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Abstract

Communication is a major factor determining the performance of algorithms on current
computing systems; it is therefore valuable to provide tight lower bounds on the commu-
nication complexity of computations. This paper presents a lower bound technique for the
communication complexity in the bulk-synchronous parallel (BSP) model of a given class
of DAG computations. The derived bound is expressed in terms of the switching potential
of a DAG, that is, the number of permutations that the DAG can realize when viewed as
a switching network. The proposed technique yields tight lower bounds for the fast Fourier
transform (FFT), and for any sorting and permutation network. A stronger bound is also
derived for the periodic balanced sorting network, by applying this technique to suitable
subnetworks. Finally, we demonstrate that the switching potential captures communication
requirements even in computational models different from BSP, such as the I/O model and
the LPRAM.

1 Introduction

A substantial fraction of the time and energy cost of a parallel algorithm is due to the exchange
of information between processing and storage elements. As in all endeavors where performance
is pursued, it is important to be able to evaluate the distance from optimality of a proposed so-
lution. In this spirit, we consider lower bounds on the amount of communication that is required
to solve some computational problems on a distributed-memory parallel system. We model the
machine using the standard bulk-synchronous parallel (BSP) model of computation [49], which
consists of a collection of p processors, each equipped with an unbounded private memory and
communicating with each other through a communication network.

We focus on a metric, called BSP communication complexity and denoted H, defined as the
sum, over all the supersteps of a BSP algorithm, of the maximum number of messages sent or
received by any processor (a quantity usually referred to as the degree of a superstep). This
metric captures a relevant component of the cost of BSP computations. We propose the switch-
ing potential technique to derive lower bounds on the BSP communication complexity, which
is applicable under a number of assumptions. (a) The computation can be modeled in terms
of a directed acyclic graph (DAG), whose nodes represent operations (of both input/output
and functional type) and whose arcs represent data dependencies. The resulting lower bound
holds for all BSP evaluations of the given DAG, which vary depending on the superstep and the
processor chosen for the evaluation of an operation, and the way (routing path and schedule of
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the message along such a path) in which a value is sent from the processor that computes it to
a processor that utilizes it. (b) The internal nodes of the DAG are restricted to have the same
number of incoming and outgoing arcs, so that they can be thought of as switches that can
establish any one-to-one relation between the incoming arcs and the outgoing arcs. The switch-
ing potential is the number of permutations that can be established, by means of arc-disjoint
paths, between the arcs incident on the input nodes and those incident on the output nodes.
(c) During the BSP computation, each node of the DAG is evaluated exactly once (no recom-
putation). (d) The number of input/output nodes that are mapped to the same BSP processor
satisfies a suitable upper bound, essentially ensuring that the computation is distributed over
at least two processors.

We illustrate the versatility of the switching potential technique in several ways. We apply it
to derive tight lower bounds on the BSP communication complexity of the fast Fourier transform
(FFT), and of sorting and permutation networks. We also show how, for some DAGs, the lower
bound on communication can be boosted by composing the results provided by the technique
for suitable parts of the DAG. Finally, we demonstrate that the switching potential of a DAG
captures communication requirements which can lead to lower bounds even in models different
from BSP.

1.1 A Perspective on Previous Work

The impact of communication on performance has been extensively investigated. Even a concise
review of all the relevant work would go far beyond the scope of this paper. Here, we will simply
attempt to place our work in the broader context and then review more closely the results more
directly comparable to ours.

A first division can be drawn between studies that consider the communication require-
ments inherent to computational problems and studies that consider the communication re-
quirements of specific algorithms. Examples of results that apply to computational problems
are the crossing-sequence lower bounds on time for Turing machines [30], Grigoriev’s flow lower
bounds on space-time tradeoffs [43], and information-flow lower bounds on the area-time trade-
off in VLSI [53, 46, 16]. One ingredient of some of the lower bounds in our paper is based on
the information flow of the cyclic shift problem, originally studied in [51].

Our switching potential approach targets lower bounds for classes of implementations of
specific algorithms, typically modeled by computation DAGs, where nodes represent input and
functional operations, and arcs represent data dependencies. A significant distinction lies in
whether the rules defining the class of implementations allow for recomputation, that is, for the
ability to evaluate a given functional node of the DAG multiple times. A number of efforts have
focused on data movement between levels of the memory hierarchy, e.g., [31, 2, 43, 13, 42] (with
recomputation) and [17, 42, 5, 6] (without recomputation). Other papers have investigated
data movement between processing elements in distributed computing, e.g., [40, 1, 39] (with
recomputation), and [28, 17, 33, 5, 6, 45] (without recomputation). Re-execution of operations
is of interest because it is known that, in some models of computation, it can be exploited in
order to asymptotically improve performance. For example, recomputation is known to have the
potential to reduce the space requirements of computations in the context of classical pebbling
games (see, e.g., [44]), to enhance the performance of simulations among networks (see [36] and
references therein), to enable area-universal VLSI computations [10] with constant slowdown,
and to reduce the number of write operations between levels of the memory hierarchy [19].
However, as in most of the present paper, recomputation is often ruled out, as a simplifying
assumption that still affords the development of insights on the problem, when the general case
proves hard to tackle.
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The metrics capturing communication requirements are typically quite sensitive to the un-
derlying model of computation; even within the same model, several metrics can be meaningful.
In this paper, we will focus on models where the computation is carried out by a set of proces-
sors with local storage, interconnected by a communication medium. Examples of such models
are bounded degree networks [38], BSP [49], LogP [24]. A pioneering paper in this area [40]
introduced two important metrics and analyzed them for the diamond DAG: the total number c
of messages exchanged among the processors, called communication, and the maximum number
d of messages exchanged as part of the evaluation of some path of the DAG, called communica-
tion delay. Both metrics can be trivially minimized to zero by assigning the entire DAG to just
one processor. However, interesting tradeoffs arise between the two metrics and the number of
steps t of a parallel schedule. For example, for the diamond DAG with n inputs, c = Ω(n3/t)
and d = Ω(n2/t), allowing for recomputation.

Another interesting metric is the maximum number Ĥrc of messages received by any proces-
sor. Clearly, Ĥrc ≥ c/p, since each message is received by some processor. Next, we outline a
lower bound technique for Ĥrc, based on the graph-theoretic notion of dominator. If W and U
are sets of nodes of a given DAG, W is called a dominator of U if every path from an input node
to a node of U includes a node of W . Let D(k) be the maximum size of a set U of nodes that
has a dominator W of size k. In a seminal paper [31], formulating a framework for the study
I/O complexity in hierarchical memories, the number Q(S) of data transfers between a “cache”
of size S and “main memory” is shown to satisfy the lower bound Q(S) ≥ ⌊νS/D(2S)⌋, where
ν is the number of (input and functional) nodes. The dominator technique can be adapted to
establish that, if the DAG is evaluated by p processors, each of which initially stores at most q
inputs, then at least one processor receives Ĥrc ≥ D−1(ν/p)− q messages. The argument goes
as follows: (a) a processor P can receive, as part of the input or from other processors, the value
of at most (q + Ĥrc) nodes of the DAG; (b) these nodes must dominate all the nodes whose
value is computed by P ; (c) by definition of D, at most D(q + Ĥrc) DAG nodes are dominated
by any given set of (q + Ĥrc) nodes; (d) at least one processor must compute no fewer than
ν/p of the ν nodes in the DAG. Combining these premises one obtains that D(q + Ĥrc) ≥ ν/p,
whence the stated bound on Ĥrc. Variants of the outlined argument have been used, for matrix
multiplication, in [1, 33, 45]. Dominator-based lower bounds do allow for recomputation.

