are interested in the space complexity of maintaining |x| up to
an additive εm error, for constant ε ∈ (0, 1/2). Surprisingly, the space complexity of this
problem in the turnstile model with additive error was previously unknown. There is an
obvious O(logm) upper bound for this problem because the algorithm can just maintain
x. The question is whether this upper bound is tight. By removing the box constraint of
the LNW reduction, we give the first tight Ω(logm) bits lower bound for this fundamental
problem. As a simple corollary, we show that outputting the most significant bit of |x| in a
turnstile stream requires Ω(logm) bits of space. Here we let |x| take (blogmc+ 1) bits so its
most significant bit can be 0. Note that this is in sharp contrast to maintaining the least
significant O(1) bits, which can be done with O(1) bits of space. Indeed, if one is interested
in the C least significant bits, it suffices to maintain a counter modulo 2C .

Matching Problems

Matching problems are among the most studied graph problems in the streaming model. In a
recent work [2], Assadi et al. give a 1-pass algorithm using Õ(n2−3ε) bits of space to recover
an nε-approximate maximum matching in dynamic graph streams. They also show a lower
bound of n2−3ε−o(1) bits for any linear sketch that approximates the maximum matching to
within a factor of O(nε). Their bounds are essentially tight for linear sketches, but it remains
to see whether they are also tight for general 1-pass algorithms.

Our result for non-negative streams implies that the upper and lower bounds in [2] for
approximating maximum matching are tight not only for linear sketches, but for all 1-pass
algorithms. Thus the space complexity of approximating maximum matching in dynamic
graph streams is resolved.

2 Preliminaries

We present some notations and definitions in this section.

Data Streams in the Turnstile Model. Let ei be the i-th standard unit vector in Rn. In the
turnstile streaming model, the input x ∈ Zn is represented as a data stream σ = (σ1, σ2, . . .)
in which each element σi belongs to Σ = {e1, . . . , en,−e1, . . . ,−en} and

∑
i σi = x.

The frequency of a stream σ is denoted by freq σ =
∑
i σi. For two streams σ and τ , let

σ ◦ τ be the stream obtained by concatenating τ to the end of σ. The inverse stream of σ,
denoted by σ−1, is defined inductively by e−1

i = −ei, (−ei)−1 = ei and (σ ◦ τ)−1 = τ−1 ◦σ−1.
Let Λm = {σ | ‖ freq σ‖∞ ≤ m} and Γm = {σ | for any prefix σ′ of σ, ‖ freq σ′‖∞ ≤ m};

the former is the set of input streams without the removal of the box constraint, and the
latter the set of input streams when the box constraint is removed.

CCC 2016



20:6 New Characterizations in Turnstile Streams with Applications

The Strict Turnstile Model. In the strict turnstile model, there is an additional requirement
that the underlying vector should not have negative coordinate at any intermediate point.
In other words, this model allows input streams in Λ∗m = {σ | ‖ freq σ‖∞ ≤ m, and for any
prefix σ′ of σ, σ′ ≥ ~0}.

Stream Automata. A stream automaton A is a Turing machine that uses two tapes, a
unidirectional read-only input tape and a bidirectional work tape. The input tape contains
the input stream σ. After processing its input, the automaton writes an output, denoted
by φA(σ), on the work-tape. A configuration of A is determined by its state of the finite
control, head position and contents on the work tape. We often use the word “state” to
mean a configuration. The computation of A can be described by a transition function
⊕ : C × Σ→ C, where C is the set of all possible configurations. For a configuration c ∈ C
and a stream σ, we also denote by c⊕ σ the configuration after processing σ on c. The set of
configurations of A that are achievable by some input stream σ ∈ Γm is denoted by C(A,m).
The space of A with stream parameter m is then defined to be S(A,m) = log |C(A,m)|.

A problem P is characterized by a family of binary relations Pn ⊆ Zp(n) × Zn, where
n ≥ 1 and p(n) is the dimension of the output. We say an automaton A solves a problem
P (with domain size n) on a distribution Π if (φA(σ), freq σ) ∈ Pn with probability 1− δ,
where the probability is over σ ∼ Π (and where δ is a small positive constant specified when
needed).

Path-Reversible Automata and Path-Independent Automata. An automaton is said to
be path-reversible if for any configuration c and any input stream σ, c⊕ (σ ◦ σ−1) = c. An
automaton is said to be path-independent if for any configuration c and any input stream σ,
c⊕ σ depends only on freq σ and c.

Transition Graph. The transition graph of an automaton A is a directed graph GA = (V,E),
where the vertex set V is the set of configurations of A, and the arcs in E describe the
transition function of A: there is an arc a from vertex c1 to c2 if and only if there is an
update u ∈ Σ such that c1 ⊕ u = c2, and we denote this update u by fa. Note that every
vertex in V has 2n outgoing arcs, each of which corresponds to a possible update in Σ.

Zero-Frequency Path and Zero-Frequency Graph. In a transition graph GA = (V,E), a
path p of length k from v1 to vk+1 is a sequence of k arcs (v1, v2), (v2, v3), . . . , (vk, vk+1). Let
fp =

∑k
i=1 f(vi,vi+1) be the frequency of path p, which is the frequency of the stream along p.

A path p is called a zero-frequency path if fp = ~0. The zero-frequency graph G′A = (V ′, E′)
based on GA = (V,E) is a directed graph with V ′ = V and E′ = {(v1, v2) | there exists a
zero-frequency path from v1 to v2 in GA}.

Randomized Stream Automata. A randomized stream automaton is a deterministic au-
tomaton with one additional tape for the random bits. The random bit string R is initialized
on the random bit tape before any input token is read; then the random bit string is used in
a bidirectional read-only manner. The rest of the execution proceeds as in a deterministic
automaton. A randomized automaton A is said to be path-independent (reversible) if,
for each possible randomness R, the deterministic instance AR is path-independent (re-
versible). The space of a randomized automaton A with stream parameter m is defined as
S(A,m) = maxR (|R|+ S(AR,m)).
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Multi-Pass Stream Automata. A p-pass (p ≥ 2) deterministic automaton A consists of
automata of p layers (passes), in which (i) the 1-st pass automaton A1 which contains a
starting state, when reading an input stream σ and arriving at state s, outputs a second-pass
deterministic automaton A2

s; (ii) for 2 ≤ q ≤ p− 1, a q-th pass automaton Aq, when reading
input σ and arriving at a state s, outputs a (q + 1)-th pass deterministic automaton Aq+1

s ;
(iii) a p-th pass automaton Ap, when reading input σ and arriving at a state s, outputs a final
answer for the input σ. When the context is clear, we also use σ to mean the terminating
state of the automaton when reading stream σ, e.g., A2

σ is the same as A2
o⊕σ, where o is the

initial state of A2.
For an input stream σ, a sequence of automata will be generated, A1,A2

s1
, . . . ,Apsp−1

,
where si (1 ≤ i ≤ p− 1) is the terminating state of Aisi−1

(where A1
s0

= A1) on reading σ. A
p-pass deterministic automaton A solves a problem P on input stream σ if the output of
Apsp−1

on σ is an acceptable answer for σ. We say that the answer is acceptable for σ in this
case. The space complexity S(A,m) is defined as S(A,m) = maxσ:‖ freq(σ)‖∞≤m{S(A1,m) +
S(A2

s1
,m) + . . .+ S(Apsp−1

,m)}.
A p-pass automaton is said to be path-independent if all of its constituent automata

are path-independent. A p-pass randomized automaton is defined similarly as a 1-pass
randomized automaton.

