
SciQL, Bridging the Gap between Science and Relational
DBMS

Ying Zhang Martin Kersten Milena Ivanova Niels Nes
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
Ying.Zhang, Martin.Kersten, Milena.Ivanova, Niels.Nes@cwi.nl

ABSTRACT

Scientific discoveries increasingly rely on the ability to efficiently
grind massive amounts of experimental data using database tech-
nologies. To bridge the gap between the needs of the Data-Intensive
Research fields and the current DBMS technologies, we propose
SciQL (pronounced as ‘cycle’), the first SQL-based query language
for scientific applications with both tables and arrays as first class
citizens. It provides a seamless symbiosis of array-, set- and sequence-
interpretations. A key innovation is the extension of value-based
grouping of SQL:2003 with structural grouping, i.e., fixed-sized
and unbounded groups based on explicit relationships between el-
ements positions. This leads to a generalisation of window-based
query processing with wide applicability in science domains. This
paper describes the main language features of SciQL and illustrates
it using time-series concepts.

Categories and Subject Descriptors

E.1 [Data Structures]: Arrays; H.2.3 [Languages]: Query lan-
guages; H.2.8 [Database Applications]: Scientific databases

General Terms

Language

Keywords

SciQL, array query language, array database, scientific databases,
time series

1. INTRODUCTION
The array computational paradigm is prevalent in most sciences

and it has drawn attention from the database research community
for many years. The object-oriented database systems of the ’90s
allowed any collection type to be used recursively [4] and multi-
dimensional database systems took it as the starting point for their
design [21]. The hooks provided in relational systems for user de-
fined functions and data types create a stepping stone towards inter-
action with array-based libraries, i.e. RasDaMan [6] is one of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS11 2011, September 21-23, Lisbon [Portugal]
Editors: Bernardino, Cruz, Desai
Copyright c©2011 ACM 978-1-4503-0627-0/11/09 ...$10.00.

few systems in this area that have matured beyond the laboratory
stage. Nevertheless, the array paradigm taken in isolation is insuf-
ficient to create a full-fledged scientific information system. Such
a system should blend measurements with static and derived meta-
data about the instruments and observations. It therefore calls for
a strong symbiosis of the relational paradigm and array paradigm.
The SciQL language presented in this paper fills this gap.

The mismatch between application needs and database technol-
ogy has a long history, e.g., [22, 8, 55, 20, 23, 21]. The main prob-
lems encountered with relational systems in science can be summed
up as i) the impedance mismatch between query language and ar-
ray manipulation, ii) the difficulty to write complex array-based
expressions in SQL, iii) ARRAYs are not first class citizens, and iv)

ingestion of terabytes of data is too slow. The traditional DBMS
simply carries too much overhead. Moreover, much of the science
processing involves use of standard libraries, e.g., LINPACK, and
statistics tools, e.g., R. Their interaction with a database is often
confined to a simplified data import/export facility. The proposed
standard for management of external data (SQL3/MED) [42] has
not materialised as a component in contemporary system offerings.

A query language is needed that achieves a true symbiosis of the
TABLE and ARRAY semantics in the context of existing external
software libraries. This led to the design of SciQL, where arrays
are made first class citizens by enhancing the SQL:2003 framework
along three innovative lines:

• Seamless integration of array-, set-, and sequence- seman-
tics.

• Named dimensions with constraints as a declarative means
for indexed access to array cells.

• Structural grouping to generalize the value-based grouping
towards selective access to groups of cells based on posi-
tional relationships for aggregation.

A TABLE and an ARRAY differ semantically in a straightforward
manner. A TABLE denotes a (multi-) set of tuples, while an AR-
RAY denotes a (sparsely) indexed collection of tuples called cells.
All cells covered by an array’s dimensions always exist conceptu-

ally and their non-dimensional attributes are initialised to a default
value, while in a TABLE tuples only come into existence after an
explicit insert operation. Arrays may appear wherever tables are
allowed in an SQL expression, producing an array if the column
list of a SELECT statement contains dimensional expressions. The
SQL iterator semantics associated with TABLEs carry over to AR-
RAYs, but iteration is confined to cells whose non-dimensional at-
tributes are not NULL.

An important operation is to carve out an array slab for further
processing. The windowing scheme in SQL:2003 is a step into this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301634514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0 1

n
u
ll

null
n
u
ll

null

0

1

2 3

2

3

x

y

(a) matrix

0.0 0.0 0.0 0.0

null null null null

0.0 0.0 0.0 0.0

null null null null

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(b) stripes

null null null 0.0

null null 0.0 null

null 0.0 null null

0.0 null null null

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(c) diagonal (d) sparse

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

Figure 1: SciQL fixed arrays with different forms

-3.0 -2.0 -1.0 0.0

-2.0 -1.0 0.0 5.0

-1.0 0.0 3.0 4.0

0.0 1.0 2.0 3.0

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(a) matrix

3.0 4.0 5.0 6.0

null null null null

1.0 2.0 3.0 4.0

null null null null

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(b) stripes

null null null 10.0

null null 10.0 null

null 10.0 null null

10.0 null null null

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(c) diagonal (d) sparse

6.0 7.0 4.0 0.0

0.0 1.0 4.0 1.0

2.0 6.0 0.0 5.0

9.0 0.0 3.0 8.0

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

Figure 2: Results of updating the four fixed arrays by the first

four queries in Section 2.2.

direction. It was primarily introduced to better handle time series in
business data warehouses and data mining. In SciQL, we take it a
step further by providing an easy to use language feature to identify
groups of cells based on their positional relationships. Each group
forms a pattern, called a tile, which can be subsequently used to
derive all possible incarnations for, e.g., statistical aggregation.

One way to evaluate SciQL is to confront the language design
with a functional benchmark. Unfortunately, the area of array- and
time series databases is still too immature to expect a (commer-
cially) endorsed and crystallised benchmark. Instead, we exercise
the SciQL design using well-chosen use cases in various scientific
domains. In our previous paper [33], we have shown the expres-
siveness of SciQL in Landsat and astronomy image processing. In
this paper, we use SciQL on a different class of array problems,
namely time series. Time series play a significant role in many sci-
ence areas, such as statistics, econometrics, mathematical finance,
(digital) signal processing and all kinds of sensor data.

This paper is further organised as follows. Section 2 introduces
SciQL through a series of examples. Section 3 demonstrates query
functionality. Section 4 evaluates the language with a functional
benchmark using seismological time series data. Section 5 dis-
cusses related work. Section 6 concludes the paper with a summary
and an outlook on the open issues.

2. LANGUAGE MODEL
In this section we summarize the features offered in SciQL con-

cerning ARRAY definition, instantiation and modification, as well
as coercions between TABLE and ARRAY.