By definition, the BSP communication complexity H satisfies H ≥ Ĥrc. In particular, H
can be larger than Ĥrc, if different processors receive messages in different supersteps. This
difference can play a role, as in the case of the BSP computation of an n-input radix-two
FFT DAG [23], with ν = n log(2n) nodes,1 a case which has motivated our work. An FFT
implementation on BSP is known [49] for which

H = O(Ĥrc) = O

(

n log n

p log(n/p)

)

, (1)

for 1 ≤ p ≤ n/2, with each processor initially holding n/p (consecutive) inputs. Valiant’s
analysis is based on the well known property that, if s divides n (a power of 2), then the
n-input FFT DAG can be viewed as a sequence of ⌈log n/ log s⌉ stages, each (i) consisting of
n/s disjoint s-input FFTs (possibly incomplete in the last stage) and (ii) being connected to
the next one by a permutation. Letting s = n/p and assigning the p (n/p)-input FFTs within
a stage to different processors, the resulting BSP algorithms executes K = ⌈log n/ log(n/p)⌉
supersteps, each of degree O(n/p), yielding bound (1). Making use of the result [31] that in the
FFT DAG k nodes dominate at most D(k) ≤ 2k log k nodes,2 the dominator technique yields

1In this paper log x denotes the logarithm to the base two.
2In the Appendix we show that this bound can by improved to D(k) ≤ k log 2k.
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the lower bound

H ≥ Ĥrc = Ω

(

n log n

p log((n/p) log n)

)

, (2)

assuming that at most q = β(n log n)/(p log((n/p) log n)) inputs are initially available to any
processor, for a suitably small constant β. We observe that the lower bound (2) does not match
the upper bound (1), for either H or Ĥrc, when p = n/2o(log logn).

An alternate dominator-based lower bound can be obtained when the local memory of each
processor has at most m locations [4]. During an interval in which it receives m messages, a pro-
cessor can evaluate the at most D(2m) nodes dominated by the (at most) m nodes whose value
is received together with the (at most) m nodes whose value is locally stored at the beginning of
the interval. Then, if ν nodes are evaluated by p processors, Ĥrc = Ω(m⌊ν/(pD(2m))⌋). For the
FFT, ν = n log(2n) and D(2m) ≤ 2m log(4m), hence Ĥrc = Ω(m⌊(n log n)/(p2m log(4m))⌋). If
we let m∗ denote the value of m for which the argument of the floor equals 1, we can see that,
for m ≤ m∗, Ĥrc = Ω((n log n)/(p logm)). In particular, for m = Θ(n/p), the lower bound
matches the upper bound (1). For m > m∗, the bound vanishes. At first, it may be puzzling
that, for large enough m, the memory based bound does not reproduce bound (2); the reason is
that, unlike the latter, the former bound does not depend upon the assumption that, initially,
only a limited amount of input is available to each processor.

A model with some similarities to BSP is the LPRAM of Aggarwal et al. [1], where p
processors with unbounded local storage are synchronized by a global clock and communicate
via a shared memory, rather than directly through a network. The communication metric is the
number of steps (cycles) Tc in which at least one processor reads from or writes to the shared
memory. A straightforward adaptation of a well-known decomposition strategy for the FFT
achieves for Tc an upper bound of the same form as (1). A lower bound of the same form is also
established. In addition to being developed for a different model, the argument follows a route
different than ours: a lower bound of the same form is first established for sorting (assuming
no input element is ever kept by two processors at the same time), then claimed (by analogy)
for permutation networks, and finally adapted to the FFT network, by exploiting the property
established in [52] that the cascade of three FFT networks has the topology of a full permutation
network.

Finally, we mention that, motivated by the investigation of area-time trade-offs in VLSI, a
number of lower bounds have been established on the information flow of the (multidimensional)
discrete Fourier transform (DFT) computed either exactly, on finite rings, or approximately, on
the complex field (see, e.g., [12] and references therein). These results apply to any algorithm,
rather than just to the radix-two specialization of the FFT considered in the present paper and
related work. When adapted to computing the DFT on BSP, with information measured in
words capable of encoding a ring element, the known Ω(n) word lower bound on the information
flow through the bisection of the system does imply that H ≥ Ĥrc = Ω(n/p), assuming that no
processor inputs (or outputs) more than n/2 values. This bound is of the same order as the
dominator-based bound (2) when log((n/p) log n) = Ω(log n) and is weaker otherwise, but it
does hold under less stringent constraints on the I/O protocol.

In summary, with respect to the outlined state of the art, our objective is to develop lower
bound techniques for the communication complexity in BSP,H, capable to close the gap between
the dominator lower bound (2) and the best known upper bound (1) for the FFT, as well as to
weaken the assumptions on the input protocol under which the lower bound is established.
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1.2 Overview of Results

The main contribution of this paper is the switching potential technique, to obtain communica-
tion lower bounds for DAG computations in the BSP model. The proposed technique applies
to DAGs, named switching DAGs, with n input nodes where all nodes, except for inputs and
outputs, have out-degree equal to the in-degree. Such a graph G = (V,E) can be viewed as a
switching network [44] for which a switching size N and a switching potential γ are defined.
The switching size N is the sum of the out-degrees of the input nodes or, equivalently, the sum
of the in-degree of the output nodes. The switching potential γ is the number of different ways
in which N tokens initially placed on the N outgoing arcs of the input nodes can be brought on
the N incoming arcs of the output nodes, by moving them along arc-disjoint paths. Intuitively,
the switching potential is a measure of the permuting ability of the graph. Its impact on the
BSP communication complexity is quantified in the following theorem.

Theorem 1. Let A be any algorithm that evaluates without recomputation a switching DAG
G = (V,E) on a BSP with p processors. Let N , γ, and ∆ be respectively the switching size, the
switching potential, and the maximum out-degree of any node of G. If the sum of the in-degree
of the output nodes evaluated by every processor is at most U , then the BSP communication
complexity of algorithm A satisfies

HA ≥







log(γ/(U !)N/U )
∆p log(N/p) if p ≤ N/e,

e log(γ/(U !)N/U )
∆N log e otherwise.

(3)

where, by definition, γ ≤ N ! and N/p ≤ U ≤ N .

For the proof, we introduce the envelope game, where a set of envelopes, initially positioned
on the input nodes, are moved to the output nodes according to some given rules. The evaluation
of a DAG in the BSP model is viewed as a run of this game; a lower bound is derived for any
BSP algorithm playing the game.

At the heart of the switching potential technique lies a counting argument in combination
with an indistinguishability argument, somewhat similar to the approach used by Aggarwal
and Vitter [2] to study the I/O complexity of computations, and later applied to study the
complexity of communications in the LPRAM [1]. Our technique has the advantage that it
can be directly applied to any specific (switching) DAG, while the former approaches require
that a suitable combination of copies of the DAG under consideration yield a full permutation
network.

Even when γ is large, bound (3) may become weak due to high values of U . Intuitively,
when U is high, many permutations can be realized by redistributing the data within the
processors, without much interprocessor communication. On the other hand, if the different
permutations realizable by a given DAG map somewhat uniformly the inputs to the outputs,
then the communication complexity can be considerable, even for rather small values of γ. This
phenomenon has been investigated in [51] for classes of permutations that form a transitive
group. A special case is the class of the cyclic shifts, which are permutations where all input
values are shifted by a given amount (we refer to Section 5 for a formal definition). We establish
the following result:

Theorem 2. Let G = (V,E) be a DAG with n input nodes and n output nodes, capable of
realizing all the n cyclic shifts, with respect to some fixed correspondence between inputs and
outputs. Let A be an algorithm that evaluates G (possibly, with recomputation) on a BSP with
p ≥ 2 processors, such that initially each input is available to exactly one processor. Then,
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if some processor initially stores (exactly) q inputs, or some processor evaluates (exactly) q
outputs, the BSP communication complexity of algorithm A satisfies

HA ≥ min{q, n− q}
2

.

Some DAGs of interest happen to both exhibit a high switching potential γ and realize all
cyclic shifts. For such DAGs, a combination of Theorems 1 and 2 yields communication lower
bounds under very mild assumptions on the input/output protocol. An example is the n-input
FFT, for which γ = 2n(log n−1) and the lower bound takes the form, when p ≤ 2n/e,

HFFT >
n log(n/2)

8p log(2n/p)
, (4)

as long as no processor evaluates more than n/2 output nodes, and there is no recomputation.
Lower bound (4) is the first lower bound on the BSP communication complexity of the FFT
that asymptotically matches upper bound (1) for any number of processors p ≤ 2n/e. The
technique based on the capability of realizing all cyclic shifts also enables the extension of the
dominator-based lower bound (2) to milder assumptions on the input/output protocol. The
dominator-based bound is not asymptotically tight for p = n/2o(log logn), but it remains of
interest when recomputation is allowed.