3 Removing the Box Constraint and Application to Additive Error
Norm Approximation

In this section, we give a condition under which the box constraint can be removed. As an
application, we obtain an Ω(logm) bit lower bound for the additive error `p-norm ‖x‖p(p > 0)
estimation in the turnstile streaming model.

First of all, we remark that the LNW reduction in [9] can be simplified. The LNW
reduction consists of three main steps: (i) reduction from a general automaton to a path-
reversible automaton; (ii) reduction from a path-reversible automaton to a path-independent
automaton; (iii) reduction from a path-independent automaton to a linear sketch A · x.4 We
notice that step (ii) is not necessary, since the automaton obtained after step (i), which was
shown to be path-reversible in [9], is already path-independent. The proof of this fact in
given in Appendix A.

3.1 Removing the Box Constraint in the Turnstile Model
In the LNW reduction, given a problem P , if an algorithm A solves P on Λm, then it is
reduced to a linear sketch that solves P on Λm. (Recall that Λm is the set of all streams σ
with ‖freq σ‖∞ ≤ m.) Our goal is to remove the box constraint, i.e., to apply the reduction
to algorithms that solve P on Γm, which is the set of streams σ such that ‖freq σ′‖∞ ≤ m
for any prefix of σ′ of σ. We will show that if A uses space S(A,m) ≤ c · logm

n for some fixed
constant c > 0 and solves P on Γm, then it can be reduced to a linear sketch that solves
P on Γm/2. The reason why the LNW reduction requires A to solve the problem on Λm
instead of Γm comes from the step of reducing a general automaton to a path-independent
automaton. Given a certain deterministic instance of the general automaton A, the transition
graph GA = (V,E) and the zero-frequency graph G′A = (V ′, E′) are built. The states of

4 Note that a path-independent automaton is equivalent to maintaining a linear sketch A · x mod q [4, 9].
The only goal of step (iii) is to remove the “mod q”.
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20:8 New Characterizations in Turnstile Streams with Applications

a corresponding deterministic instance of the new automaton B are defined to be all the
terminal strongly connected components5 of G′A. The transition function of B is then defined
based on the original transition function of A. When the final state in B is a strongly
connected component C of G′A, B chooses a vertex v from C according to the stationary
distribution πC of a random walk in C, and then outputs what A outputs when its state is
v. We note that when a stream σ is executed by B, what essentially happens is that some
zero-frequency streams (corresponding to moving along arcs in G′A) are inserted into σ to
form a new stream σ′ which will be executed by A. We have that σ ∈ Λm implies σ′ ∈ Λm;
but when σ ∈ Γm, the frequency of some prefix of σ′ could be very large. Thus A is required
to solve the problem on Λm to make the reduction work.

Define L to be the maximum length of the shortest zero-frequency path connecting a pair
of vertices. Here the maximum is taken over all pairs of vertices that are connected by at least
one zero-frequency path. Note that the zero-frequency streams inserted into σ correspond
to taking a walk in the zero-frequency graph G′A. Thus we can assume that the lengths of
inserted zero-frequency streams are at most L: this can be achieved by always choosing the
shortest zero-frequency paths between pairs of vertices. Then it is easy to see that σ ∈ Γm/2
implies σ′ ∈ Γm/2+L/2. Hence, if L ≤ m, we will be able to perform the reduction from an
initial algorithm for input streams in Γm to a linear sketch for input streams in Γm/2.

Note that the reduction we use here is the same as step (i) in the LNW reduction. We
obtain a path-independent automaton regardless of what input streams we are considering.
What changes is that we have argued, when L ≤ m is satisfied, the path-independent
automaton we obtain will be correct on Γm/2 if the original automaton is correct on Γm.
Now it remains to find a sufficient condition for L ≤ m.

We will prove an upper bound on L in terms of n and the number of vertices s = |V | in
order to obtain a condition for removing the box constraint. The idea to upper bound L
is to build linear equations based on the graph GA such that the equations have a positive
integer solution if and only if there exists a zero-frequency path from a given state to another.
Then, Lemma 3.1 below enables us to find a positive integer solution of small magnitude
if there exists one. Finally, we convert the bound on the magnitude of the solutions to the
bound on the length of the path. In the LNW reduction, one way to obtain a finite bound
on L as mentioned in that work is to build a system of linear equations in terms of simple
paths and simple cycles, though an exact bound is not given in [9]. We note that an upper
bound sO(s+n) on L can be obtained via this approach. (See Appendix B.) Unfortunately the
bound sO(s+n) is not strong enough for our applications. Here in Lemma 3.3 we propose a
better way to build the linear equations, which gives us a tighter bound of poly(sn) · ( sn + 1)n.
Instead of writing the linear equations in terms of simple cycles, we write them in terms of
arcs.

I Lemma 3.1. Let A be an m× n integer matrix and b ∈ Zm. Suppose that M1 is an upper
bound on the absolute value of any sub-determinant of the matrix

(
A b

)
. If Ax = b has a

positive integer solution, then it has one whose all coordinates are at most (n+ 1)2M1.

Proof. We make use of a result in [12]. Let C be a p × n integer matrix and d ∈ Zp.
Let r be the rank of A. Suppose that M is an upper bound on the absolute value of any

sub-determinant of the matrix
(
A b

C d

)
, which contains at least r rows from

(
A b

)
. The

5 A strongly connected component is said to be terminal if there is no arc coming from it to the rest of
the graph.
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following upper bound is shown on the magnitude of an integer solution to the linear system
{Ax = b, Cx ≥ d}:

I Lemma 3.2 ([12]). If Ax = b and Cx ≥ d have a common integer solution, then they have
one whose coordinates have absolute values at most (n+ 1)M .

Now we let p = n, C = In, and d = ~1 = (1, . . . , 1)> and invoke Lemma 3.2. Then we
know that Ax = b has a positive integer solution whose coordinates are at most (n+ 1)M ,
where M is an upper bound on the absolute value of any sub-determinant of the matrix(
A b

In ~1

)
, which contains at least r rows from

(
A b

)
.

Then it suffices to prove M ≤ (n+ 1)M1. Consider an arbitrary submatrix T of
(
A b

In ~1

)
,

which contains at least r rows from
(
A b

)
. Note that all entries of

(
In ~1

)
are in {0, 1} and

that there are n+ 1 ways to choose one non-zero entry from each row of
(
In ~1

)
such that

no two entries are in the same column. Thus, after expanding the determinant of T along its
rows from

(
In ~1

)
, det(T ) can be written as the sum of no more than n+ 1 sub-determinants

(multiplied by ±1) of
(
A b

)
. Therefore |det(T )| is at most n+ 1 times the largest absolute

value of any sub-determinant of
(
A b

)
, which implies M ≤ (n+ 1)M1. J

I Lemma 3.3. Let s = |V | be the number of vertices in the transition graph GA = (V,E).
Then L ≤ 2ns(2ns + 1)2 · ( sn + 1)n, where L is the maximum length of the shortest zero-
frequency path between any two vertices connected by at least one zero-frequency path.

Proof. Consider any two vertices o1, o2 ∈ V such that there exists a zero-frequency path
from o1 to o2. We fix a subset of edges E′ = {(u1, v1), (u2, v2), . . . , (ut, vt)} satisfying the
following condition: it is possible to use and only use (u1, v1), . . . , (ut, vt) to reach o2 from
o1. For every possible E′ satisfying this condition, we build a linear system as follows.