2.1 Array Definitions
We purposely stay as close as possible to the syntax and seman-

tics of SQL:2003. An ARRAY object definition reuses the syn-
tax of TABLE with a few minor additions. An array has one-or-
more dimensional attributes (for short: dimensions) and zero-or-
more non-dimensional attributes. A dimension is a measurement
of the size of the array in a particular named direction, e.g., “x”,
“y”, “z” or “time”. A dimensional attribute is denoted by the key-
word DIMENSION with optional constraints describing the dimen-

sion range. The data type of a dimension can be any of the basic
scalar data types, including TIMESTAMP, FLOAT and VARCHAR.
The non-dimensional attributes of an array can be of any data types
a normal table column can be and they may use a DEFAULT clause
to initialize their values. The default value may be arbitrarily taken
from a scalar expression, a cell’s dimensional value(s) (i.e., the
cell’s coordinates on the array dimensions) or a side-effect free
function. Omission of the default or assignment of a NULL-value
produces a ‘hole’, which is ignored by the built-in aggregation
functions.

Arrays are either fixed or unbounded. An array is fixed iff all
its dimensions are fixed, otherwise it is unbounded. The range and
size of a fixed dimension are exactly specified using the sequence
pattern [<start>:<step>:<stop>], which is composed out
of expressions each producing one scalar value. The interval be-
tween start and stop has an open end-point, i.e., stop is not
included. For integer dimensions, the traditional syntax using an
integer upper bound [<size>] is allowed as a shortcut of the
sequence pattern [0:1:<size>]. Figure 1 shows four fixed ar-
rays with different forms. In addition to the most common C-style
rectangular arrays (Fig.1-a), stripes (Fig.1-b) can be defined as one
where the default value of some rows is indistinguishable from out
of bound access, i.e., those cells are explicitly excluded by carry-
ing NULL values in their non-dimensional attributes. A diagonal
array (Fig.1-c) is easily formulated using a predicate over the di-
mensions involved. It is even possible to carve out an array based
on its content (Fig.1-d), thereby effectively nullifying all cells out-
side the domain of validity and producing a sparse array. This fea-
ture is of particular interest to remove outliers using an integrity
constraint. Evidently, different array forms can lead to very dif-
ferent considerations with respect to their physical representation,
a topic discussed in a companion paper. The following statements
show how the four arrays in Figure 1 are created in SciQL:

CREATE ARRAY matrix (

x INT DIMENSION[4],

y INT DIMENSION[4],

v FLOAT DEFAULT 0.0

);

CREATE ARRAY stripes (

x INT DIMENSION[4],

y INT DIMENSION[4] CHECK(MOD(y,2) = 1),

v FLOAT DEFAULT 0.0

);

CREATE ARRAY diagonal (

x INT DIMENSION[4],

y INT DIMENSION[4] CHECK(x = y),

v FLOAT DEFAULT 0.0

);

CREATE ARRAY sparse (

x INT DIMENSION[4],

y INT DIMENSION[4],

v FLOAT DEFAULT 0.0 CHECK(v BETWEEN 0 AND 10)

);

A dimension is unbounded if any of its start, step, or stop
expressions is identified by the pseudo expression *. A DIMEN-
SION clause without a sequence pattern implies the most open pat-
tern [*:*:*]. Cells in an unbounded array can be modified us-
ing the INSERT and DELETE statements carried over from the table
semantics. An unbounded array has an implicitly defined actual

size derived from the minimal bounding rectangle that encloses
all cells with an explicitly inserted non-NULL value in the array.
When walking through an array instance, cells outside the minimal
bounding rectangle are ignored. However, direct access to any cells
within the array’s dimension bounds is guaranteed to produce the
default value. The effect is that listing an array with unbounded
dimensions still produces a finite result, but it may be huge. An un-
bounded dimension is typically used for an n-dimensional spatial
array where only part of the dimension range designates a non-
empty array cell. Time series are also prototypical examples of
arrays with unbounded dimensions.

2.2 Array Modifications
The SQL update semantics is extended towards arrays in a straight-

forward manner. The array cells are initialised upon creation with

the default values. A cell is given a new value through an ordinary
SQL UPDATE statement. A dimension can be used as a bound vari-
able, which takes on all its dimension values (i.e., valid values of
this dimension) successively. A convenient shortcut is to combine
multiple updates into a single guarded statement. The evaluation
order ensures that the first predicate that holds dictates the cell val-
ues. The refinement of the array matrix is shown in the first query
below. The cells receive a zero only in the case x = y. The remain-
ing queries demonstrate setting cell values in the arrays stripes,
diagonal and sparse, respectively. The results are shown in Fig-
ure 2.

UPDATE matrix SET v =

CASE WHEN x > y THEN x + y WHEN x < y THEN x - y ELSE 0 END;

UPDATE stripes SET v = x + y;

UPDATE diagonal SET v = v + 10;

UPDATE sparse SET v = MOD(RAND(),16);

Assignment of a NULL value to an array cell leads to a ‘hole’
in the array, a place indistinguishable from the out of bounds area.
Such assignments overrule any predefined DEFAULT clause attached
to the array definition. For convenience, the built-in array aggregate
operations SUM(), COUNT(), AVG(), MIN() and MAX() are applied
to non-NULL values only.

-3.0 -2.0 0.0 0.0

-2.0 -1.0 5.0 0.0

-1.0 0.0 4.0 0.0

0.0 1.0 3.0 0.0

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

Figure 3: Result of shift-

ing and zero filling the

last column of matrix.

Arrays can also be updated us-
ing INSERT and DELETE state-
ments. Since all cells seman-
tically exists by definition, both
operations effectively turn into
update statements. The DELETE

statement creates holes by assign-
ing a NULL value for all qualified
cells. The INSERT statement sim-
ply overwrites the cells at posi-
tions as specified by the input columns with new values. Note
that although the UPDATE, INSERT and DELETE statements do not
change the existence of array cells, for unbounded arrays they may
result in scaling the minimal bounding rectangle up/down. The
three queries below together illustrate how to delete a column in
the array matrix where x = 2, then shift the remaining columns,
and (manually) set the last column of matrix to its default value.
In the second and third queries, the x and y dimensions of the array
matrix are matched against the projection columns of the SELECT

statements. Cells at matching positions are assigned new values
(see Figure 3).

DELETE FROM matrix WHERE x = 2;

INSERT INTO matrix SELECT x-1, y, v FROM matrix WHERE x > 2;

INSERT INTO matrix SELECT x, y, 0 FROM matrix WHERE x = 3;

2.3 Array and Table Coercions
One of the strong features of SciQL is to switch easily between

a TABLE and an ARRAY perspective. Any array is turned into a
corresponding table by simply selecting its attributes. The dimen-
sions then form a compound primary key. For example, the matrix
defined earlier becomes a table using the expression SELECT x,

y, v FROM matrix or using a CAST operation like CAST(matrix
AS TABLE). Note, that the semantics of an array leads to materi-
alisation of all cells within the dimension bounds (or the minimal
bounding rectangle for unbounded arrays), even if their values were

set to a non-NULL default. A selection excluding the user specified
default values may solve this problem.

An arbitrary table can be coerced into an array if the column
list of the SELECT statement contains the dimension qualifiers ‘[’
and ‘]’ around a projection column, i.e., [<expr>]. Here, the
<expr> is a <column name> or a value expression. For in-
stance, let mtable be the table produced by casting the array matrix
to a table. It can be turned into an array by picking the columns
forming the primary key in the column list as follows: SELECT

[x], [y], v FROM mtable, or using the reverse cast operation
CAST(mtable AS ARRAY(x,y)). The result is an unbounded ar-
ray with actual size derived from the dimension column expressions
[x] and [y]. The default values of all non-dimensional attributes
are inherited from the default values in the original table.