We illustrate the versatility of the switching potential technique by applying it to com-
putations different from the FFT. Sorting and permutation networks naturally exhibit a high
switching potential. The corresponding BSP communication complexity lower bound is asymp-
totically similar to bound (4), and to the best of our knowledge is the first known result for
these computations. An asymptotically equivalent lower bound was previously derived for BSP
sorting in [28], but only for algorithms with supersteps of degree Θ(n/p) and input evenly dis-
tributed among the processors. We also show how the switching potential analysis can some
time yield higher lower bounds if separately applied to suitable parts of the DAG; in particular,
we prove for the BSP communication complexity of the periodic balanced sorting network [26]
a bound higher than the one derived for all sorting networks.

The switching potential technique can be used, with some minor changes, to derive lower
bounds in other computational models besides the BSP. Specifically, we apply the technique to
a parallel variant of the I/O model which includes, as special cases, both the I/O model and
the LPRAM model.

In addition to the well-known general motivations for lower bound techniques, we stress
that striving for tight bounds for the whole range of model’s parameters has special interest
in the study of so-called oblivious algorithms, which are specified without reference to such
parameters, but are designed with the goal of achieving (near) optimality for wide ranges of
the parameters. Notable examples are cache-oblivious algorithms [27], multicore-oblivious al-
gorithms [20], resource-oblivious algorithms [21, 22] and, closer to the scenario of this paper,
network-oblivious algorithms [15], where algorithms are designed and analyzed on a BSP-like
model. In fact, many BSP algorithms are only defined or analyzed for a number of processors
p that is sufficiently small with respect to the input size n. For the analysis of the FFT DAG,
it is often assumed p ≤ √

n, where the complexity is Θ(n/p). Our results allow for the removal
of such restrictions.

A preliminary version of this paper appeared in [18]. The current version contains an
expanded discussion of previous work, and provides full proofs of all claims, a significantly
simpler and slightly improved analysis of the switching potential technique, applications of this
technique to more case studies, as well as an adaptation of it to a different model of computation.
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1.3 Paper Organization

Section 2 introduces the BSP model and the concept of switching DAG. Section 3 formulates
the envelope game, a convenient framework for studying the communication occurring when
evaluating a switching DAG. Section 4 develops the switching potential technique culminat-
ing with the proof of Theorem 1, which provides a lower bound on the BSP communication
complexity of a switching DAG, in terms of its switching potential. Section 5 establishes The-
orem 2, which provides a lower bound on the BSP communication complexity of a DAG that
can realize all cyclic shifts. These two results are then applied, in Section 6, to the FFT DAG
and to sorting and permutation networks. Section 7 extends the switching potential technique
to computational models different from BSP. Finally, in Section 8, we draw some conclusions
and discuss directions for further work.

2 Models of Computation

This section introduces the BSP model of parallel computation and the class of computation
DAGs for which our lower bound technique applies.

2.1 The BSP Model

The bulk-synchronous parallel (BSP) model of computation was introduced by Valiant [49] as
a “bridging model” for general-purpose parallel computing, providing an abstraction of both
parallel hardware and software. It has been widely studied (see, e.g., [48] and references
therein) together with a number of variants (such as D-BSP [25, 14], BSP* [8], E-BSP [34],
and BSPRAM [47]) that aim at capturing data and communication locality by basing the cost
function on different communication metrics.

The architectural component of the model consists of p processors P1, P2, . . . , Pp, each
equipped with an unbounded local memory, interconnected by a communication medium. The
execution of a BSP algorithm consists of a sequence of phases, called supersteps: in one super-
step, each processor can perform operations on data residing in its local memory, send/receive
messages (each occupying a constant number of words) to/from other processing elements and,
at the end, execute a global synchronization instruction. Messages sent during a superstep
become visible to the receiver at the beginning of the next superstep.

The running time of the j-th superstep is expressed in terms of two parameters, g and ℓ,
as Tj = wj + hjg + ℓ, where wj is the maximum number of local operations performed by any
processor in the j-th superstep, and hj (usually called the degree of superstep j) is the maximum
number of messages sent or received by any processor in the j-th superstep. If the time unit is
chosen to be the duration of a local operation, then parameter g is defined to be such that the
communication medium can deliver the messages of a superstep of degree h in hg units of time,
so that 1/g can be viewed as measuring the available bandwidth of the communication medium,
whereas parameter ℓ is an upper bound on the time required for global barrier synchronization.
The running time TA of a BSP algorithm A is the sum of the times of its supersteps and can
be expressed as WA + HAg + SAℓ, where SA is the number of supersteps, WA =

∑SA

j=1wj is

the local computation complexity, and HA =
∑SA

j=1 hj is the BSP communication complexity. In
this paper, we study the latter metric, which often represents the dominant component of the
running time.

7



2.2 Switching DAGs

A computation DAG G = (V,E) is a directed acyclic graph where nodes represent input and
functional operations and arcs represent data dependencies. More specifically, an arc (u, v) ∈ E
indicates that the value produced by the operation associated with u is one of the operands
of the operation associated with v, and we say that u is a predecessor of v and v a successor
of u. The number of predecessors of a node v is called its in-degree and denoted δin(v), while
the number of its successors is called its out-degree and denoted δout(v). A node v is called an
input if δin(v) = 0 and an output if δout(v) = 0. We denote by Vin and Vout the set of input
and output nodes, respectively. The remaining nodes are said to be internal and their set is
denoted by Vint.

Of special interest for our developments are situations where the computation executed
by a given algorithm on a given input can be viewed as embedding an evaluation of a given
computation DAG G. Informally, this means that, during that execution, all the nodes of G are
evaluated, respecting the dependencies specified by the arcs. A bit more formally, we say that
the execution of a BSP algorithm on a specific input x evaluates a given computation DAG if,
to any v ∈ V , is associated a set S(v) of processor-time pairs such that: (a) if (t, P ) ∈ S(v),
then, at time t, processor P evaluates node v, by either an input or a functional operation; (b) if
(t, P ) ∈ S(v) and (u, v) ∈ E, then there is a (t′, P ′) ∈ S(u) such that the result of the evaluation
of u by P ′ at time t′ is effectively used as an operand by P at time t. Between time t′ and
time t, the value of u in question may be moved to different processors and memory locations:
the sequence of instructions implementing such moves will be denoted as S(t′, P ′, t, P ). Taken
together, the sets S define the processing and communication schedule of the evaluation of G.
We say that the evaluation is without recomputation if each node of G is evaluated exactly once,
that is, if S(v) is a singleton for every v.

A few observations may help provide some perspective on the above notions of evaluation
and schedule. A little reflection will show that an algorithm execution that embeds an evalua-
tion of G (possibly with recomputation) does not necessarily embed an evaluation of G without
recomputation, whence forbidding recomputation effectively restricts lower bounds results. We
remark that an execution of an algorithm that embeds an evaluation of G may well contain
additional operations not modeled by G (for example the additional operations may be instru-
mental to constructing the DAG from the input, or the input size). In general, the execution of
the same algorithm on different inputs may embed the evaluation of different DAGs or of dif-
ferent schedules of the same DAG. However, there are interesting algorithms that evaluate the
same DAG, with the same schedule, for all inputs of the same size n. Notable examples include
the FFT, network algorithms for sorting and permutations, standard matrix multiplication in
a semiring, and Strassen’s matrix multiplication on a ring.

A number of graph-theoretic properties of the DAG can be related to processing, storage,
and communication requirements of the underlying algorithm, as well as to its amount of par-
allelism. One such property is the switching potential, which we introduce and relate to the
communication complexity of a BSP algorithm that evaluates a DAG of the type defined next.

Definition 1. A switching DAG G = (V,E) is a computation DAG where, for any internal
node v ∈ Vint, we have δout(v) = δin(v). We refer to n = |Vin| as to the input size of G, and
introduce the switching size N of G defined as

N =
∑

v∈Vin

δout(v) =
∑

v∈Vout

δin(v),

where the equality between the two summations is easily established.
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(a) ρ = (5, 7, 1, 3, 2, 4, 6, 8). (b) ρ = (1, 7, 5, 3, 6, 8, 2, 4).