Let x ∈ Zt+ be the variable whose i-th coordinate xi represents the number of times
the arc (ui, vi) occurs in the path from o1 to o2. We will need two types of constraints
to write the linear equations: (1) the frequency of the path is ~0; (2) for each node v,
the number of times we go out from v minus the number of times we go into v is 1 if
v = o1, is −1 if v = o2, and is 0 otherwise.6 Then each positive integer solution x to
the above constraints corresponds to a zero-frequency path from o1 to o2 using the arcs
in E′. It is easy to see that the above constraints can be written as linear equations

Ax = b, where A =
(
f(u1,v1) f(u2,v2) . . . f(ut,vt)
eu1 − ev1 eu2 − ev2 . . . eut − evt

)
is an (n + s) × t matrix, and

b =
(

~0
eo1 − eo2

)
∈ Rn+s. Here ev is the standard unit column vector in Rs with the non-zero

coordinate corresponding to node v. (Note that there are s nodes in total so we can map
every node to a coordinate.) The upper n rows guarantee the frequency of the path is 0. Here,
recall that f(ui,vi) ∈ Rn is the positive or negative standard unit column vector which is the
update corresponding to the arc (ui, vi). The lower s rows are the network flow constraints.
Note that all entries in

(
A b

)
are in {−1, 0, 1}.

Since there exists a zero-frequency path from o1 to o2, at least one such system of the
linear equations (i.e., for at least one fixing of E′) has a positive integer solution. Next, we
consider such a fixing of E′ that leads to a positive integer solution to the corresponding linear

6 These are called the network flow constraints.
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system. By Lemma 3.1, if there exists a positive integer solution to Ax = b, then there exists
such a solution x satisfying ‖x‖∞ ≤ (t+ 1)2M1, where M1 is the largest possible absolute
value of any sub-determinant of

(
A b

)
. This solution x corresponds to a zero-frequency

path of length ‖x‖1 ≤ t‖x‖∞ ≤ t(t+ 1)2M1.

Let S be an arbitrary square submatrix of
(
A b

)
. We write S as S =

(
X

Y

)
, where

X comes from the top n rows and Y comes from the bottom s rows of
(
A b

)
. Let the

size of X be h × w, and the size of Y be (w − h) × w. (Clearly, we have h ≤ n and
w ≤ s + h.) We expand det(S) along its rows in X. Since each column in X has at most
one non-zero entry (±1), the rows of X have support on disjoint subsets of columns, and
thus X has at most w non-zero entries in total. Then, by the AM-GM inequality, the
number of ways to choose one non-zero entry from each row of X such that no two of
them are in the same column is at most

(
w
h

)h ≤ ( s+hh )h =
(
1 + s

h

)h ≤ (1 + s
n

)n. Then
we have that |det(S)| is at most

(
1 + s

n

)n times the maximum absolute value of any sub-
determinant of Y . Let C = (cij)k×k be any submatrix of Y , which is also a submatrix of(
eu1 − ev1 eu2 − ev2 . . . eut − evt eo1 − eo2

)
.

We show that det(C) ∈ {0, 1,−1}. Note that C has at most two non-zero entries in
each column, and if a column of C has two non-zero entries, they must be 1 and −1. If all
columns in C have two non-zero entries, then (1, 1, . . . , 1) · C = (0, 0, . . . , 0), which implies
det(C) = 0. If there exists a column in C without non-zero entries, then we also have
det(C) = 0. Otherwise we can find a column with exactly one non-zero entry cij , and
then we have det(C) = (−1)i+jcij det(Dij), where Dij is formed by deleting row i and
column j from C. By induction, we have det(C) ∈ {−1, 0, 1}. Therefore, we know that
|det(S)| ≤

(
1 + s

n

)n · 1 =
(
1 + s

n

)n.
Since S is arbitrary, we have M1 ≤

(
1 + s

n

)n. Note that there are at most 2ns arcs in
the graph, so we have t ≤ 2ns. Then we can bound the length of a zero-frequency path by
t(t+ 1)2M1 ≤ 2ns(2ns+ 1)2 (1 + s

n

)n. J

Let r = |C(A,m)|. Note that we only care about the correctness of A on input streams
from Γm. Thus we can, without loss of generality, combine all states not in C(A,m) (if there
are any) into an “irreversible crash” state: the automaton will stay in this state after leaving
C(A,m). This modification will not affect the correctness of A on Γm. Therefore, we can
assume s ≤ r + 1. Then Lemma 3.3 implies L ≤ 2n(r + 1)(2n(r + 1) + 1)2 · ( r+1

n + 1)n.
Assume r > 1. Then we have L ≤ (4nr)3 · (r+ 2)n ≤ rc1n for a sufficiently large constant

c1 > 0. Recall that we want L ≤ m. Taking logarithms on both sides of the desired inequality
rc1n ≤ m, we equivalently want c1n log r ≤ logm, i.e., log r ≤ logm

c1n
. Therefore, when we

have S(A,m) = log r ≤ logm
c1n

for some fixed constant c1 > 0, the condition L ≤ m will
be satisfied. In this case, according to our analysis, the box constraint can be removed.
Combining this condition and [9, Theorem 10] (with minor correction), we summarize our
results on removing the box constraint as the following theorem.

I Theorem 3.4 (Removing the box constraint). Suppose that a randomized 1-pass streaming
algorithm A solves a problem P on any stream in Γm with probability at least 1 − δ, and
that the space used by any deterministic instance of A is no more than c · logm

n , where c > 0
is a universal constant. Then there exists an algorithm B implemented by maintaining a
linear sketch A · x mod q in the stream, where A is a random r× n integer matrix and q is a
random positive integer vector of length r, such that B solves P on any stream in Γm/2 with
probability 1− 6δ and that S(B,m/2) ≤ S(A,m) +O(logn+ log logm+ log 1

δ ).7

7 The extra O(log n + log log m + log 1
δ ) bits are used only for the randomness for sampling A and q.
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Figure 1 An illustrative example.

3.2 Tightness of Our Condition
In Lemma 3.3, we show that an upper bound of L is poly(ns) · (1 + s

n )O(n). Now we give
an example of an automaton to show this upper bound is essentially tight (assuming s is
much larger than n). In our example, there exist two vertices in the transition graph of
the automaton so that the length of the shortest zero-frequency path between them is at
least ( sn )Ω(n). The matching upper bound and lower bound on L eliminate the possibility
of getting any further improvement in the condition for removing the box constraint, if the
same reduction in [9] is used.

An illustrative example of our construction with n = 4 and s = 12 is given in Figure
1. Here each dashed arc represents all remaining outgoing arcs from a vertex. Consider
the shortest zero-frequency path from o1 to o2. (Note that there exists one such path.)
After going from o1 to o2 by the arc with +e1 update, the path needs to go through the
cycle o2 → o3 → o4 → o5 → o2 one time in order to make the first coordinate of the
frequency vector x equal to 0. However, that causes the second coordinate to be 3 and
the path then needs to go through the cycle o5 → o6 → o7 → o8 → o5 three times for
compensation. That further causes the third coordinate to be 32 and the path needs to go
through o8 → o9 → o10 → o11 → o8 a total of 32 times. Finally, the path needs to go through
the self-loop at o11 with −e4 update a total of 33 times. Note that the number of times the
shortest zero-frequency path from o1 to o2 passes through each cycle goes up exponentially.