3. QUERY MODEL
From a query’s perspective, querying a TABLE and an ARRAY

are much alike. In both cases elements are selected based on pred-
icates, joins, and groupings. The result of any query expression is
a table unless the column list contains the dimension qualifiers (‘[’
and ‘]’). A novel way to use GROUP BY, called tiling, is introduced
to improve structure based querying.

3.1 Cell Selections

SELECT x, y, v FROM matrix WHERE v >2;

SELECT [x], [y], v FROM matrix WHERE v >2;

SELECT [T.k], [y], v FROM matrix JOIN T ON matrix.x = T.i;

The examples above illustrate a few simple array queries. The
first query extracts values from the array matrix into a table. The
second one constructs a sparse array from the selection, whose di-
mensional properties are inherited from the result set. The dimen-
sion qualifiers introduce a new dimension range, i.e., a minimal
bounding box is derived from the result set, such that the answers
fall within its bounds. The last query shows how elements of inter-
est can be obtained from both arrays and tables using an ordinary
join expression. It assumes a table T with two (or more) columns,
where the column i is of a numeric type and the column kmay be of
any scalar type. The expression extracts the subarray from matrix

and sets the bounds to the smallest enclosing bounding box defined
by the values of the columns T.k and y. The actual bounds of an
array can always be obtained from the built-in functions MIN() and
MAX() over the dimensions.

3.2 Array Slicing
An ARRAY object can be considered an array of records in pro-

gramming language terms. Therefore, the language supports po-
sitional index access conforming to the order the dimensions are
introduced in the array definition. All attributes (dimensional and
non-dimensional) of interest should be explicitly identified. A range
pattern, borrowed from the programming language arena, supports
easy slicing over individual dimensions using the aforementioned
sequence pattern [<start>:<step>:<stop>]. The range pat-
tern is allowed in both the FROM and GROUP BY clauses. To illus-
trate this, we show a few slicing expressions over the arrays defined
earlier (results are computed based on Fig. 2-a).

SELECT * FROM matrix[3][2];

-- yields: (3, 2, 5.0)

SELECT v FROM matrix[*][1:3];

-- yields: (-1.0), (-2.0), (0.0), (-1.0), (3.0), (0.0),(4.0),(5.0)

SELECT v FROM matrix[0:2:4][0:2:4];

-- yields: (0.0), (-2.0), (2.0), (0.0)

The SQL UPDATE statement is extended to take array expres-
sions directly. This leads to a more convenient and compact nota-
tion in many situations. The bounds of the subarray are specified by
a sequence pattern of literals. Again, a sequence of updates act as
a guarded function. The array dimensions are used as bound vari-
ables that run over all valid dimension values. This is illustrated
using the queries below:

UPDATE matrix SET matrix[0:2][*].v = v * 1.19;

UPDATE matrix SET matrix[x][*].v =

CASE WHEN v < 0 THEN x WHEN v >10 THEN 10 * x ELSE 0 END;

3.3 Array Views
A common case is to embed an array into a larger one, such that

a zero initialised bounding border is created, or to shift a vector be-
fore moving averages are calculated. To avoid possible significant
data movements, the array VIEW constructor can be used instead.
The first two queries below illustrate an embedding, i.e., to trans-
pose and shift an array, respectively. In the SELECT clause, the x
and y columns are used to identify the cells in the vmatrix to be
updated. The last example illustrates how the aforementioned ex-
ample of shift with zero fill of a column (see Section 2.2, second
query group) can be modelled as a view. Note that the results of
all SELECT statements in the examples below are tables, thus in the
third query, the ordinary SQL UNION semantics applies.

CREATE VIEW ARRAY vmatrix (

x INT DIMENSION[-1:1:5],

y INT DIMENSION[-1:1:5],

w FLOAT DEFAULT 0.0

) AS

SELECT y, x, v FROM matrix;

CREATE VIEW ARRAY vector (

x INT DIMENSION[-1:1:5],

w FLOAT DEFAULT 0.0

) AS

SELECT A.x, (A.v+B.v)/2

FROM matrix AS A JOIN (SELECT x+1 AS x, v FROM matrix) AS B

ON A.x = B.x;

CREATE VIEW ARRAY vmatrix2 (

x INT DIMENSION[-1:1:5],

y INT DIMENSION[-1:1:5],

w FLOAT DEFAULT 0.0

) AS

SELECT x, y, v FROM matrix WHERE x < 2 UNION

SELECT x-1, y, v FROM matrix WHERE x > 2 UNION

SELECT x, y, 0.0 FROM matrix WHERE x = 3;

3.4 Aggregate Tiling
A key operation in science applications is to perform statistics

on groups. They are commonly identified by an attribute or ex-
pression list in a GROUP BY clause. This value-based grouping can
be extended to structural grouping for ARRAYs in a natural way.
Large arrays are often broken into smaller pieces before being ag-
gregated or overlaid with a structure to calculate, e.g., a Gaussian
kernel function. SciQL supports fine-grained control over break-
ing an array into possibly overlapping tiles using a slight variation
of the SQL GROUP BY clause semantics. Therefore, the attribute
list is replaced by a parametrised series of array elements, called
tiles. Tiling starts with an anchor point identified by its dimensional
value(s), which is extended with a list of cell denotations relative

(a)

0.6 0.7 0.4 0.2

0.3 0.1 0.4 0.1

0.2 0.6 0.7 0.5

0.9 0.2 0.3 0.8

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

Anchor point

(b)

0.6 0.7 0.4 0.2

0.3 0.1 0.4 0.1

0.2 0.6 0.7 0.5

0.9 0.2 0.3 0.8

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

Anchor point

(c)

0.6 0.7 0.4 0.2

0.3 0.1 0.4 0.1

0.2 0.6 0.7 0.5

0.9 0.2 0.3 0.8

0 1

null

n
u
ll

null

0

1

2 3

2

3

x

y

 Anchor point n
u
ll

(d)

0.6 0.7 0.4 0.2

0.3 0.1 0.4 0.1

0.2 0.6 0.7 0.5

0.9 0.2 0.3 0.8

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y Anchor point

Figure 4: SciQL Array Tiling

(a)

0.650 0.550 0.300 0.200

0.425 0.400 0.275 0.150

0.300 0.450 0.425 0.300

0.475 0.450 0.575 0.650

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(b)

null null null null

0.425 null 0.275 null

null null null null

0.475 null 0.575 null

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(c)

0.450 0.425 0.400 0.275

0.250 0.300 0.450 0.425

0.550 0.475 0.450 0.575

0.900 0.550 0.250 0.550

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

(d)

null 0.425 null

null null null

0.360 null null

0 1

n
u
ll

null

n
u
ll

null

0

1

2 3

2

3

x

y

Figure 5: Results of computing AVG() over the tiles.

to the anchor point. The value derived from a group aggregation is
associated with the dimensional value(s) of the anchor point.