Figure 1: Examples of two different sets of arc-disjoint paths in the FFT DAG on n = 4 inputs
and switching size N = 8. Arcs in Ein and in Eout are numbered from 1 to N = 8, left to right.

Consider the set of arcs Ein = E ∩ (Vin × V ), outgoing from the input nodes, and the set of
arcs Eout = E ∩ (V × Vout), incoming into the output nodes. Let us now number both the arcs
in Ein and those in Eout from 1 to N , in some arbitrarily chosen order. Then, to any partition
of E into a set of arc-disjoint paths there corresponds a permutation ρ = (ρ(1), ρ(2), . . . , ρ(N))
of (1, 2, . . . , N), where ρ(j) is the (number of the) last arc (in Eout) of the unique path whose
first arc (in Ein) is numbered j. See Figure 1.

Definition 2. The switching potential γ of a switching DAG G = (V,E) is the number of
permutations ρ corresponding to (one or more) partitions of E into arc-disjoint paths.

Intuitively, if we think of each internal node v of the DAG as a switch that can be configured
to connect its incoming arcs to its outgoing arcs in any one-to-one correspondence, then switch
configurations uniquely correspond to partitions of E into arc-disjoint paths. Thus, N items
initially positioned on the input nodes (specifically, δout(u) items on input u) can travel without
conflicts and reach the output nodes. Indeed, in the special case where δout(u) = 1 for all input
nodes and δin(v) = 1 for all output nodes, one has N = n = |Vin| = |Vout| and the switching
DAG becomes a switching network in the traditional sense [44]. When all permutations can be
realized, that is γ = n!, then the switching network is said to be a permutation (or, rearrangeable)
network [44]. It is a simple exercise to establish that, for any switching DAG,

γ ≤
∏

v∈V \Vout

δout(v) =
∏

v∈V \Vin

δin(v),

where each products equals the number of distinct partitions into arc-disjoint paths. The
inequality arises when distinct partitions lead to the same permutation.

3 The Envelope Game

In this section we introduce the envelope game, to be played on a switching DAG. The goal of the
game consists in moving to the output nodes some envelopes, initially placed on the input nodes,
according to some rules. Informally, the rules force the envelopes to travel along arc-disjoint
paths in a way that all the envelopes that go through a given node must be simultaneously at
that node, at some time. The envelope game is meant to provide an abstraction of the evaluation
of a DAG without recomputation, which will prove useful in the study of BSP communication
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complexity. The spirit is similar to the one that motivated the introduction of the pebble game
to study space requirements of computations [41, 32].

Definition 3. The envelope game on a switching DAG G is defined by the following rules,
which characterize the (legal) runs of the game.

1. A set of N distinguishable envelopes is given, with exactly δout(u) envelopes initially placed
on each input node u ∈ Vin (hence, N is the switching size of G).

2. The set of envelopes remains invariant during the game; at any stage each envelope is at
exactly one node of G.

3. One move consists in moving one envelope from a node u to a node v along an arc
(u, v) ∈ E.

4. An arc (u, v) can be used only in one move.

5. An envelope can be moved from a node u only after δin(u) envelopes (each arriving from
a different incoming arc of u) have been placed on u.

6. The (run of the) game is completed when all envelopes have reached an output node (i.e.,
when exactly δin(w) envelopes are placed on each output node w ∈ Vout).

According to Rules 1, 2, 3, and 6, during one run, each envelope traverses a path from Vin

to Vout. Due to Rule 4, paths traversed by different envelopes are arc-disjoint. Due to the
property δout(v) = δin(v) of internal nodes of a switching DAG and to Rule 1 requiring that the
number of envelopes equals the switching size N , the paths traversed by the envelopes yield a
partition of the arc set E. Therefore, each run of the game uniquely identifies a permutation
ρ contributing to the switching potential, according to Definition 2. Finally, we observe that
Rule 5 requires that, for each node u, there is a time when all the envelopes going through u
are on u.

We observe that, in spite of some similarities, the envelope game differs from the pebbling
game in various significant ways. In particular, while the number of pebbles on the DAG
can change during the game and the goal is to minimize its (maximum) value, the number of
envelopes is constant throughout the game and the goal is to count the mappings between the
starting and the ending arcs of the envelope paths by playing the game in all possible ways.
Furthermore, at any time, the number of pebbles on a DAG node is either 0 or 1, whereas
the number of envelopes on any given node will typically go from 0 to the degree (by unit
increments) and then back to 0 (by unit decrements).

Intuitively, a run of the envelope game can be easily augmented into an evaluation of the
DAG. We just need to imagine that each envelope carries a (rewritable) card where, when a
node u is computed, its result is written on the card. Since the envelopes leaving from a node
u are distinct even though in the process of DAG evaluation they would carry the same value,
the communication of envelopes may result in an overcounting of messages, by a factor at most
∆ = maxv∈V δout(v). In fact, there are at most ∆ envelopes with the same card value moving
out from a node. For many DAGs of interest, ∆ is a small constant (e.g., for the FFT, ∆ = 2),
thus the overcounting is well bounded. At the same time, the distinguishability of the envelopes
simplifies the analysis of the communication requirements of DAG evaluation. The next lemma
establishes that communication lower bounds can be transferred from the envelope game to
DAG evaluation, by showing how the former can be obtained from the latter.

We say that a BSP algorithm plays the envelope game on a switching DAG G if it satisfies
the following conditions: (a) each node v ∈ V is assigned to a processor P (v); (b) the envelopes
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placed on input node u are initially in P (u); (c) whenever (u, v) ∈ E and P (u) 6= P (v), the
envelope moved along (u, v) is sent from P (u) to P (v) (possibly via intermediate processors),
after P (u) has received all the envelopes destined to u.

Lemma 1. Let A be any algorithm that evaluates, without recomputation, a switching DAG
G = (V,E) with ∆ = maxv∈V δout(v), on a BSP with p processors, and let HA be its BSP
communication complexity. Then, there exists an algorithm B that plays the envelope game on
G with BSP communication complexity

HB ≤ ∆HA.

Proof. In algorithm B, a node v ∈ V is assigned to the processor P (v) where v is evaluated by
A, which is unique due to the hypothesis of no recomputation. (1) Initially, for every u ∈ Vin,
δout(u) envelopes are placed on u (as required by Rule 1) and each envelope is univocally assigned
to an outgoing arc of the respective input node. (2) The computation in each internal node u
is replaced with a switch that sequentially forwards the δin(u) input envelopes to the δout(u)
output arcs according to some permutation. (3) For each arc (u, v) where P (v) differs from
P (v), a message is sent from P (u) to P (v) (possibly via intermediate processors) carrying the
envelope moved along (u, v).

We now show that algorithm B plays the envelope game. By construction, the N envelopes
are set on the input nodes as required by Rule 1. Rule 2 is satisfied since recomputation is
disallowed (i.e., no new envelope is added) and, in each internal node, all input envelopes are
forwarded to the outgoing arcs (i.e., no envelope is deleted). Rules 3, 4, and 5 are complied
with since a node u is computed in A only when all the δin(u) inputs are ready (i.e., every
predecessor of u has sent an envelope to u in B) and the output values are propagated only to
the δout(u) successors of u. Rule 6 is also obeyed since all output nodes in G are computed by
A.

We now show that the BSP communication complexity of B is at most ∆ times the BSP
communication complexity of A. The first two modifications do not increase the communication
(an envelope can be locally constructed by a processor and no communication is required for
evaluating a switch). The third modification can increases the BSP communication complexity
as analyzed next. Consider the case where a node u is processed by A on a processor, say P0,
while ℓ of its successors are processed on a different processor, say P1, where 1 ≤ ℓ ≤ ∆. Then,
one message from P0 to P1 is necessary and sufficient to send the output value of u to the ℓ
successors in P1 since the output value of a node is the same for each successor. In contrast,
since distinct envelopes are sent by u to its successors, ℓ messages must be sent by B in order
to forward the ℓ envelopes from node u in P0 to the ℓ successors in P1. Therefore, in the worst
case, to each message in A there correspond ∆ messages in B.