I Lemma 3.5. There exists an automaton A such that the transition graph GA = (V,E)
satisfies L = ( sn )Ω(n), where s = |V | is the number of vertices, and L is the maximum
length of the shortest zero-frequency path between any two vertices connected by at least one
zero-frequency path.

Proof. We assume n > 3, s− 3 > 3(n− 1) and (n− 1) | (s− 3). For (n− 1) - (s− 3), we can
decrease s until (n− 1) | (s− 3) is satisfied. We construct a transition graph GA = (V,E)
whose structure is similar to the example in Figure 1. Let V = {o1, o2, . . . , os}. There are
2n outgoing arcs from each of the vertices in V . We write oi ⊕±ek = oj to stand for an arc
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(oi, oj) in E where f(oi,oj) = ±ek. Let len = (s− 3)/(n− 1) + 1. The arcs in E are defined
as follows:

o1 ⊕+e1 = o2.
os−1 ⊕−en = os−1.
For i ≡ 2 mod (len− 1) and i 6= s− 1, oi ⊕−edi/(len−1)e = oi+1.
For i ≡ 2 mod (len− 1) and i 6= 2, oi ⊕+edi/(len−1)e = oi−(len−1).
For i 6≡ 2 mod (len− 1), i 6= 1 and i 6= s, oi ⊕+ebi/(len−1)c+1 = oi+1.
For a vertex oi and e ∈ {+e1, . . . ,+en,−e1, . . . ,−en} where oi ⊕ e is undefined from
above, oi ⊕ e = os.

There are n − 1 cycles each of which has length len. The i-th cycle consists of nodes
o(i−1)(len−1)+2, o(i−1)(len−1)+3, . . . , oi(len−1)+2. Among the arcs in the i-th cycle, there is one
arc with −ei update, and all other len − 1 arcs are with +ei+1 update. In this case, any
zero-frequency path from o1 to o2 passes through the i-th cycle at least (len−1)i−1 times, and
thus its length is at least

∑n−1
i=1 len · (len−1)i−1 = len · (len−1) · (len−1)n−1−1

len−2 = ( sn )Ω(n). J

In fact, for our example we can have a stronger statement that along any zero-frequency
path from o1 to o2, some coordinate of the underlying vector achieves at least ( sn )Ω(n). This
is the reason why the underlying vector could escape from {−m,−(m− 1), . . . ,m}n at the
middle of the stream after inserting zero-frequency streams in the reduction. In order to
remove the box constraint, there must be some constants C1, C2 such that ( sn )C1n ≤ C2m,
i.e., log s ≤ logm+logC2

C1n
+ logn. When m is sufficiently large and n is fixed, this implies

log s ≤ C logm
n for some constant C. Hence our condition for removing the box constraint is

tight.

3.3 Space Lower Bounds for Additive Error Norm Approximation
We consider the problem of estimating the `p-norm ‖x‖p(p > 0) in the turnstile streaming
model, where the underlying vector x is promised to be in {−m,−(m− 1), . . . ,m}n at all
points in the stream (i.e., without the box constraint). We prove an Ω(logm) bit space lower
bound for approximating ‖x‖p up to an additive εn1/pm error, where ε ∈ (0, 1

2 ) is a constant.
Our proof makes use of the LNW reduction with the box constraint removed.

A Norm Decision Problem. First we consider the following promise problem: we are given
the promise that the input x ∈ {−m,−(m − 1), . . . ,m}n satisfies either ‖x‖p ≤ αn1/pm

or ‖x‖p ≥ βn1/pm, where 0 < α < β < 1 are constants, and need to decide whether
‖x‖p ≤ αn1/pm or ‖x‖p ≥ βn1/pm. We first prove that this problem has an Ω(logm) space
lower bound.

I Theorem 3.6 (Norm decision problem). For any constants p > 0, 0 < α < β < 1 and
0 ≤ δ < min{α,1−β}

6(α+1−β) , any 1-pass streaming algorithm which, for any input x ∈ {−m,−(m−
1), . . . ,m}n, decides whether ‖x‖p ≤ αn1/pm or ‖x‖p ≥ βn1/pm (provided that x satisfies
one of them) with probability at least 1− δ in the turnstile model uses Ω(logm) bits of space.

Proof. We assume without loss of generality that n = 1, since one can always use an
algorithm for larger n to solve the problem for n = 1 by assigning all n coordinates the same
value. Suppose that the theorem does not hold. Then for any sufficiently small constant
ε > 0, there exists m and an algorithm A such that A uses less than ε logm bits of space and
solves the given problem (with parameters m and n = 1) with probability 1− δ. Since the
space used by A is less than ε logm

n bits (using n = 1), from Theorem 3.4 we know that there
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is an algorithm B that maintains a linear sketch A · x mod q and solves the same problem8

with probability 1− 6δ. Furthermore, the space used by any deterministic instance of B is
also less than ε logm bits.

Let U1 = {0, 1, . . . , bαmc} and U2 = {dβme, dβme + 1, . . . ,m}. Let Π be the uniform
distribution on U = U1∪U2. By Yao’s minimax principle, there exists a fixing of A and q that
solves the problem for x drawn from Π (i.e., decides if x is in U1 or U2) with probability at least
1 − 6δ. Since n = 1, we can write Ax mod q = (a1x mod q1, a2x mod q2, . . . , arx mod qr),
where a1, . . . , ar ∈ Z and q1, . . . , qr ∈ Z+. Without loss of generality, we assume gcd(ai, qi) =
1 for i = 1, . . . , r. (If gcd(ai, qi) = d > 1, we can let a′i = ai/d, q

′
i = qi/d and then there is a

one-to-one correspondence between aix mod qi and a′ix mod q′i. So ai and qi can be replaced
by a′i and q′i.) Let l = lcm(q1, . . . , qr).

We now prove l = Ω(m). Suppose that l < min{α, 1− β} ·m (otherwise we already have
l = Ω(m)). The input space U can be partitioned into l groups Gi = {j ∈ U

∣∣(i− j) mod l =
0}(i = 0, 1, . . . , l − 1). Note that the algorithm outputs the same answer for inputs from
the same group. Within group Gi, the algorithm outputs the correct answer for at most
a max{|Gi∩U1|,|Gi∩U2|}

|Gi| fraction of inputs. For i ∈ {0, 1, . . . , l − 1} we have |Gi ∩ U1| =
bαm−il c+1 ∈ (αml −1, αml +1] and |Gi∩U2| = bm−il c−d

βm−i
l e+1 ∈ ( (1−β)m

l −1, (1−β)m
l +1].

Thus

max{|Gi ∩ U1|, |Gi ∩ U2|}
|Gi|

≤
max{αml + 1, (1−β)m

l + 1}
(αml − 1) + ( (1−β)m

l − 1)
=

max{α, 1− β}ml + 1
(α+ 1− β)ml − 2 .

The above is an upper bound of the success probability on Π, so we must have 1 − 6δ ≤
max{α,1−β}ml +1

(α+1−β)ml −2 , which means l ≥ (1−6δ)(α+1−β)−max{α,1−β}
3−12δ m. Since δ < min{α,1−β}

6(α+1−β) , we
have (1− 6δ)(α+ 1− β)−max{α, 1− β} > 0. Therefore l = Ω(m).