Consider a 4× 4 matrix and tiling it with a 2× 2 matrix by ex-
tending the anchor point matrix[x][y] with structure elements
matrix[x+1][y], matrix[x][y+1], and matrix[x+1][y+1]. The
tiling operation performs a grouping for every valid anchor point
on the actual array dimensions. Figure 4-a shows the first four tiles
created. The individual elements of a group need not belong to the
domain of the array dimensions, but then their values are assumed
to be the outer NULL value, which are ignored in the statistical ag-
gregate operations. This way we break the matrix array into 16
overlapping tiles. The number can be reduced by explicitly calling
for DISTINCT tiles. This leads to considering each cell for one tile
only, leaving a hole behind for the next candidate tile. Furthermore,
in this case all tiles with holes do not participate in the result set.
This means that for irregularly formed tiles there is no guarantee
that all array cells are taking part in the grouping. The dimension
range sequence pattern can be used to concisely define all values
of interest. The following queries create the tiles on matrix as de-
picted in Figure 4 (in the order from left to right). The query results
are shown in Figure 5.

SELECT [x], [y], AVG(v)

FROM matrix

GROUP BY matrix[x:x+2][y:y+2];

SELECT [x], [y], AVG(v)

FROM matrix

GROUP BY DISTINCT matrix[x:x+2][y:y+2];

SELECT [x], [y], AVG(v)

FROM matrix

GROUP BY matrix[x-1:x+1][y-1:y+1];

SELECT [x], [y], AVG(v)

FROM matrix[1:*][1:*]

GROUP BY DISTINCT matrix[x][y], matrix[x-1][y], matrix[x+1][y],

matrix[x][y-1], matrix[x][y+1];

A recurring operation is to derive check sums over array slabs.
In SciQL this can be achieved with a simple tiling on, e.g., the x
dimension. In this case, the anchor point is the value of x. For
example:

SELECT [x], SUM(v) FROM matrix GROUP BY matrix[x][*];

A discrete convolution operation is only slightly more complex.
For, consider each element to be replaced by the average of its
neighboring elements. The extended matrix vmatrix is used to
calculate the convolution, because it ensures a zero value for all
boundary elements. The aggregates outside the bounds [0:4][0:4]
are not calculated by using an array slicing in the FROM clause.

SELECT [x], [y], AVG(v)

FROM vmatrix[0:4][0:4]

GROUP BY vmatrix[x-1:1:x+2][y-1:1:y+2];

Value based selection and structure based selection can be com-
bined. An example is the nearest neighbor search, where the struc-
ture dictates the context over which a metric function is evaluated.
Most systems dealing with feature vectors deploy a default metric,
e.g., the Euclidean distance. The example below assumes such a
distance function that takes an argument ?V as the reference vector.
It generates a listing of all columns with the distance from the refer-
ence vector. Ranking the result produces the K-nearest neighbors.

SELECT x, distance(matrix, ?V) AS dist

FROM matrix

GROUP BY matrix[x][*] ORDER BY dist LIMIT 10;

Using the dimension values in the grouping clause permits complex
structures to be defined. It generalises the SQL:2003 windowing
functions, which are limited to aggregations over sliding windows
with static bounds and shift count over a sequence. The SciQL ap-
proach can be generalised to support the equivalent of mask-based
tile selections. For this we simply need a table with dimension val-
ues, which are used within the GROUP BY clause as a pattern to
search for.

4. TIME SERIES DATA PROCESSING
After introducing the main features of SciQL, we continue with

illustrating its expressiveness as a time series language. Generally
speaking, a time series is a sequence of data points with each point
attached a time stamp. A time series can be regular or irregular.
The data points in a regular time series are measured at successive
times spaced at uniform time intervals. In the sciences, sensor data
(e.g., temperature, ground motion and strain gauges) is often a reg-
ular time series, as it comes in as a continuous stream at a fixed
rate. An irregular time series contains data points at successive
times spaced at arbitrary time intervals. Sensor data with gaps is
an irregular time series, in which the gaps typically indicate mal-
functioning sensors. In the time series domain there does not exist
a standardised functional test of expressiveness. Since the primary
target of SciQL is the scientific domains, we take the data from
seismology (an important scientific domain with a huge amount of
time series data) as a yardstick. In this section, we first discuss how
time series are supported by SciQL. Then we demonstrate how the
typical operations of seismic signal processing can be easily and
concisely phrased in SciQL.

4.1 Time Series

4.1.1 Fixed Time Series

If experiments are conducted at regular intervals, it is helpful to
represent them as arrays indexed by the time stamps with a fixed
stride. The SciQL language constructs allow for easy subsequent
manipulations, such as interpolation and computing moving aver-
ages, without the need to resort to self-joins. The following query
shows how SciQL is turned into a time series supporting language
by simply choosing a temporal domain for at least one dimension:

CREATE ARRAY ts1 (

time TIMESTAMP DIMENSION[TIMESTAMP ‘2011-01-01 09:00:00’ :

INTERVAL ‘1’ MINUTE :

TIMESTAMP ‘2011-01-01 10:00:00’],

data FLOAT DEFAULT 0.0

);

The data type of the time dimension is a TIMESTAMP and its in-
crement is a temporal interval unit, e.g., a minute. This example
creates a fixed time series array. The two statements in the follow-
ing example are semantically identical, namely, they all populate
the array with five values starting from the first cell with a step size
of 2, overwriting the default values of these cells. Note, that they
explicitly identify the cells whose values should be overwritten.

INSERT INTO ts1 VALUES

(‘2011-01-01 09:00’, 0.7793), (‘2011-01-01 09:02’, 0.9076),

(‘2011-01-01 09:04’, 0.2267), (‘2011-01-01 09:06’, 0.2094),

(‘2011-01-01 09:08’, 0.1295);

UPDATE ts1 SET ts1[‘2011-01-01 09:00’: INTERVAL ‘2’ MINUTE :

‘2011-01-01 09:10’].data =

(0.7793), (0.9076), (0.2267), (0.2094), (0.1295);

Insertions with explicit time values may contradict the definition
of the time dimension. If the value is before start or after stop,
the insertion is ignored. If the value is inside of the [start,
stop) interval, but does not match any of the values defined by
the temporal unit step, we apply gridding. That is, the data value
will be inserted into a cell which dimensional values are the clos-
est to the original timestamp. In the following query, the value of
47.00008 seconds will be rounded to 1 minute, so that the value
0.9216 is inserted into the cell with dimensional value of ‘2011-01-
01 09:01’:

INSERT INTO ts1 VALUES (‘2011-01-01 09:00:47.00008’, 0.9216);

4.1.2 Unbounded Time Series

In many cases not all constraints of a time dimension are known
in advance. For instance, a time series of the waveforms produced
by a seismic sensor may only have a start time stamp but no stop
time stamp, because once the measurement has started, it continues
as long as possible. Moreover, sensor data often contains time gaps
even if the sample rate is known beforehand, so it might not be
desirable to enforce a step size in such time series, which can cause
losing information about the gaps. This is where time series with
unbounded (time) dimensions come in handy. The examples below
show several variants of the ts1 defined above with some or all of
the constraints start, step or stop omitted. The arrays ts3,
ts4, and ts5 do not carry a step size, which means that any event
time stamp up to a microsecond difference would be acceptable
(microsecond is the smallest unit for a time stamp in SQL:2003).
The dimensions here merely enforce an event order.