Typically, a BSP algorithm A that evaluates a DAG will implement the same schedule of
operations and messages, for any input of the DAG size n; in such a case, the corresponding
algorithm B that plays the envelope game will be the same for all inputs as well. However,
Lemma 1 applies even if DAG G is evaluated by A in different ways for different inputs x, in
which case the lemma inequality can be more explicitly written as HB(x) ≤ ∆HA(x).

4 The Switching Potential Technique

This section develops the proof of Theorem 1, a lower bound on the communication complexity
of any BSP algorithm A that evaluates, without recomputation, a switching DAG G with
switching potential γ. Technically, the lower bound individually applies to any execution of the
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algorithm that embeds an evaluation of G. We recall that n denotes the input size and N the
switching size of G. Some observations may be useful to build up intuition before entering the
technical development, which focuses on the envelope game.

One important point is that the communication requirements captured by Theorem 1 do
not simply arise from the data movement implied by the γ permutations that contribute to the
switching potential, but rather by the constraint that all those permutations must be realizable
under the same schedule, in the sense defined in Section 2.2. In fact, from one run of the envelope
game one can always obtain all other runs, by simply changing the envelope permutation locally
applied at each node. Then, at any given time during the algorithm, the set of locations that
contain envelopes is the same for all runs, although how the envelopes are distributed across
those locations will differ from run to run. Similarly, at any given superstep, the set of (source,
destination) pairs of the messages sent in that superstep is the same for all runs, although the
envelope carried by a given message will generally vary from run to run.

To appreciate the implications of a fixed schedule, let us consider the problem of permuting
N records among p BSP processors, under an input/output protocol where at most qin records
are initially held by any processor and at most qout records are destined to any processor. A
simple BSP algorithm, executing just one superstep where each record is directly sent from the
source processor to the destination processor, accomplishes the task with minimum BSP com-
munication complexity max{qin, qout}, assuming that a record fits in one message. In particular,
if the I/O protocol is balanced, i.e., qin = qout = N/p, then each permutation can be accom-
plished with communication complexity N/p. However, under this algorithm, each permutation
will result in a different set of (source, destination) pairs for the N messages that carry the
records, hence in a different communication schedule. On the other hand, a BSP algorithm
that evaluates the DAG corresponding to a sorting or permutation network (see Section 6.2 for
more details) has a fixed communication schedule, and the realization of a specific permutation
depends only on the content of the messages.

For the BSP model, we center our analysis around the following quantity.

Definition 4. Given an algorithm B that plays the envelope game on a switching DAG G =
(V,E), the redistribution potential at superstep j, denoted ηj, is the number of different place-
ments of the N envelopes across the p processors at the beginning of the j-th superstep that
are achievable, in different runs, while complying with the schedule of B. (The order of the
envelopes within a processor is irrelevant.)

We let ηK+1 denote the number of different placements just after the end of the last super-
step. The plan to establish Theorem 1 is along the following lines:

• First, we show that, without loss of generality, we can confine our analysis to algorithms
where all supersteps have degree at most 1. This greatly simplifies the subsequent counting
arguments.

• Second, we establish that ηK+1 ≥ γ/(U !)N/U , for any algorithm B that plays the envelope
game on DAG G with switching potential γ, in terms of the maximum number U of
envelopes held by any processor at the end of the game.

• Third, we establish that ηK+1 ≤ (N/p)pH , due to the structure of the BSP model.

• Finally, Theorem 1 stems from a combination of the upper and the lower bounds on ηK+1

in the two previous points.

The first three steps of the plan are each carried out by a separate lemma.
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Lemma 2. For any BSP algorithm A with communication schedule independent of the input,
there exists a BSP algorithm A′ with the following properties.

• A′ and A compute the same function.

• The communication schedule of A′ is independent of the input; furthermore, in any su-
perstep, each processor sends at most one message and receives at most one message.

• A′ has the same BSP communication complexity as A, that is, HA′ = HA.

Proof. We obtain A′ from A by replacing each superstep S of degree h ≥ 1 with h supersteps
of degree 1. (Supersteps where h = 0 are left unchanged.) Specifically, let the communication
schedule of S be modeled by the bipartite message multigraph M = (S,D,F ), where S =
{s1, . . . , sp}, D = {d1, . . . , dp}, and F ⊆ S ×D where edge multiset F contains (si, dk) with a
multiplicity equal to the number of messages sent by Pi to Pk during S. Clearly, each node in S
and in D has degree at most h. It is a simple matter to augment M with edges so as to obtain
a regular bipartite multigraph M ′ = (S,D,F ′) of degree h. We recall that Hall’s theorem [29]
ensures that any regular bipartite multigraph does admit a perfect matching. Therefore, by
repeated applications of Hall’s theorem, F ′ can be partitioned into h perfect matchings, i.e.,
F ′ =

∑h
ν=1 Fν , where Mν = (S,D,Fν) is regular of degree 1. Correspondingly, superstep S can

be replaced by the equivalent sequence of supersteps (S1, . . . ,Sh) where, for ν ∈ [h],3 superstep
Sν includes the messages of S corresponding to the edges in Fν ∩F . (No message corresponds to
the edges in (F ′ −F ), which where added just to make Hall’s theorem directly applicable). All
computations performed by S as well as the receive operations relative to messages sent by the
superstep preceding S are assigned to S1. It is then straightforward to verify that the sequence
(S1, . . . ,Sh) is equivalent to S and contributes h to the BSP communication complexity of A′,
since each of its h supersteps has degree 1.

Lemma 3. Consider any algorithm B for a BSP with p processors that plays the envelope game
on a switching DAG G = (V,E) in K supersteps. Let N and γ be the switching size and the
switching potential of G, respectively. At the end of the algorithm, if each processor holds at
most U ≤ N envelopes, the redistribution potential satisfies

ηK+1 ≥
γ

(U !)N/U
. (5)

Proof. Let Ui ≤ U denote the number of envelopes held by processor Pi just after the end of the
last superstep of algorithm B. We know that, when varying the input-output correspondence
for each internal node of G in all possible ways, γ different permutations of the envelopes over
the arcs entering the outputs of G are generated. At most Πp

i=1(Ui!) envelope permutations can
differ only by a rearrangement of the envelopes among arcs assigned to the same processor and
thus result in the same placement of the envelopes across processors. Hence,

ηK+1 ≥
γ

∏p
i=1(Ui!)

. (6)

Considering that the quantity Πp
i=1(Ui!) is a superlinear function of the Ui’s and that Σp

i=1Ui =
N , a convexity argument reveals that the maximum value is reached when ⌊N/U⌋ of the variables
are set to the value U , one variable is set to (N mod U), and the remaining variables are set to
zero. Therefore,

p
∏

i=1

(Ui!) ≤ (U !)⌊N/U⌋(N mod U)! ≤ (U !)⌊N/U⌋(U !)(N mod U)/U = (U !)N/U ,

3Throughout the paper, [x] denotes the set {1, 2, . . . , x}.
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where the second inequality follows since the function f(x) = log(x!)/x is increasing when x > 0,
and hence f(N mod U) ≤ f(U). Then, by plugging inequality Πp

i=1(Ui!) ≤ (U !)N/U in (6), we
obtain bound (5).

Lemma 4. Consider any algorithm B for a BSP with p processors that plays the envelope game
on a switching DAG G = (V,E), with communication complexity HB. Let N be the switching
size of G. At the end of the algorithm, the redistribution potential satisfies

ηK+1 ≤
{

(N/p)pHB if p ≤ N/e,

eNHB/e otherwise.