Next we show that as x varies in {1, 2, . . . , l}, A ·x mod q takes l distinct values. Suppose
that there are x, y ∈ {1, 2, . . . , l}(x 6= y) such that A · x mod q = A · y mod q. Then for
all i ∈ {1, . . . , r} we have ai(x − y) mod qi = 0, which means (x − y) mod qi = 0 since
gcd(ai, qi) = 1. Therefore (x − y) mod (lcm(q1, . . . , qr)) = 0, i.e., (x − y) mod l = 0, a
contradiction. So A · x mod q takes l distinct values as x varies in {1, 2, . . . , l}. This means
that as x varies in {1, 2, . . . ,m}, A · x mod q takes min{m, l} distinct values, so the space
complexity of maintaining A · x mod q is at least Ω(log(min{m, l})) = Ω(logm), which is a
contradiction. J

The following Ω(logm) lower bounds are corollaries of Theorem 3.6.

I Theorem 3.7 (Additive error norm approximation). For any constants p > 0 and 0 ≤ ε < 1
2 ,

any 1-pass streaming algorithm which, for any input x ∈ {−m,−(m− 1), . . . ,m}n, outputs
an approximation of ‖x‖p in the interval

[
‖x‖p − εn1/pm, ‖x‖p + εn1/pm

]
with probability

greater than 11
12 in the turnstile model uses Ω(logm) bits of space.

Proof. Suppose that the theorem does not hold. Then for any sufficiently small constant
η > 0, there exists m and an algorithm A such that A uses less than η logm bits of space
and estimate ‖x‖p (for any x ∈ {−m,−(m− 1), . . . ,m}n) up to additive εn1/pm error with
probability 1− δ, where 0 ≤ δ < 1

12 . Below, we make use of A to solve the norm decision
problem in η logm bits of space and thus reach a contradiction to Theorem 3.6.

8 According to Theorem 3.4, B can only solve the problem with parameter m/2 instead of m. Since we
are proving an Ω(log m) lower bound, we can replace m/2 by m for simplicity.
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We invoke A to solve the norm decision problem with parameters α < 1
2 − ε, β >

1
2 + ε,

and δ. We can choose α and β such that α = 1− β, then we have δ < 1
12 = min{α,1−β}

6(α+1−β) as
required in Theorem 3.6. When ‖x‖p ≤ αn1/pm, a successful estimate for ‖x‖p given by A
will be at most (α+ ε)n1/pm; when ‖x‖p ≥ βn1/pm, a successful estimate for ‖x‖p given by
A will be at least (β − ε)n1/pm. Since α+ ε < 1

2 < β − ε, by looking at the most significant
O(1) bits of the output of A, we are able to tell whether the output is at most (α+ ε)n1/pm

or at least (β − ε)n1/pm, and thus to decide whether ‖x‖p ≤ αn1/pm or ‖x‖p ≥ βn1/pm

(with probability at least 1− δ). This solves the norm decision problem using η logm bits of
space, contradicting Theorem 3.6. J

I Theorem 3.8 (Approximating a counter up to additive error). For any constant 0 ≤ ε < 1
2 ,

any 1-pass algorithm which, for any input x ∈ {−m,−(m − 1), . . . ,m}, outputs |x| up to
additive εm error with probability larger than 11

12 in the turnstile model uses Ω(logm) bits of
space.

Proof. This is a special case of Theorem 3.7 with n = 1. J

I Theorem 3.9 (Maintaining the most significant bit of a counter). Any 1-pass algorithm
which, for any input x ∈ {−m,−(m− 1), . . . ,m}, outputs the most significant bit of |x| with
probability larger than 11

12 in the turnstile model uses Ω(logm) bits of space.

Proof. Without loss of generality, we assume m = 2k − 1(k ∈ Z+). In this case |x| has k
bits. If an algorithm can output the most significant bit of |x|, it must be able to distinguish
whether |x| ≤ 1

4m or |x| ≥ 3
4m: the most significant bit of |x| is 0 in the former case, and is

1 in the latter case. Then the Ω(logm) lower bound follows from Theorem 3.6. J

4 Reduction to Linear Sketches in the Strict Turnstile Model

In this section, we show that in the strict turnstile model, there is also an equivalence between
general algorithms and linear sketches, similar to the LNW reduction for the turnstile model.
We will consider algorithms that allow input streams from Λ∗m, which is the set of streams
such that the underlying vector never has a negative entry and is in {0, 1, . . . ,m}n at the
end of the stream. We further assume that the algorithms have space complexity depending
only on the dimension n, which is suitable when we want to prove lower bounds as functions
of n, such as in graph problems.

The following theorem is an adaptation of [9, Theorem 10] for the strict turnstile model.
It implies that to obtain lower bounds depending only on dimension in the strict turnstile
model, it suffices to consider linear sketches, or the simultaneous communication model.

I Theorem 4.1 (Reduction in the strict turnstile model). Suppose that a randomized algorithm
A solves a problem P on any stream in Λ∗m with probability at least 1 − δ, and that the
space complexity of A depends only on n. Then there exists an algorithm B implemented by
maintaining a linear sketch A · x mod q in the stream, where A is a random r × n integer
matrix and q is a positive integer vector of length r, such that B solves P on any stream in
Λ∗m with probability at least 1− 6δ and that the space used by any deterministic instance of B
is no more than the space used by A.

Proof. We modify the reduction from general automaton to path-independent automaton
(which was only claimed to be path-reversible in [9], as mentioned in the beginning of this
section).



Y. Ai, W. Hu, Y. Li, and D. P. Woodruff 20:15

We view A as an automaton. Since the space used by A depends only on n, there is a
function g such that the number of states of every deterministic instance of A is no more
than g(n). As in Section 3.1, let L be the maximum length of the shortest zero-frequency
path between any two states in the transition graph of any deterministic instance of A. From
Lemma 3.3 we know that L ≤ h(n) for some function h.

Let γ be a fixed stream with frequency (h(n), . . . , h(n)), which consists of only positive
updates (i.e., +ei’s). We construct another automaton A′ as follows: for any randomness,
(1) A′ has the same transition graph as A; (2) the starting state of A′ is o⊕ γ, where o is
the starting state of A; (3) for any state u, the output of A′ on u is the output of A on the
state u⊕ γ−1.

It is easy to see that executing a stream σ on A′ is equivalent to running the stream
γ ◦ σ ◦ γ−1 on A. Since A succeeds in solving P on any stream in Λ∗m with probability
at least 1 − δ, we know that A′ solves P on a stream σ with probability 1 − δ as long as
γ ◦ σ ◦ γ−1 ∈ Λ∗m, i.e., A′ solves P on any stream in the set Φ = {‖freq σ‖∞ ≤ m, freq σ ≥ ~0,
and the frequency of any prefix of σ has all its coordinates at least −h(n)} with probability
1− δ.

Now we invoke the LNW reduction from A′ to a path-reversible automaton C. According
to Appendix A, C is as well a path-independent automaton. Recall that when a stream
σ ∈ Λ∗m is executed by C, equivalently another stream σ′ is executed by A′, where σ′ is
obtained by inserting zero-frequency streams into σ. Note that we can assume that all the
inserted zero-frequency streams have length at most L ≤ h(n), and then σ ∈ Λ∗m implies
σ′ ∈ Φ. Therefore we have a path-independent automaton C solving P on any stream in Λ∗m
(with high probability). J

Maximum Matching. In a recent work [2], tight upper and lower bounds are shown for
turnstile algorithms that approximate maximum matching in dynamic graph streams, but the
lower bound is only proved in the simultaneous communication model. Using Theorem 4.1,
we are able to conclude that their results hold for any 1-pass algorithm and thus to resolve the
1-pass space complexity of this problem. Namely, to compute an nε-approximate maximum
matching, Θ(n2−3ε) bits of space is both sufficient and necessary (up to polylogarithmic
factors), where n is the number of vertices.