CREATE ARRAY ts2 (

time TIMESTAMP DIMENSION[TIMESTAMP ‘2011-01-01 09:00:00’ :

INTERVAL ‘1’ MINUTE : *],

data FLOAT DEFAULT 0.0

);

CREATE ARRAY ts3 (

time TIMESTAMP DIMENSION[TIMESTAMP ‘2011-01-01 09:00:00’ : * :

TIMESTAMP ‘2011-01-01 10:00:00’],

data FLOAT DEFAULT 0.0

);

CREATE ARRAY ts4 (

time TIMESTAMP DIMENSION[TIMESTAMP ‘2011-01-01 10:00:00’: * : *],

data FLOAT DEFAULT 0.0

);

CREATE ARRAY ts5 (

time TIMESTAMP DIMENSION,

data FLOAT DEFAULT 0.0

);

Compared with fixed time series, inserting values into an un-
bounded time series without explicitly specifying the cell indices
has several semantic differences. Basically, the values can be in-
serted at any positions satisfying the partial constraints of the time
dimension in the array definition, as long as the relative order among
the values is preserved. However, this operation can be made more
deterministic by using the available constraints. Unbounded time
series can be divided into the following classes, based on the ab-
sent dimension constraint(s): i) one end of the dimension range
(i.e., start or stop); ii) both ends of the dimension range; iii)

the step size; iv) one end of the dimension range and the step size;
and v) all constraints. The first class is easy to handle. Consider the
query:

INSERT INTO ts2 VALUES

(0.7793), (0.9076), (0.2267), (0.2094), (0.1295);

Since the array ts2 has a start and step for its time dimen-
sion, the values are inserted into the first five cells of the array (if
the start was omitted, the last five cells are chosen), i.e., at the
timestamps ‘2011-01-01 09:00’, ‘2011-01-01 09:01’, . . . , ‘2011-
01-01 09:04’, overwriting any existing values at these positions. If
both ends of the dimension ranges are omitted (class ii)), we take
the current time now(), rounded to the granularity of the step size,
as the starting position for insertions. When the step size is omitted
(class iii)), we use the smallest unit of the dimension data type as
the default step size. In case of timestamp, it is the microsecond.
Thus, the query:

INSERT INTO ts3 VALUES

(0.7793), (0.9076), (0.2267), (0.2094), (0.1295);

produces the time series ((‘2011-01-01 09:00:00.000000’, 0.7793),
. . . , (‘2011-01-01 09:00:00.000004’, 0.1295)). To handle the un-
bounded time series of the classes iv) and v), we combine the rules
used for the first three classes. For instance, to handle the query:

INSERT INTO ts5 VALUES

(0.7793), (0.9076), (0.2267), (0.2094), (0.1295);

we take the value of now() as the start position and microsecond as
the step size.

4.1.3 Interpolation

Applications often assume values at regular time intervals, while
the available measurement time series may have gaps of missing
values or values taken at irregular time intervals. In such cases in-
terpolation can be used to provide approximate values at regular
time steps. Consider the irregular time series ts4 set by the follow-
ing query:

INSERT INTO ts4 VALUES

(‘2011-01-01 09:00’, 0.28), (‘2011-01-01 09:02’, 0.36),

(‘2011-01-01 09:05’, 0.52);

The interpolation can be formulated in SciQL as follows. First,
we create a fixed time series with the desired regular step, for in-
stance 1 minute:

CREATE ARRAY heartbeat (

time TIMESTAMP DIMENSION[TIMESTAMP ‘2011-01-01 09:00’ :

INTERVAL ‘1’ MINUTE :

TIMESTAMP ‘2011-01-01 10:00’],

data FLOAT DEFAULT NULL

);

The next step is to compute and insert the interpolated values at the
regular time steps. To make the discussion concrete, we will use
linear interpolation to compute the approximate data values:

INSERT INTO heartbeat

SELECT hb.time,

irr.data + (hb.time - irr.time) *

(irr[NEXT(irr, irr.time)].data - irr.data) /

(NEXT(irr, irr.time) - irr.time)

FROM heartbeat AS hb, ts4 AS irr

WHERE hb.time >= irr.time AND hb.time <= NEXT(irr, irr.time);

The above query matches the time value in the regular time se-
ries with the nearest preceding and following values in the time di-
mension of the irregular time series. The built-in function NEXT()
takes an array name and a value for each of its dimension, only
one in this example, and returns the nearest following value in the
major dimension of the array. The time series heartbeat contains
the non-NULL values: ((‘2011-01-01 09:00’, 0.28), (‘2011-01-01
09:01’, 0.32), (‘2011-01-01 09:02’, 0.36), (‘2011-01-01 09:03’,
0.413), (‘2011-01-01 09:04’, 0.466), (‘2011-01-01 09:05’, 0.52)).
Note, that the data values will remain NULL outside of the time
interval covered by the irregular time series.

4.2 Seismic Use Cases
In seismology, SEED (Standard for the Exchange of Earthquake

Data) [48] is the most widelyÂăused international standard file for-
mat for the exchange of waveform data among global broadband
seismograph networks. The SEED standard defines a format for
digital data measured at one point in space and at equal intervals
of time. A SEED volume consists of a number of ASCII con-

trol headers followed by a number of binary data records, i.e., the
waveform time series. The control headers contain, among others,
all the configuration and identification information for the station
and all its instruments, and meta information of the data records
stored in this SEED volume. Each data record contains both a raw
waveform data stream produced by one station and auxiliary in-
formation of this data stream, e.g., start time and sample rate. In
SciQL, all waveform data streams from multiple stations can be
stored in one two-dimensional array, as shown below. For simplic-
ity, we assume each station produces one waveform data stream.
In reality, a seismic station contains three channels (to measure the
ground movement in three different directions) with each channel
producing one waveform data stream. Separating data streams from
different channels merely adds one more integer dimension in the
array MSeed.

CREATE ARRAY MSeed (

station VARCHAR(5) DIMENSION[‘0’ : * : ‘ZZZZZ’],

time TIMESTAMP DIMENSION,

data FLOAT

);

Since each seismic station has an unique identifier consisting of
up to five characters (upper case letters and the digits 0 – 9), the
station IDs is denoted using an unbounded dimension of the type
VARCHAR, which uses the lexical order. Finally, an unbounded time
dimension is defined for the waveform data. The time dimension
does not carry any constraints, because each waveform data stream
can have a different start/stop time and sample rate, a station can
change its sampling rate over time, and the waveform data can have
arbitrary time gaps.

The meta data in the SEED volume is stored in normal tables, of
which an excerpt is shown below. The station dimension in the
MSeed array also acts as foreign keys pointing to the tables where
the meta data is stored (not all attributes are shown):

each cell of CrCorr, the query takes the intersecting slices of F and
G (in the GROUP BY clause) to compute the products and sum. The
built-in functions MIN() and MAX() return the smaller/larger value
of its two parameters, which are used to prevent array slicing from
going out of the dimension bounds.