Proof. For any i ∈ [p] and j ∈ [K+1], whereK is the number of supersteps in B, we denote with
ti,j the number of envelopes held by processor Pi at the beginning of the j-th superstep. Clearly,
∑p

i=1 ti,j = N for every j, since, by Rule 2 of the envelope game (Definition 3), the number
of envelopes is invariant and always equal to N . (This constraint would not necessarily hold
if recomputation were allowed.) Let, for every j ∈ [K], P ′

j to be the set of processors holding
at least one envelope at the beginning of the j-th superstep, that is, P ′

j = {Pi : ti,j ≥ 1}. We
claim that, for every j ∈ [K],

ηj+1/ηj ≤
∏

i∈[p]:ti,j≥1

ti,j. (7)

Thanks to Lemma 2, we can assume without loss of generality that all supersteps of B have
degree at most one. Consider superstep j, and consider a processor Pi ∈ P ′

j. At the beginning
of the j-th superstep, Pi holds ti,j ≥ 1 envelopes. From these, Pi can choose, in exactly ti,j ≥ 1
different ways, the envelope to send in the j-th superstep, if any. The claim then follows because
any of the ηj+1 envelope placements immediately after superstep j correspond to one or more
combinations of (a) one of the ηj placements achievable immediately before superstep j, and
(b) one communication choice for each processor. Let p′j = |P ′

j |. Given that, for every j ∈ [K],
∑

i∈[p]:ti,j≥1 ti,j = N , the right-hand side of (7) is maximized when all the p′j factors equal N/p′j ,

and hence from (7) we obtain

ηj+1/ηj ≤ (N/p′j)
p′j .

Standard calculus reveals that the function (N/p′j)
p′j has its maximum at p′j = N/e. Therefore,

since we must have p′j ≤ p, we have

ηj+1/ηj ≤
{

(N/p)p if p ≤ N/e,

eN/e otherwise.

Multiplying both sides of the preceding relation over the HB supersteps of degree one; consid-
ering that, for a superstep with h = 0, ηj+1/ηj = 1; and observing that η1 = 1, since the only
placement of envelopes among processors before the first superstep is the one corresponding to
the input placement protocol, the claim follows.

We are now ready to prove Theorem 1, which we recall for convenience.

Theorem 1. Let A be any algorithm that evaluates without recomputation a switching DAG
G = (V,E) on a BSP with p processors. Let N , γ, and ∆ be respectively the switching size, the
switching potential, and the maximum out-degree of any node of G. If the sum of the in-degree
of the output nodes evaluated by every processor is at most U , then the BSP communication
complexity of algorithm A satisfies

HA ≥







log(γ/(U !)N/U )
∆p log(N/p) if p ≤ N/e,

e log(γ/(U !)N/U )
∆N log e otherwise.

(3)
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where, by definition, γ ≤ N ! and N/p ≤ U ≤ N .

Proof. When p ≤ N/e, combining Lemma 3 and Lemma 4 yields

(N/p)pHB ≥ γ

(U !)N/U
.

Taking the logarithm of both sides, solving for HB, and recalling that, by Lemma 1, HA ≥
HB/∆, we conclude that

HA ≥ log(γ/(U !)N/U )

∆p log(N/p)
.

The case p > N/e is shown analogously.

5 The Cyclic Shift Technique

As discussed in Section 1.2, the switching potential lower bound becomes weaker as the max-
imum number U of output nodes held by a processor grows. In fact, the larger is U , the
larger is the number of permutations that can be realized without interprocessor communica-
tion. However, there are classes of permutations that, in spite of their small cardinality, do
require high communication even for large values of U . One such class is that of the cyclic
shifts of order n, i.e., the permutations σ0, σ1, . . . , σn−1 such that, for 0 ≤ k, i ≤ n− 1, we have
σk(i) = (i+ k) mod n. Intuitively, σk cyclically shifts to the right, by k positions. We say that
a DAG G can realize all cyclic shifts of order n if 1) |Vin| = |Vout| = n; 2) there exist labelings
of the input nodes, Vin = {v0, v1, . . . , vn−1}, and of the output nodes, Vout = {v′0, v′1, . . . , v′n−1},
such that, for any 0 ≤ k < n, there exists a set of n arc-disjoint paths connecting vi ∈ Vin

to v′σk(i)
∈ Vout, for any 0 ≤ i < n. Several interesting computational DAGs do realize all

cyclic shifts of a given order. We now quantify the communication required by algorithms that
evaluate such DAGs.

We need to introduce the following notation. Let P1 be one BSP processor, and let P0 be a
virtual processor consisting of the other p− 1 processors. Denote by I1 and I0 the set of input
nodes initially held by P1 and P0, respectively. We also denote by O1 and O0 the set of output
nodes evaluated by P1 and P0, respectively.

Lemma 5. Let G = (V,E) be a DAG with n input nodes and n output nodes, capable of
realizing all the n cyclic shifts, with respect to some fixed labeling of inputs and outputs. Let A
be an algorithm that evaluates G (possibly, with recomputation) on a BSP with p ≥ 2 processors,
such that initially each input is available to exactly one processor. Then the BSP communication
complexity of A satisfies

HA ≥ |I0||O1|+ |I1||O0|
2n

.

Proof. We use an argument patterned after Vuillemin [51]. There are |O1| cyclic shifts that
match an input node in I0 with every output node inO1; similarly, there are |O0| cyclic shifts that
match an input node in I1 with every output node in O0. Summing over all cyclic shifts, we get
that |I0||O1|+ |I1||O0| input nodes are assigned to output nodes contained in a different proces-
sor. As there are n cyclic shifts, there must be a shift that matches F = ⌈(|I0||O1|+ |I1||O0|)/n⌉
input nodes to output nodes contained in a different processor. Since at the beginning of the
computation each input is available to exactly one processor, a total of F messages are ex-
changed between P0 and P1. Therefore, P1 receives or sends at least F/2 messages, and hence
HA ≥ F/2.

As an immediate consequence of this lemma, we obtain the following.
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Theorem 2. Let G = (V,E) be a DAG with n input nodes and n output nodes, capable of
realizing all the n cyclic shifts, with respect to some fixed correspondence between inputs and
outputs. Let A be an algorithm that evaluates G (possibly, with recomputation) on a BSP with
p ≥ 2 processors, such that initially each input is available to exactly one processor. Then,
if some processor initially stores (exactly) q inputs, or some processor evaluates (exactly) q
outputs, the BSP communication complexity of algorithm A satisfies

HA ≥ min{q, n− q}
2

.

Proof. Since, by hypothesis, each input is initially available to exactly one processor, we have
|I0|+|I1| = n. Moreover, since we can assume without loss of generality that each output node is
computed only once, |O0|+|O1| = n. Thus, if we let F denote the quantity (|I0||O1|+|I1||O0|)/n,

F =
(n− |I1|)|O1|+ |I1|(n− |O1|)

n
≥ min{|O1|, n− |O1|}.

Therefore, if |O1| = q, then F ≥ min{q, n − q}. A symmetric argument yields the same
bound if |I1| = q. In conclusion, if |I1| = q or |O1| = q, by applying Lemma 5 we obtain
HA ≥ F/2 ≥ min{q, n− q}/2, as desired.

6 Applications

In this section, we show the versatility of the switching potential technique by applying it to
the FFT DAG and to sorting and permutation networks. Further, we show that by applying
the switching potential technique to some parts of a particular sorting network it is possible
to obtain a lower bound stronger than the one obtained by applying the switching potential
technique to the entire DAG.

6.1 Fast Fourier Transform

Let n be a power of two. In the n-input FFT DAG, a node is a pair 〈w, l〉, with 0 ≤ w < n and
0 ≤ l ≤ log n, and there exists an arc from node 〈w, l〉 to node 〈w′, l′〉 if and only if l′ = l + 1
and either w and w′ are identical or their binary representations differ exactly in the l′-th least
significant bit. See Figure 2 for an example.

The n-input FFT DAG is a switching DAG since for any internal node v we have δin(v) =
δout(v) = 2, and its switching size is N = 2n. Its switching potential is established by the
following lemma.

Lemma 6. The FFT DAG of input size n has switching potential γ = 2n(log n−1).

Proof. For each internal node, there exist two possible one-to-one relations between the incoming
arcs and the outgoing arcs. A configuration of the internal nodes is given by specifying the
relation of each internal node, and each configuration automatically defines a particular set of
N = 2n arc-disjoint paths. Since there are n(log n− 1) internal nodes in the FFT DAG, there
are 2n(log n−1) possible configurations of the internal nodes. No two configurations define the
same set: this follows as a corollary of the property that in the FFT DAG there is a unique
path between any input node and any output node [37].4

Now we show that the FFT DAG can realize all cyclic shifts. This will enable the application
of the results of Section 5.

4[37] discusses the property for the Omega network, which is isomorphic to the FFT network.