5 Reduction for Multi-Pass Automata

Our main result in this section is that the LNW reduction can be extended to multi-pass
automata, i.e., that a randomized p-pass automaton can be reduced to a path-independent
one without blowing up the space complexity. Throughout this section p is a constant.

The main difficulty of this reduction is that when we consider an automaton in the i-th
pass, for i > 1, we have to restrict to a subset of input streams that lead to the same state in
the automaton processing the previous pass. Fortunately there is still sufficient randomness
remaining even with this restriction so that the padding argument with zero-frequency
streams in the LNW reduction still works.

I Theorem 5.1 (Reduction of p-pass automata). Let A be a p-pass randomized automaton
that solves P with probability ≥ 1− δ. Let ε > 0. For any distribution Π over streams, there
exists a p-pass path-independent deterministic automaton B that solves P over input drawn
from Π with probability ≥ 1− δ − ε. Furthermore, S(B,m) ≤ S(A,m).

Proof for p = 2. We first give a detailed proof for the case p = 2. The same method can be
easily generalized to larger p.
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Let S0 be a set of zero-frequency streams such that whenever o1 and o2 are two states
of A1 or of any automaton A2

s, there exists σ ∈ S0 such that o1 ⊕ σ = o2, where ⊕ is the
transition function of the corresponding automaton.

Define a distribution Π′ as follows. For a stream σ ∼ Π and σ0 = (σ1, . . . , σ2W ) ∼
Unif(S2W

0 ), we include σ⊗ σ0 := σ1 ◦ . . . ◦ σW ◦ σ ◦ σW+1 . . . ◦ σ2W in Π′. Here for any set S,
Unif(S) is defined to be the uniform distribution over S. We shall choose W to be sufficiently
large so that certain conditions are satisfied. The conditions will be described explicitly later
in the proof.

By Yao’s minimax principle, we can pick a deterministic instance of A, also denoted by
A, which is correct on input distribution Π′ with probability ≥ 1 − δ. Henceforth in the
proof A refers to this deterministic instance. Everything is similar to [9] so far.

For a state s of A1, denote by Π′(s) the marginal distribution of Π′ on the event that
reading the input stream in A1 ends at state s. By the correctness assumption of A, it holds
that

E
σ′∈Π′

1{
φA2

σ′
(σ′) is acceptable for σ′

} ≥ 1− δ,

or, equivalently,

E
s∼µ

E
σ′∼Π′(s)

1{
φA2

σ′
(σ′) is acceptable for σ′

} ≥ 1− δ,

where µ the distribution over the states of A1 induced by Π′.
For each second-pass automaton A2

s (s is a state in A1), we reduce it to a path-independent
automaton B2

s with the same transition functions as in the LNW reduction. Since A2
s will

only be run on the input streams in supp(Π′(s)), we may assume that the states of B2
s are

all the terminal equivalence classes 〈τ ′〉 of A2
s, where τ ′ ∈ supp(Π′(s)).

To specify the output on the terminal equivalence class, we need the following proposition,
whose proof is postponed to the end of this section.

I Proposition 5.2. Let ε > 0 and W be a sufficiently large integer. Suppose that σ =
σ1 ◦ . . . ◦ σW ∼ Unif(SW0 ) and C is a terminal equivalence class of some automaton. Let s0
and s be arbitrary states in C and let event E = {s0 ⊕ σ = s}. There exist a positive integer
L ≤W and a distribution D over SW−L0 (both L and D are independent of s0 and s) such
that

dTV (L(σL+1 ◦ . . . ◦ σW |E),D) ≤ ε,

where L(σL+1 ◦ . . . ◦ σW |E) is the conditional distribution of σL+1 ◦ . . . ◦ σW on the event
E. Furthermore, there exists an integer R ∈ [L,W ] independent of s0 and s such that
dTV (L(σL+1 ◦ . . . ◦ σR|E),Unif(SR−L0 )) ≤ ε, and R− L can be made arbitrarily large.

Now we specify the output of B2
s . Let 〈t〉 be a terminal class of A2

s and Π′(s, 〈t〉) be the
marginal distribution of Π′(s) on the streams terminating in 〈t〉. The random output on 〈t〉
is defined as φA2

s
(τ ′) with τ ′ ∼ Π′(s, 〈t〉).

For a stream prefix ρ, we denote by Π′(s, ρ) the marginal distribution of Π′(s) on the
streams with prefix ρ.

We choose W sufficiently large such that the following two conditions hold.
(A) With probability ≥ 1− ε over σ′ ∼ Π′, the second-pass automaton A2

σ′ arrives at a state
in a terminal equivalence class on input stream σ′.
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(B) Conditioned on (A), for any second-pass automaton A2
s, and for any stream prefixes

ρ1 and ρ2 of streams in supp(Π′(s)) that satisfy (i) ρi has the form σ1 ◦ . . . ◦ σW ◦ σ ◦
σW+1 ◦ . . . ◦ σW+ni for some 0 ≤ ni ≤W (i = 1, 2) and (ii) ρ1 and ρ2 arrive in the same
equivalence class of A2

s, the induced distribution on the terminating states of streams in
Π′(s, ρ1) and that on the terminating states of streams in Π′(s, ρ2) are ε-close in total
variation distance.

Condition (A) is possible by Proposition 5.2, which indicates that there is a sufficiently long
random walk in A2

s, so starting from a node outside any terminating equivalence class, it
will arrive at a state in a terminal equivalence class with a high probability; then take a
union bound. We shall be conditioned on (A). Condition (B) is possible again because of
Proposition 5.2. The streams with prefix ρ1 and the streams with prefix ρ2 will be close to
Unif(SL0 ) on a segment of length L (where L can be made arbitrarily large) so they will first
mix in the terminal equivalence class and the streams have similar distribution afterwards.
Therefore, the induced distribution on the terminating states of streams in Π′(s, ρ) is close
to that induced by Π′(s, 〈ρ〉).

Furthermore, when W is large enough, the random zero-padding σ1 ◦ . . . ◦ σW before
σ ∼ Π always leads to a state in a (random) equivalence class in A2

s. Choose the initial state
of B2

s according to the induced distribution on the terminal equivalence classes by streams
drawn from Π′(s). It follows that on reading σ′ ∼ Π′, the distribution on the terminating
equivalence classes in A2

σ′ is ε-close to the distribution on the corresponding states in B2
σ′ .

They are not necessarily the same distribution because we choose a random initial state in
B2
s . This is called the terminal class property.
To show the correctness of B, we need to show (we may rescale ε if necessary)

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ} ≥ 1− δ −O(ε). (1)

We have

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ}

= E
σ∼Π

E
s∼Stationary(〈σ〉)

E
randomness of B2

s

1{φB2
s
(σ) is acceptable for σ}

≥ E
σ∼Π

E
σ0∼Unif(S2W

0 )
E

randomness of B2
σ⊗σ0

1{
φB2

σ⊗σ0
(σ) is acceptable for σ

} − ε
≥ E
σ∼Π

E
σ0∼Unif(S2W

0 )
E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉)
1{

φA2
σ⊗σ0

(τ ′) is acceptable for σ
} − 2ε. (2)

In the above, line 2 follows from the random output of B1, line 3 from the fact that σ ⊗ σ0
with σ0 is ε-close to the stationary distribution on 〈σ〉, line 4 from the definition of the
random output of B2 and the terminal class property.