DECLARE fmin INT, fmax INT, fcnt INT, gmin INT, gcnt INT, n INT;

SET fmin = SELECT MIN(pos) FROM F;

SET fmax = SELECT MAX(pos) FROM F;

SET fcnt = SELECT COUNT(*) FROM F;

SET gmin = SELECT MIN(pos) FROM G;

SET gcnt = SELECT COUNT(*) FROM G;

SET n = -fmax;

CREATE ARRAY CrCorr (

idx INT DIMENSION[n:1:gcnt],

val FLOAT DEFAULT 0.0

);

INSERT INTO CrCorr

SELECT C.idx, SUM(F.val * G.val)

FROM F, G, CrCorr AS C

GROUP BY F[MAX(fmin, -C.idx) : MIN(fcnt, gcnt-C.idx)],

G[MAX(gmin, C.idx) : MIN(gcnt, fcnt+C.idx)];

Computing the convolution of two sequences f ∗ g is another
important operation in seismology. It is used in, e.g., design and
implementation of Finite Impulse Response filters in DSP. Convo-
lution differs from cross-correlation only in one step, namely, the
sequence f is first reversed before it is slided. Sequence reversing
in SciQL is captured by a slicing with negative step size, stored as
an array view Fr. The following query computes the convolution
of F and G and stores the results in Conv (variables are borrowed
from the cross-correlation example).

CREATE VIEW ARRAY Fr (

pos INT DIMENSION[fmin:1:fmax],

val FLOAT

) AS

SELECT val FROM F[fmax:-1:fmin];

CREATE ARRAY Conv (

idx INT DIMENSION[n:1:gcnt],

val FLOAT DEFAULT 0.0

);

INSERT INTO Conv

SELECT C.idx, SUM(Fr.val * G.val)

FROM Fr, G, Conv AS C

GROUP BY Fr[MAX(fmin, -C.idx) : MIN(fcnt, gcnt-C.idx)],

G[MAX(gmin, C.idx) : MIN(gcnt, fcnt+C.idx)];

The discrete Fourier transform (DFT) is a mathematical oper-
ation that transforms a discrete sequence in the time domain into
its frequency domain representation. Since the output (sequence)
of a DFT always contains complex numbers, a data type not sup-
ported by SQL:2003, we discuss here how the real DFT can be
written in SciQL. The real DFT is a version of the discrete Fourier
transform that uses real numbers to represent both the input and
output signals. Given a sequence of N real numbers x[i], where
i = 0, · · · ,N − 1, the real DFT transforms it into two sequences
of N/2 real numbers ReX [k] and ImX [k], where k = 0, · · · ,N/2.
ReX [k] and ImX [k] are computed as the following:

ReX [k] =
N−1

∑
i=0

x[i]cos(2πki/N) ImX [k] =−
N−1

∑
i=0

x[i]sin(2πki/N)

That is, the real DFT decomposes signals x[i] in time domain into
a sine wave ImX [k] and a cosine wave ReX [k] in frequency domain.
This formula can be directly expressed in SciQL. Consider the ar-
ray F defined above, the query below computes its real DFT trans-
formation into the cosine wave ReX [k]. The results are stored in the
new array DFTRe, which has an integer dimension with values of k

representing the frequencies.

DECLARE N INT;

SET N = SELECT COUNT(*) FROM F;

CREATE ARRAY DFTRe (

k INT DIMENSION[0:1:N/2+1],

val FLOAT DEFAULT 0.0

);

INSERT INTO DFTRe

SELECT k, SUM(F.val * COS(2*PI()*k*pos/N))

FROM DFTRe AS D, F

GROUP BY D[k], F[*];

In this section, we discussed ways to represent time series with
different properties and showed how routine DSP operations on
time series can be formulated in SciQL. Although the operations
addressed are not exhaustive, they are sufficient to show the power
of SciQL in array oriented data processing. The structural grouping
feature provides large flexibility to carve out a slab of an array for
further processing. Note that we only concentrate on querying time
series at the language level. Efficient processing of the queries dis-
cussed is part of ongoing implementation work. For instance, Fast
Fourier Transform algorithms [9] should be considered to speed up
the DFT computation.

5. RELATED WORK
The need for convenient data management systems to efficiently

store, query and manipulate scientific data has been generally rec-
ognized. Much research has been done on identifying the specific
requirements of scientific data management and the missing fea-
tures that keep the scientists from using DBMS. Already in the
80’s, Shoshani et al. [52] identified common characteristics among
the different scientific disciplines. The subsequent paper [53] sum-
marizes the research issues of statistical and scientific databases,
including physical organisation and access methods, operators and
logical organization. Application considerations led Egenhofer [17]
to conclude that SQL, even with various spatial extensions, is inap-
propriate for the geographical information systems (GIS). Similar
observations were made by e.g., Davidson in [14] on biological
data. Maier et al. [39] injected “a call to order” into the database
community, in which the authors stated that the key problem for
the relational DBMSs to support scientific applications is the lack
of support for ordered data structures, like multidimensional arrays
and time series. The call has been well accepted by the commu-
nity, considering the various proposals on DBMS support (e.g., [6,
8, 56, 12, 21, 34, 50]), SQL language extensions (e.g., [5, 35, 45])
and algebraic frameworks (e.g., [12, 56, 37, 41]) for ordered data.

The precursors of SQL:1999 proposals for array support focused
on the ordering aspect of their dimensions only. Examples are the
sequence languages SEQUIN [50] and SRQL [45]. SEQUIN uses
the abstract data type functionality of the underlying engine to re-
alize the sequence type. SRQL is a successor of SEQUIN which
treated tables as ordered sequences. SRQL extends the SQL FROM

clauses with GROUP BY and SEQUENCE BY to group by and sort
the input relations. Both systems did not consider the shape bound-
aries in their semantics and optimisation schemes. AQuery [35]
inherits the sequence semantics from SEQUIN and SRQL. How-
ever, while SEQUIN and SRQL kept the tuple semantics of SQL,
AQuery switched to a fully decomposed storage model.

Query optimisation over array structures led to a series of at-
tempts to develop a multidimensional array-algebra, e.g., AML [41],
AQL [37] and RAM [56]. Such an algebra should be simple to rea-
son about and provide good handles for efficient implementations.
AML focuses on decomposing an array into slabs, applying func-
tions to their elements, and finally merging slabs to form a new

array. AQL is an algebraic language with low-level array manip-
ulation primitives. Four array-related primitives (two for creation,
one for subscripting and one for determining shapes) plus auxil-
iary features, e.g., conditionals and arithmetic operations, allow
application-specific array operations to be defined within AQL. The
user specifies an algebraic tree with embedded UDF calls. Neither
AML nor AQL provides a declarative mechanism to define the or-
der the queries manipulate data. Comparing with array algebras,
SciQL has a much more intuitive approach where the user focuses
on the final structure.

RAM [56] is a proposal for flexible representation of information
retrieval models in a single multidimensional array framework. It
introduces an array algebra language on top of MonetDB [7] and
is used as the “gluing layer” for DB+IR applications. RAM de-
fines a set of basic array algebra operators, including MAP, APPLY,
AGGREGATE, CONCAT, etc. Queries in RAM are compiled by the
front-end into an execution plan to be executed by the MonetDB
kernel. RAM does not support a declarative language such as SQL.
SRAM [12] is a following up of RAM that pays special attention to
efficient storing and querying of sparse arrays in relational DBMS.

