2,101 research outputs found

    Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

    Get PDF
    Subsequence matching has appeared to be an ideal approach for solving many problems related to the fields of data mining and similarity retrieval. It has been shown that almost any data class (audio, image, biometrics, signals) is or can be represented by some kind of time series or string of symbols, which can be seen as an input for various subsequence matching approaches. The variety of data types, specific tasks and their partial or full solutions is so wide that the choice, implementation and parametrization of a suitable solution for a given task might be complicated and time-consuming; a possibly fruitful combination of fragments from different research areas may not be obvious nor easy to realize. The leading authors of this field also mention the implementation bias that makes difficult a proper comparison of competing approaches. Therefore we present a new generic Subsequence Matching Framework (SMF) that tries to overcome the aforementioned problems by a uniform frame that simplifies and speeds up the design, development and evaluation of subsequence matching related systems. We identify several relatively separate subtasks solved differently over the literature and SMF enables to combine them in straightforward manner achieving new quality and efficiency. This framework can be used in many application domains and its components can be reused effectively. Its strictly modular architecture and openness enables also involvement of efficient solutions from different fields, for instance efficient metric-based indexes. This is an extended version of a paper published on DEXA 2012.Comment: This is an extended version of a paper published on DEXA 201

    Non-Gaussian Component Analysis using Entropy Methods

    Full text link
    Non-Gaussian component analysis (NGCA) is a problem in multidimensional data analysis which, since its formulation in 2006, has attracted considerable attention in statistics and machine learning. In this problem, we have a random variable XX in nn-dimensional Euclidean space. There is an unknown subspace Γ\Gamma of the nn-dimensional Euclidean space such that the orthogonal projection of XX onto Γ\Gamma is standard multidimensional Gaussian and the orthogonal projection of XX onto Γ\Gamma^{\perp}, the orthogonal complement of Γ\Gamma, is non-Gaussian, in the sense that all its one-dimensional marginals are different from the Gaussian in a certain metric defined in terms of moments. The NGCA problem is to approximate the non-Gaussian subspace Γ\Gamma^{\perp} given samples of XX. Vectors in Γ\Gamma^{\perp} correspond to `interesting' directions, whereas vectors in Γ\Gamma correspond to the directions where data is very noisy. The most interesting applications of the NGCA model is for the case when the magnitude of the noise is comparable to that of the true signal, a setting in which traditional noise reduction techniques such as PCA don't apply directly. NGCA is also related to dimension reduction and to other data analysis problems such as ICA. NGCA-like problems have been studied in statistics for a long time using techniques such as projection pursuit. We give an algorithm that takes polynomial time in the dimension nn and has an inverse polynomial dependence on the error parameter measuring the angle distance between the non-Gaussian subspace and the subspace output by the algorithm. Our algorithm is based on relative entropy as the contrast function and fits under the projection pursuit framework. The techniques we develop for analyzing our algorithm maybe of use for other related problems

    Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interaction

    Get PDF
    Chiral magnets are an emerging class of topological matter harbouring localized and topologically protected vortex-like magnetic textures called skyrmions, which are currently under intense scrutiny as a new entity for information storage and processing. Here, on the level of micromagnetics we rigorously show that chiral magnets cannot only host skyrmions but also antiskyrmions as least-energy configurations over all non-trivial homotopy classes. We derive practical criteria for their occurrence and coexistence with skyrmions that can be fulfilled by (110)-oriented interfaces in dependence on the electronic structure. Relating the electronic structure to an atomistic spin-lattice model by means of density-functional calculations and minimizing the energy on a mesoscopic scale applying spin-relaxation methods, we propose a double layer of Fe grown on a W(110) substrate as a practical example. We conjecture that ultrathin magnetic films grown on semiconductor or heavy metal substrates with C2vC_{2v} symmetry are prototype classes of materials hosting magnetic antiskyrmions.Comment: 20 pages (11 pages + 9 pages supplementary material

    A Lower Bound Technique for Communication in BSP

    Get PDF
    Communication is a major factor determining the performance of algorithms on current computing systems; it is therefore valuable to provide tight lower bounds on the communication complexity of computations. This paper presents a lower bound technique for the communication complexity in the bulk-synchronous parallel (BSP) model of a given class of DAG computations. The derived bound is expressed in terms of the switching potential of a DAG, that is, the number of permutations that the DAG can realize when viewed as a switching network. The proposed technique yields tight lower bounds for the fast Fourier transform (FFT), and for any sorting and permutation network. A stronger bound is also derived for the periodic balanced sorting network, by applying this technique to suitable subnetworks. Finally, we demonstrate that the switching potential captures communication requirements even in computational models different from BSP, such as the I/O model and the LPRAM

    SciQL, Bridging the Gap between Science and Relational DBMS

    Get PDF
    Scientific discoveries increasingly rely on the ability to efficiently grind massive amounts of experimental data using database technologies. To bridge the gap between the needs of the Data-Intensive Research fields and the current DBMS technologies, we propose SciQL (pronounced as ‘cycle’), the first SQL-based query language for scientific applications with both tables and arrays as first class citizens. It provides a seamless symbiosis of array-, set- and sequence- interpretations. A key innovation is the extension of value-based grouping of SQL:2003 with structural grouping, i.e., fixed-sized and unbounded groups based on explicit relationships between elements positions. This leads to a generalisation of window-based query processing with wide applicability in science domains. This paper describes the main language features of SciQL and illustrates it using time-series concepts
    corecore