The event of the indicator function in (2) has a slight mismatch: the input stream is τ ′
while we only know the automaton’s correctness on σ. To overcome this, we break up the
streams in supp(Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉)) according to the frequency vectors v. We say freq(τ ′)
is admissible for τ ′ ∈ supp(Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉)). Further conditioned on admissible v, the
conditional distribution of Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉) is denoted by Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉, v). By
condition (B), when W is sufficiently large, for any admissible v, the distribution of states in
〈σ ⊗ σ0〉 induced by Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉, v) is close to that induced by Π′(σ ⊗ σ0, 〈σ ⊗ σ0〉).
It therefore holds that∣∣∣∣ E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉)
f(τ ′)− E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉,freq(σ))
f(τ ′)

∣∣∣∣ ≤ ε, (3)
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for all (measurable) f with ‖f‖∞ ≤ 1. Now we can continue from (2):

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ}

≥ E
σ∼Π

E
σ0∼Unif(S2W

0 )
E

τ ′∼Π′(σ⊗σ0,〈σ⊗σ0〉,freq(σ))
1{

φA2
σ⊗σ0

(τ ′) is acceptable for σ
} − 3ε (using (3))

= E
σ′∼Π′

E
τ ′∼Π′(σ′,〈σ′〉,freq(σ′))

1{
φA2

σ′
(τ ′) is acceptable for τ ′

} − 3ε (correctness depends only on freq. vec.)

= E
s∼µ

E
σ′∼Π′(s)

E
τ ′∼Π′(s,〈σ′〉,freq(σ′))

1{
φA2

s
(τ ′) is acceptable for τ ′

} − 3ε

≥ E
s∼µ

E
σ′∼Π′(s)

E
τ ′∼Π′(s,〈σ′〉)

1{
φA2

s
(τ ′) is acceptable for τ ′

} − 4ε (using (3))

= E
s∼µ

E
τ ′∼Π′(s)

1{
φA2

s
(τ ′) is acceptable for τ ′

} − 4ε

≥ 1− δ − 4ε.

Removing the conditioning on (A) causes a further loss of ε in the success probability, that is,

E
σ∼Π

E
randomness of B

1{φB(σ) is acceptable for σ} ≥ 1− δ − 5ε.

This completes the proof of (1).
Finally, by an averaging argument, there exists a deterministic automaton B achieving

success probability at least as high as that of the randomized B. The claim of space complexity
follows from the same argument as in [9]. J

Proof of Theorem 5.1 for general p. We only describe the major changes on the proof for
the special case p = 2. Here we choose W sufficiently large such that:
(A) With probability ≥ 1−Θ(ε) over σ′ ∼ Π′, the automaton Aqσ′ for all 2 ≤ q ≤ p arrives

at a state in a terminal equivalence class on input stream σ′.
(B) Over σ′ ∼ Π′, for any q-th pass automaton Aqσ′ (2 ≤ q ≤ p), the induced distribution on

terminating states of Aqσ′ is Θ(ε)-close to that on corresponding states of B2
σ′ on reading

σ′. This is the terminal class condition.
(C) (Conditioned on (A)) For any q-th pass automaton Aqs, and for any stream prefixes ρ1

and ρ2 of streams ending at the same state s of Aq−1 such that both ρ1 and ρ2 arrive in
the same equivalence class of Aqs, the induced distribution on the terminating states of
streams with prefix ρ1 and that on the terminating states of streams with prefix ρ2 are
Θ(ε)-close in total variation distance.

The random output is drawn from the stationary distribution on the associated equivalence
class for the first-pass automaton, and is, for all subsequent passes i ≥ 2, drawn from the
induced distribution on the states of Ais by the conditional distribution of the streams
terminating at s in the automaton of pass i− 1. A similar argument to that in the case of
p = 2 gives the result. J

After we have Theorem 5.1, similar to [9], we can use Yao’s minimax principle to conclude
the existence of a randomized p-pass automaton that succeeds with probability ≥ 1− δ − ε
on any input, and can further use Newman’s argument [11] to reduce the number of random
bits to O(logn+ log logm+ log 1

ε ).
Now we give the proof of Proposition 5.2.
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Proof of Proposition 5.2. Let π be the stationary distribution on C under the transition
probability induced by Unif(S0). Note that

Pr{σL+1 ◦ . . . ◦ σW = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s}

=
∑
t∈C

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s, s0 ⊕ σ1 ◦ . . . ◦ σL = t}·

Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}

=
∑
t∈C

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s} · Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}

=
∑
t∈C

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s} ·
(
π(t)± ε

|C|

)
,

where line 3 follows from the Markov property of the process, line 4 follows from the fact
that L can be chosen large enough so that s0 ⊕ σ1 ◦ . . . ◦ σL mixes on C. Furthermore, L
can be chosen independent of s0 because there are only finitely many distinct s0’s. Define
the probability distribution D as

Pr
σL+1◦...◦σW∼D

{σL+1 ◦ . . . ◦ σW = τ}

= E
t∼π

Pr
σL+1◦...◦σW∼Unif(SW−L0 )

{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s}.

It is easy to verify that D is indeed a probability distribution. It follows that

dTV (L(σL+1 ◦ . . . ◦ σW = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s),D)

≤ ε

|C|
∑
t∈C

∑
τ

Pr{σL+1 ◦ . . . ◦ σW = τ |t⊕ σL+1 ◦ . . . ◦ σW = s}

= ε

|C|
· |C| = ε.

For the second part, note that we have (similar to the above)

Pr{σL+1 ◦ . . . ◦ σR = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s}

=
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ τ = t′, s0 ⊕ σ1 ◦ . . . ◦ σL = t, t′ ⊕ σR+1 ◦ . . . ◦ σW = s}·

Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t, t′ ⊕ σR+1 ◦ . . . ◦ σW = s}

Now, t is the last state of a random walk from s0 and t′ is the last state of a random walk
from s. The latter random walk is the reverse of σR+1 ◦ . . . ◦ σW with all edges reversed in
C (denoted the edge-reversed component by C ′). It is clear that C ′ is strongly connected.
Let π′ be the stationary distribution on C ′ under the transition induced by Unif(Sr0), where
Sr0 denotes the reverse streams of S0. If L� 1 and R�W , both walks σ1 ◦ . . . ◦ σW and
σrW ◦ . . . ◦ σrR+1 will mix. By Markov property,

Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t, t′ ⊕ σR+1 ◦ . . . ◦ σW = s}
= Pr{t′ ⊕ σR+1 ◦ . . . ◦ σW = s|s0 ⊕ σ1 ◦ . . . ◦ σL = t} · Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}
= Pr{t′ ⊕ σR+1 ◦ . . . ◦ σW = s}Pr{s0 ⊕ σ1 ◦ . . . ◦ σL = t}

which can be made close to π(t)π′(t) with an additive error at most ε/|C|2 with choice of
L and R uniformly over s0 and s, as there are only finitely many distinct s0’s and s’s. It
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follows that∣∣∣∣Pr{σL+1 ◦ . . . ◦ σR = τ |s0 ⊕ σ1 ◦ . . . ◦ σW = s} − 1
|S0|R−L

∣∣∣∣
≤

∣∣∣∣∣∣
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′}π(t)π′(t′)− 1
|S0|R−L

∣∣∣∣∣∣
+ ε

|C|2
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′}

= ε

|C|2
∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′},

where we use the fact that∑
t,t′∈C

Pr{σL+1 ◦ . . . ◦ σR = τ |t⊕ σL+1 ◦ . . . ◦ σR = t′}π(t)π′(t′) = 1
|S0|R−L

.