Despite the abundance of research effort, few systems can han-
dle sizable arrays efficiently. A good example is RasDaMan [6],
which is a domain-independent array DBMS for multidimensional
arrays of arbitrary size and structure. It has completely been de-
signed in an object-oriented manner. It follows the classical two-
tier client/server architecture with query processing done completely
within the server. Arrays are decomposed into chunks, which form
the unit of storage and access. The chunks are stored as BLOBS,
so (theoretically) it can be ported to any DBMS supporting BLOBs.
The RasDaMan server acts as a middleware, mapping the array se-
mantics to a simple “set of BLOB” semantics. RasDaMan provides
an SQL-92 based query language RasQL [5] to manipulate raster
images using foreign function implementations. It defines a com-
pact set of operators, e.g., MARRAY creates an array and fills it by
evaluating a given expression at each cell; CONDENSE aggregates
cell values into one scalar value; SORT slices an array along one of
its axes and reorders the slices. RasQL queries are executed by the
RasDaMan server, after the necessary BLOBs have been retrieved
from the underlying DBMS.

The approaches taken by RAM and RasDaMan have a com-
mon drawback: arrays are black boxes to the underlying DBMS.
This means that RAM and RasDaMan cannot fully benefit from
the query execution facilities provided by the underlying DBMS.
Contrary, the underlying DBMS is not aware of the specific array
properties, missing opportunities for query optimization.

A recent attempt to develop an array database system from scratch
is undertaken by the SciDB group [55]. Its mission is the closest to
SciQL, namely, building an array DBMS with tailored features to
fit exactly the need of the science community. The work of SciDB
has focused on an efficient distributed architecture for array query
processing ([13], [8]), in which arrays are vertically partitioned and
divided into overlapping chunks (or slabs). At the language level,
SciDB (version 0.75) supports both a declarative Array Query Lan-
guage (AQL) and an Array Functional Language (AFL) [46](note
that SciDB’s AQL is unrelated with the earlier work on the alge-
braic language AQL [37]). AQL supports a subset of SQL features
with extensions allowing creating arrays with named dimensions.
Only integer typed dimensions are supported and the users should
specify how the array should be divided into chunks when creating
an array. Most array manipulation features are defined in the AFL
by means of functional operators, e.g., SLICE, SUBSAMPLE, SJOIN,
FILTER and APPLY. Compared with AQL and AFL, SciQL takes
language design a step further by proposing a seamless integration

with SQL:2003 syntax and semantics.
Various database researchers have embarked on scientific ap-

plications that call for an array query language. PostgreSQL al-
lows columns of a table to be defined as variable-length multidi-
mensional array. Arrays of built-in type, enum type, composite
type and user-defined base type can all be created. Basic arith-
metic operators on arrays and simple slicing, i.e., integer indexes
always increased by 1, are supported. Unfortunately, PostgreSQL
has followed the SQL standard to use anonymous dimensions, a
limitation that has been disputed by the science community [47].
AQuery [35] integrates table and array semantics into one kind of
ordered entities arrables, a.k.o column store where the index is
kept. An arrable’s ordering can be defined at creation time using
an ORDERED BY clause, which can be also altered per query, using
an ASSUMING ORDER clause. Array access is supported with a few
functions, e.g., first(<N>, <col>) and last(<N>,<col>).

Much research work has been done on time series data process-
ing in the areas such as financial statistics [40, 18], (multimedia)
image processing [30] and data mining [2, 30, 29]. Existing re-
search work has been focused on algorithms for, e.g., similarity
searching (using distance algorithms) [10, 25, 57, 11, 16, 1], pat-
tern detection or matching [44, 19, 59, 28, 24], classification [58,
3, 36, 26], indexing [51, 31, 57] and compressing [18, 27, 32]. Our
work at the language level is orthogonal to the existing techniques
for, e.g., similarity searching, pattern matching and classification,
while we might benefit from existing work on indexing and com-
pressing when implementing SciQL. Nevertheless, many issues are
still left open. Very little work has been done on using DBMSs for
time series data processing, because it has been generally realised
that scientific operations are difficult to be expressed in SQL and
inefficient to evaluate [15, 49]. Existing techniques have in general
only shown their usefulness for small time series [38]. [51] might
be the only work that tries to tackle time series towards terabytes
(up to 750GB). Thus, it is unknown how well the existing tech-
niques will perform when dealing with terabytes and larger scale
of time series.

6. SUMMARY AND FUTURE WORK
In this paper we have introduced SciQL, a query language for

scientific applications and its use in querying time series. SciQL
has been designed to lower the entry fee for scientific applications
to use a database system. The language stands on the shoulders
of many earlier attempts. SciQL preserves the SQL:2003 flavor
using a minimal enhancements to the language syntax and seman-
tics. Convenient syntax shortcuts are provided to express array ex-
pressions using a conventional programming style. We illustrated
the needs for array-based query capabilities in the seismic wave-
form data processing. The concise description in SciQL brings
relational and array processing symbiosis one step closer to real-
ity. Future work includes development of a formal semantics for
the array extensions, development of an adaptive storage scheme
and exploration of the performance on functionally complete sci-
ence applications. A prototype implementation of SciQL within
the MonetDB [43] framework is being under development.

Acknowledgements

The work reported here is partly funded by the EU-FP7-ICT projects
PlanetData (http://www.planet-data.eu/) and TELEIOS (http:
//www.earthobservatory.eu/).

7. REFERENCES

[1] R. Agrawal et al. Fast similarity search in the presence of noise,
scaling, and translation in time-series databases. In VLDB ’95, pages
490–501, San Francisco, CA, USA, 1995.

[2] C. M. Antunes and A. L. Oliveira. Temporal data mining: an
overview. In Proceedings of the EPIA 2001 Workshop on Artificial

Intelligence for Financial Time Series Analysis, 2001.
[3] A. J. Bagnall and G. J. Janacek. Clustering time series from arma

models with clipped data. In SIGKDD, pages 49–58, 2004.
[4] F. Bancilhon et al., editors. Building an Object-Oriented Database

System, The Story of O2. Morgan Kaufmann, 1992.
[5] P. Baumann. A database array algebra for spatio-temporal data and

beyond. In NGITS’2003, pages 76–93, 1999.
[6] P. Baumann et al. The multidimensional database system

RasDaMan. SIGMOD Rec., 27(2):575–577, 1998.
[7] P. Boncz. Monet: A Next-Generation DBMS Kernel For

Query-Intensive Applications. PhD thesis, UVA, Amsterdam, The
Netherlands, May 2002.

[8] P. G. Brown. Overview of SciDB: large scale array storage,
processing and analysis. In SIGMOD, pages 963–968, New York,
NY, USA, 2010. ACM.

[9] C. Burrus, editor. Fast Fourier Transforms. Connexions, April 2009.
http://cnx.org/content/col10550/1.21/.