16



Figure 2: The FFT DAG on n = 8 inputs and switching size N = 16. The nodes 〈w, l〉 are
placed so that w = 0, . . . , 7 from left to right and l = 0, . . . , 3 from bottom to top.

Lemma 7. The n-input FFT DAG can realize all cyclic shifts of order n.

Proof. In an n-input FFT DAG there exists a path from 〈w, 0〉 to 〈(w + k) mod n, log n〉, for
any 0 ≤ w < n and 0 ≤ k < n. This path visits 〈f(w, l), l〉 for each 0 ≤ l ≤ log n, where
f(w, l) = ⌊w/2l⌋2l + ((w + k) mod 2l). We now show that each one of the above sequences of
nodes is a connected path. Clearly, we have f(w, 0) = w and f(w, log n) = (w+ k) mod n. The
values f(w, l) and f(w, l + 1) differ at most in the (l + 1)-th least significant bit: indeed, the
two values share the l least significant bits since f(w, l) ≡ f(w, l + 1) mod 2l, and they also
share the log n− l− 1 most significant bits since ⌊f(w, l)/2l+1⌋ = ⌊f(w, l+1)/2l+1⌋. Therefore
the DAG nodes 〈f(w, l), l〉 and 〈f(w, l + 1), l + 1〉 are connected and the path is well defined.
Moreover, no two paths share a node for a given k: assume by contradiction that there exist two
paths K1 = (〈w, 0〉, . . . , 〈(w + k) mod n, log n〉) and K2 = (〈w′, 0〉, . . . , 〈(w′ + k) mod n, log n〉),
with w 6= w′, that share a node; then, there must exist a value l, with 0 < l < log n, such that
f(w, l) = f(w′, l); however, since w = f(w, l) − (k mod 2l), it follows that w = w′ which is in
contradiction with the initial assumption w 6= w′; we can thus conclude that paths K1 and K2

do not share any node. Therefore, we have that the FFT DAG can realize cyclic shifts for any
0 ≤ k < n, by suitably setting DAG nodes according to the set of n paths specified by k.

We are now ready to prove Theorem 4, which provides the first lower bound on the BSP
communication complexity required for evaluating a n-input FFT DAG that asymptotically
matches upper bound (1) for any number of processors p ≤ 2n/e. Before this, we shall use
the cyclic shift technique to complement the dominator technique in order to obtain, for the
FFT, a lower bound of the same form of (2) in Section 1.1, but under milder assumptions on
the input/output protocol. Since, like the dominator technique, the cyclic shift technique does
allow for recomputation, this results in a strengthened lower bound for the general case when
recomputation is allowed, and thus is of independent interest.

Theorem 3. Let A be an algorithm that evaluates the n-input FFT DAG (possibly, with recom-
putation) on a BSP with p ≥ 2 processors, such that initially each input is available to exactly
one processor. Then, if no processor evaluates more than n/ǫ outputs, for some constant ǫ > 1,
the BSP communication complexity of A satisfies

HA = Ω

(

n log n

p log((n/p) log n)

)

.
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Proof. Since the n-input FFT DAG has n(log n−1) internal nodes and n output nodes, at least
one processor has to evaluate x = (n log n)/p nodes. Let P1 be one of such processors, and let
P0 be a virtual processor consisting of the remaining p− 1 processors. Denote by I1 and I0 the
set of input nodes initially held by P1 and P0, respectively. We also denote by O1 and O0 the
set of output nodes evaluated by P1 and P0, respectively.

If |I1| ≤ βx/ log x, where β is a suitably small constant, then the lower bound in (2) applies,
and the theorem follows. Otherwise, if |I1| > βx/ log x, we shall leverage the hypothesis whereby
no processor evaluates more than n/ǫ outputs, for some constant ǫ > 1. This gives |O1| ≤ n/ǫ,
which in turn implies |O0| ≥ n − n/ǫ = n(ǫ − 1)/ǫ. Then, since by hypothesis each input is
initially available to exactly one processor, and since by Lemma 7 the FFT DAG can realize all
the n cyclic shifts, we can apply Lemma 5, obtaining

HA ≥ |I0||O1|+ |I1||O0|
2n

≥ |I1||O0|
2n

>
βn log n · n(ǫ− 1)

2n · p log((n/p) log n) · ǫ = Ω

(

n log n

p log((n/p) log n)

)

,

as desired.

We now use the switching potential technique in synergy with the cyclic shift technique to
derive a tight lower bound for the case when recomputation is disallowed. We shall consider
only the case p ≤ N/e; nevertheless, Theorem 1 also encompasses the case p > N/e. This case
can be analyzed in a similar way as we analyze the case p ≤ N/e.

Theorem 4. Let A be any algorithm that evaluates without recomputation the n-input FFT
DAG on a BSP with p ≤ 2n/e processors, and let q be the maximum number of output nodes
evaluated by a processor. If initially each input is available to exactly one processor, then the
communication complexity of algorithm A satisfies

HA ≥ n log(n/(8q2))

4p log(2n/p)
+

min{q, n− q}
4

.

Moreover, if q ≤ n/2,

HA >
n log(n/2)

8p log(2n/p)
.

Proof. Since the in-degree of output nodes is two, we have that the sum of the in-degree of the
output nodes evaluated by each processor is at most U ≤ 2q. As recomputation is ruled out, we
can apply Theorem 1 with N = 2n, ∆ = 2, U ≤ 2q, and γ = 2n(logn−1), obtaining, after some
manipulations,

HA ≥ log(γ/(U !)N/U )

∆p log(N/p)
≥ n log(n/(8q2))

2p log(2n/p)
.

By hypothesis, each input is initially available to exactly one processor, and there exists
some processor which evaluates (exactly) q output nodes; moreover, by Lemma 7, the FFT
DAG can realize all cyclic shifts. Therefore, we can apply Theorem 2, which gives HA ≥
(1/2)min{q, n− q}. By combining these two lower bounds we obtain the first claim of the
theorem.

Consider now the case q ≤ n/2. In this case we can write

HA ≥ n log(n/(8q2))

4p log(2n/p)
+

q

4
>

n log(n/(8q2))

8p log(2n/p)
+

q

4
.

Let us denote with H ′(q) the rightmost term of the above inequality, that is,

H ′(q) =
n log(n/(8q2))

8p log(2n/p)
+

q

4
.
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By derivingH ′(q) with respect to q, we can see thatH ′(q) is non-decreasing for q ≥ n/(p log(2n/p)).
Therefore, since q ≥ n/p, and since n/p > n/(p log(2n/p)) (because of the p ≤ 2n/e hypothesis),
we have that H ′(q) ≥ H ′(n/p), and thus

HA > H ′(q) ≥ H ′(n/p) =
n log(n/2)

8p log(2n/p)
,

which proves the second claim of the theorem.

6.2 Sorting and Permutation Networks

In this section we apply our technique to bound from below the BSP communication complex-
ity of the computation DAGs that correspond to sorting and permutation networks. These
networks, such as the Beneš permutation network [9] and the bitonic [7] and AKS sorting net-
works [3], can be interpreted as switching DAGs and have the property that they can realize all
the possible permutations, and thus the switching potential technique can be naturally applied
to them. Since our technique abstracts the DAG under consideration by considering only one
general parameter (its switching potential), the lower bound obtained in this section is universal
in the sense that it holds for any sorting or permutation network.

We now briefly recall the definitions of such networks. More complete descriptions can be
found in [35, 38, 44]. A comparator network is an acyclic circuit of comparators. A comparator
is a 2-input 2-output operator which returns the minimum of the two inputs on one output, and
the maximum on the other. An n-input comparator network is called a sorting network if it
produces the same output sequence on all n! permutations of the inputs. Thus, sorting networks
can be seen as a simple model for data-oblivious sorting algorithms, that is, algorithms that
perform the same set of operations for all values of the input data. A routing network is an
acyclic circuit of switches. A switch is a 2-input 2-output operator which either passes its two
inputs to its outputs, or it swaps them. An n-input routing network is called a permutation
network if for each of the n! permutations of the inputs there exists a setting of the switches that
creates n disjoint paths from the n inputs to the n outputs. Observe that, suitably modified
to transmit messages, every sorting network is a permutation network, but the converse is not
true.