To see this, imagine that σL+1 ◦ . . . ◦σR is a part of a two-sided infinitely long zero-frequency
sequence. Finally, similar to before,

dTV (L(σL+1 ◦ . . . ◦ σR|E),Unif(SR−L0 )) ≤ ε

|C|2
· |C|2 = ε. J

Acknowledgements. Yuqing Ai and Wei Hu were supported in part by the National Basic
Research Program of China Grant 2011CBA00300, 2011CBA00301, and the National Natural
Science Foundation of China Grant 61361136003. Yi Li was supported by ONR grant
N00014-15-1-2388 when he was at Harvard University, where his major participation in this
work took place. David Woodruff was supported in part by the XDATA program of the
Defence Advanced Research Projects Agency (DARPA), administered through Air Force
Research Laboratory contract FA8750-12-C-0323.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating

the Frequency Moments. JCSS, 58(1):137–147, 1999.
2 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings

in dynamic graph streams and the simultaneous communication model. In SODA, pages
1345–1364, 2016.

3 Christos Boutsidis, David P. Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In STOC, 2016.

4 Sumit Ganguly. Lower bounds on frequency estimation of data streams. In Proceedings of
the 3rd International Conference on Computer Science: theory and applications, CSR’08,
pages 204–215, 2008.

5 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006.

6 Piotr Indyk. Sketching, streaming and sublinear-space algorithms, 2007. Graduate course
notes available at http://stellar.mit.edu/S/course/6/fa07/6.895/.

7 Piotr Indyk, Eric Price, and David P. Woodruff. On the power of adaptivity in sparse
recovery. In FOCS, pages 285–294, 2011.

8 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of
sketching and streaming small norms. In SODA, pages 1161–1178, 2010.

http://stellar.mit.edu/S/course/6/fa07/6.895/


Y. Ai, W. Hu, Y. Li, and D. P. Woodruff 20:21

9 Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as
well be linear sketches. In STOC, pages 174–183, 2014.

10 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends
in Theoretical Computer Science, 1(2):117–236, 2005.

11 Ilan Newman. Private vs. common random bits in communication complexity. Information
Processing Letter, pages 67–71, 1991.

12 Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer
equalities and inequalities. In Proceedings of the American Mathematical Society, pages
155–158, 1978.

13 Omri Weinstein and David P. Woodruff. The simultaneous communication of disjointness
with applications to data streams. In ICALP, pages 1082–1093, 2015.

14 David P. Woodruff. Low rank approximation lower bounds in row-update streams. In
NIPS, pages 1781–1789, 2014.

15 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In
STOC, pages 209–213, 1979.

A The LNW Reduction

We show that the reduction from a general automaton to a path-reversible automaton,
presented in [9, Theorem 5], actually gives us a path-independent automaton.

The reduction works as follows. Let A be the original automaton, G′A be its zero-frequency
graph, and ⊕ be its transition function. The states of the new automaton B are defined to
be the terminal strongly connected components of G′A. (A strongly connected component
is terminal if there is no arc from it to the rest of the graph.) For each strongly connected
component v of G′A, let rep(v) be a (fixed) arbitrary vertex in v, and α(v) be a (fixed)
arbitrary terminal strongly connected component reachable from v. For each vertex u in G′A,
let com(u) be the strongly connected component it belongs to. Then the transition function
⊕′ of B is defined as

v ⊕′ ±ei = α(com(rep(v)⊕±ei)),

where v is a state of B, i.e., a terminal strongly connected component of G′A.
It is shown in [9, Lemma 6] that B is path-reversible:

I Lemma A.1 (Lemma 6 in [9]). For any state u of B and any i ∈ [n], we have u⊕′ei◦−ei = u.

We show a stronger result below, which implies B is path-independent.

I Lemma A.2. For any state u of B and any zero-frequency stream σ, we have u⊕′ σ = u.

Proof. Let σ = (σ1, . . . , σt) (σi ∈ Σ) and v = u⊕′σ. Then there exist zero-frequency streams
γ1, γ2, . . . , γt such that

rep(u)⊕ σ1 ◦ γ1 ◦ σ2 ◦ γ2 ◦ ... ◦ σt ◦ γt = rep(v).

Note that freq(σ1 ◦ γ1 ◦ σ2 ◦ γ2 ◦ ... ◦ σt ◦ γt) = freq(σ1 ◦ σ2 ◦ ... ◦ σt) = freq σ = ~0. Since
rep(u) belongs to a terminal strongly connected component u, rep(v) has to be in the same
terminal strongly connected component. Hence u = com(rep(u)) = com(rep(v)) = v. J
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B An Alternative Upper Bound on the Length of Shortest
Zero-Frequency Paths

I Lemma B.1. Let s = |V | be the number of vertices in the transition graph GA. Then
L ≤ eO((s+n) log s), where L is the maximum length of the shortest zero-frequency path between
any two vertices connected by at least one zero-frequency path.

Proof. Consider two vertices o1, o2 ∈ V such that there exists a zero-frequency path from
o1 to o2. We fix a tuple (p, C) satisfying the following condition: every vertex in c1, . . . , ct
can be reached from o1 via arcs in c1, . . . , ct and p. Here p is a simple path from o1 to o2
and C = {c1, c2, . . . , ct} is a set of simple cycles in GA. For every possible (p, C) satisfying
this condition, we build a linear system Ax = b and want a positive integer solution. Here
A =

(
fc1 fc2 . . . fct

)
is an n× t matrix and b = −fp ∈ Rn. The i-th row in the equations

guarantees the i-th component in the frequency of the path is 0. Each positive integer solution
x of the equations corresponds to a zero-frequency path from o1 to o2 using the simple path
p and simple cycles in C. The path p is passed through exactly once and each cycle ci is
passed through xi times.

By Lemma 3.1, if there exists a positive integer solution, then there exists such a solution
x so that ‖x‖∞ ≤ (t+ 1)2M1, where M1 is the largest possible absolute value of any sub-
determinant of

(
A b

)
. Since c1, . . . , ct and p are simple, they all have length at most s.

Thus, the sum of the absolute values of entries in any column of
(
A b

)
is bounded by s.

By the Gershgorin circle theorem, the eigenvalues of any submatrix of
(
A b

)
have absolute

value at most s. Therefore, M1 is at most sn. On the other hand, for the number of simple
cycles in a graph with s vertices, we have t = |C| ≤ sO(s). Therefore

‖x‖∞ ≤ (sO(s) + 1)2 · sn = sO(n+s).

Thus, the length of the corresponding path is bounded by

s‖x‖1 ≤ st‖x‖∞ ≤ s · sO(s) · sO(n+s) = sO(n+s).

Since there exists a zero-frequency path from o1 to o2, we can decompose it into the sum
of a simple path from o1 to o2 and a linear combination of simple cycles. This leads to the
existence of a positive integer solution for the equations Ax = b when we fix this path as
p and this set of cycles as C. Therefore, there exists a zero-frequency path from o1 to o2
whose length is at most sO(n+s). J
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