[10] J. P. Caraça-Valente and I. López-Chavarrías. Discovering similar
patterns in time series. In SIGKDD, KDD ’00, pages 497–505, 2000.

[11] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD, pages 491–502, 2005.

[12] R. Cornacchia et al. Flexible and efficient IR using Array Databases.
VLDB Journal, special issue on IR&DB integration, 17(1):151–168,
January 2008.

[13] P. Cudre-Mauroux et al. A demonstration of SciDB: a
science-oriented DBMS. PVLDB, 2(2):1534–1537, 2009.

[14] S. B. Davidson. Tale of two cultures: Are there database research
issues in bioinformatics? In SSDBM’02, page 3, Washington, DC,
USA, 2002.

[15] Dennis Shasha. Time series in finance: the array database approach.
http://cs.nyu.edu/shasha/papers/jagtalk.html.

[16] H. Ding et al. Querying and mining of time series data: experimental
comparison of representations and distance measures. Proc. VLDB

Endow., 1:1542–1552, August 2008.
[17] M. J. Egenhofer. Why not SQL! International Journal of

Geographical Information Systems, 6(2):71–85, 1992.
[18] M. Falk et al. A First Course on Time Series Analysis. Chair of

Statistics, University of Würzburg, 2006.
[19] X. Ge and P. Smyth. Deformable markov model templates for

time-series pattern matching. In SIGKDD, pages 81–90, 2000.
[20] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, D. J.

DeWitt, and G. Heber. Scientific data management in the coming
decade. SIGMOD Record, 34(4):34–41, 2005.

[21] M. Gyssens and L. V. S. Lakshmanan. A foundation for
multi-dimensional databases. In VLDB, pages 106–115, 1997.

[22] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm:

Data-Intensive Scientific Discoveries. Microsoft Research, 2009.
http://research.microsoft.com/en-us/collaboration/fourthparadigm/.

[23] B. Howe and D. Maier. Algebraic manipulation of scientific datasets.
VLDB J., 14(4):397–416, 2005.

[24] D. Jiang et al. Interactive exploration of coherent patterns in
time-series gene expression data. In SIGKDD, pages 565–570, 2003.

[25] X. Jin, Y. Lu, and C. Shi. Similarity measure based on partial
information of time series. In SIGKDD, pages 544–549, 2002.

[26] V. Kavitha and M. Punithavalli. Clustering time series data stream -
a literature survey. CoRR, abs/1005.4270, 2010.

[27] E. Keogh et al. Dimensionality reduction for fast similarity search in
large time series databases. Journal of Knowledge and Information

Systems, 3(3):263–286, 2001.
[28] E. Keogh et al. Finding surprising patterns in a time series database

in linear time and space. In SIGKDD, pages 550–556, 2002.
[29] E. Keogh and S. Kasetty. On the need for time series data mining

benchmarks: a survey and empirical demonstration. In SIGKDD,
pages 102–111, New York, NY, USA, 2002. ACM.

[30] E. J. Keogh. A decade of progress in indexing and mining large time
series databases. In VLDB, page 1268, 2006.

[31] E. J. Keogh and M. J. Pazzani. An indexing scheme for fast
similarity search in large time series databases. In SSDBM, pages
56–, Washington, DC, USA, 1999. IEEE Computer Society.

[32] E. J. Keogh and M. J. Pazzani. A simple dimensionality reduction
technique for fast similarity search in large time series databases. In
PADKK ’00, pages 122–133, London, UK, 2000. Springer-Verlag.

[33] M. Kersten, Y. Zhang, M. Ivanova, and N. Nes. Sciql, a query
language for science applications. In Proceedings of the EDBT/ICDT

2011 Workshop on Array Databases, AD ’11, pages 1–12, 2011.
[34] P. J. Killion et al. The longhorn array database (lad): An

open-source, miame compliant implementation of the stanford
microarray database (smd). BMC Bioinformatics, 4:32, 2003.

[35] A. Lerner and D. Shasha. Aquery: query language for ordered data,
optimization techniques, and experiments. In vldb’2003, pages
345–356. VLDB Endowment, 2003.

[36] T. W. Liao. Clustering of time series data - a survey. Pattern

Recognition, 38:1857–1874, 2005.
[37] L. Libkin, R. Machlin, and L. Wong. A query language for

multidimensional arrays: design, implementation, and optimization
techniques. SIGMOD Rec., 25(2):228–239, 1996.

[38] J. Lin et al. Visually mining and monitoring massive time series. In
SIGKDD, pages 460–469. ACM, 2004.

[39] D. Maier and B. Vance. A call to order. In PODS, pages 1–16, New
York, NY, USA, 1993. ACM.

[40] S. Makridakis. A survey of time series. International Statistical

Review, 44:29–70, April 1976.
[41] A. P. Marathe and K. Salem. Query processing techniques for arrays.

VLDB J., 11(1):68–91, 2002.
[42] J. Melton, J. E. Michels, V. Josifovski, K. Kulkarni, and P. Schwarz.

SQL/MED: a status report. SIGMOD Rec., 31:81–89, September
2002.

[43] MonetDB. http://monetdb.cwi.nl/.
[44] A. Mueen and E. Keogh. Online discovery and maintenance of time

series motifs. In SIGKDD, pages 1089–1098, 2010.
[45] R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K. S. Beyer, and

M. Krishnaprasad. Srql: Sorted relational query language. In
SSDBM, pages 84–95, 1998.

[46] SciDB Documentation. http://trac.scidb.org/wiki/LatestRelease.
[47] SciDB Use Cases. http://www.scidb.org/use/.
[48] SEED. Standard for the exchange of earthquake data, May 2010.

http://www.iris.edu/manuals/SEEDManual_V2.4.pdf.
[49] P. Seshadri et al. Sequence query processing. In SIGMOD, pages

430–441, New York, NY, USA, 1994. ACM.
[50] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and

implementation of a sequence database system. In VLDB, pages
99–110. Morgan Kaufmann, 1996.

[51] J. Shieh and E. Keogh. iSAX: indexing and mining terabyte sized
time series. In SIGKDD, pages 623–631, 2008.

[52] A. Shoshani, F. Olken, and H. K. T. Wong. Characteristics of
scientific databases. In VLDB’84, pages 147–160, 1984.

[53] A. Shoshani and H. K. T. Wong. Statistical and scientific database
issues. IEEE Trans. Softw. Eng., 11(10):1040–1047, 1985.

[54] S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal

Processing. California Technical Publishing, 1997.
[55] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier,

O. Ratzesberger, and S. B. Zdonik. Requirements for science data
bases and SciDB. In CIDR. www.crdrdb.org, 2009.

[56] A. R. van Ballegooij et al. Distribution Rules for Array Database
Queries. In Proceedings of the International Workshop on Database

and Expert Systems Application, pages 55–64, Copenhagen,
Denmark, August 2005.

[57] M. Vlachos et al. Indexing multidimensional time-series. The VLDB

Journal, 15:1–20, January 2006.
[58] L. Wei and E. Keogh. Semi-supervised time series classification. In

SIGKDD, pages 748–753, 2006.
[59] J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic

patterns in time series data. In SIGKDD, pages 275–279, 2000.