A sorting/permutation network can be naturally modeled as a computation DAG by as-
sociating to each comparator/switch a pair of (internal) nodes of the DAG. Both nodes have
the same two predecessors, and thus receive in input the same two values a and b, and both
nodes have out-degree two, but one node computes the function x = min{a, b} while the other
computes the function y = max{a, b}. The resulting DAG is therefore a switching DAG of input
size n, switching size N = 2n, and with ∆ = 2. The following lemma shows that the DAG of
any sorting or permutation network has switching potential γ ≥ n!, and can realize all cyclic
shifts.

Lemma 8. The DAG of any sorting or permutation network with input size n has switching
potential γ ≥ n! and can realize all cyclic shifts of order n.

Proof. Since any sorting or permutation network can perform all the n! permutations of n
inputs, there exist n! sets S of n arc-disjoint paths connecting input and output nodes. Each
set S ∈ S of n arc-disjoint paths determines a set of n paths from n outgoing arcs of the input
nodes to n incoming arcs of the output nodes. In order to get the claimed switching potential,
we have to construct additional n paths from the n outgoing arcs of the input nodes to the
n incoming arcs of the output nodes that are not used in S. We observe that each path in a
S ∈ S uses only one of the two incoming arcs of each (non-input) node, and only one of the two
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outgoing arcs of each (non-output) node. By exploiting the unused pair of incoming/outgoing
arcs in each internal node, it is possible to uniquely construct the missing paths. Therefore,
there exists n! sets of N = 2n arc-disjoint paths connecting input and output nodes, and the
first part of the claim follows.5 Furthermore, the set S contains the set of n arc-disjoint paths
of all the n cyclic shifts by definition of sorting and permutation networks, and the second part
of the claim follows as well.

We are therefore in a similar situation as for the FFT DAG, with a slightly different switching
potential γ, and it is therefore sufficient to mimic the proof for Theorem 4. We have the following
result.

Theorem 5. Let N be any sorting or permutation network with n inputs. Let A be any
algorithm that evaluates without recomputation the DAG corresponding to N on a BSP with
p ≤ 2n/e processors, and let q be the maximum number of output nodes evaluated by a processor.
Then the BSP communication complexity of algorithm A satisfies

HA ≥ n log(n/(4eq2))

4p log(2n/p)
+

min{q, n − q}
4

.

Moreover, if q ≤ n/2,

HA >
n log(n/e)

8p log(2n/p)
.

Proof. Analogous to the proof of Theorem 4, with γ ≥ n! in place of γ = 2n(log n−1).

We observe that for sorting and permutation networks we are using a lower bound on the
switching potential γ which is lower (when n ≥ 6) than the value of the switching potential
of the FFT DAG, and then the resulting lower bound on the BSP communication complexity
has a lower constant inside the logarithmic term at the numerator with respect to the one in
Theorem 4. This is due to the generality of our argument that applies to the entire family of
sorting and permutation networks. Better bounds can be obtained for specific networks. For
example, in the case of the Beneš permutation network, the same bound of Theorem 4 applies
since the corresponding DAG contains an n-input FFT DAG.

Finally, we observe that the lower bound of Theorem 5 is asymptotically tight, as the com-
putation DAG corresponding to the Beneš permutation network can be evaluated with the same
strategy used for the FFT DAG, yielding a BSP communication complexity ofO(n log n/(p log(n/p))).

6.3 Boosting the Switching Potential Technique

Since γ ≤ N !, if applied to an entire switching DAG, Theorem 1 cannot yield a lower bound
larger than Ω((N logN)/(p log(N/p))). However, by applying the theorem to suitable parts of
the DAG and composing the results, it is sometime possible to obtain asymptotically larger lower
bounds. To illustrate the approach, we study the DAG of the periodic balanced sorting network
(PBSN) [26], which consists of a sequence of log n identical blocks. Specifically, we consider the
case where n is a power of two and the block is the balanced merging network (BMN), as in [26].
(The analysis and the result would also apply when the block is the odd-even merging network).

The DAG of an n-input BMN is the following: a node is a pair 〈w, l〉, with 0 ≤ w < n and
0 ≤ l ≤ log n; there exists an arc between two nodes 〈w, l〉 and 〈w′, l′〉 if and only if l′ = l+1, and

5 In a DAG corresponding to a sorting or permutation network with n inputs and internal nodes of in-degree
δ, the switching size is N = δn since there are δ outgoing edges per input node. Therefore, the switching potential
γ can be as large as N ! = (δn)!. The present argument shows that γ is at least n!.
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either w = w′ are identical or w′ = (i+1)n/2l−j where i = ⌊w2l/n⌋ and j = i mod (n/2l). The
n-input BMN is a switching DAG since for any internal node v we have δin(v) = δout(v) = 2,
and its switching size is N = 2n.

The DAGs of the BMN and of the FFT are isomorphic, that is, there exists an arc-preserving
bijection between the two node sets [11]. Hence, the BMN has the same switching potential of
the FFT DAG (i.e., γ = 2n(log n−1), see Lemma 6) and can realize all cyclic shifts of order n (see
Lemma 7). As a consequence, the lower bounds stated in Theorem 4 for the FFT DAG apply
unchanged to the DAG of the BMN.

By separately applying the switching potential technique to each of the log n BMN blocks
of a PBSN, we obtain the following result.

Theorem 6. Let A be any algorithm that evaluates without recomputation the DAG of the
n-input PBSN, where the block is a BMN, on a BSP with p ≤ 2n/e processors. Let q be the
maximum number of output nodes of each block evaluated by a processor. If each input is initially
available to exactly one processor and q ≤ n/2, then the BSP communication complexity of A
satisfies

HA >
n log(n/2)

8p log(2n/p)

⌈

log n

2

⌉

.

Proof. Consider the sequence s1, s2, . . . , slogn of BMNs in the PBSN. For any 1 ≤ i < log n− 1,
the evaluations of si and si+2 in algorithm A cannot overlap in time: as BMN sorts any bitonic
sequence [26], any input value can reach any output; therefore, no input value of si+2 is ready
until all output values of si have been computed. It follows that the evaluations of the ⌈log n/2⌉
odd BMNs cannot overlap in time. Since, by hypothesis, no processor evaluates more than
q ≤ n/2 output nodes of each BMN, we can apply (the second part of) Theorem 4 to each
BMN, and the claim follows.

Observe that the PBSN contains Θ(n log2 n) comparators, which is a factor log n more
than the optimal value. Therefore, it is natural that the BSP communication complexity for
evaluating a PBSN is a factor Ω(log n) larger than the lower bound that holds for any sorting
network (Theorem 5). Nevertheless, a lower bound of the form of the one given in Theorem 6
cannot be derived by applying the switching potential technique to the entire DAG of a PBSN.
We are not aware of any prior lower bounds of this form for computations that correspond to
the evaluation of PBSN.

7 The Switching Potential Technique in a Parallel I/O Model

In this section, we show how the switching potential technique can be adapted to yield lower
bounds in computational models different from BSP. Specifically, we consider a parallel variant
of the I/O model, which includes, as special cases, both the I/O model of Hong and Kung [31]
and the LPRAM model of Aggarwal et al. [1].

Our parallel I/O model consists of p synchronous processors, each with a (fast) local memory
of m words, which can access a (slow) shared memory of (potentially) unbounded size. In each
step, all the processors perform the same instruction, which can be (i) an operation on data in the
local memory, (ii) a move of a word from the shared to the local memory (i.e., a read operation)
or (iii) vice versa (i.e., a write operation).6 The I/O complexity HA of an algorithm A is the
number of steps where a read or write operation occurs.7 We assume the input and output of

6Our lower bound can be trivially adjusted, dividing it by b, if an instruction can move b memory words
instead of just one.

7We use here the same notation HA for the I/O complexity as for the BSP communication complexity, to
highlight the similar role of the two metrics in the context of the switching potential technique.
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algorithm A to reside in the shared memory at the beginning and at the end of A, respectively;
(if this is not the case, our lower bound may still apply, after suitable modifications). We refer
to [50] for a survey on algorithms and data structures for the I/O model.

Consider now an algorithm B, for the parallel I/O model, playing the envelope game on a
switching DAG G = (V,E), with switching potential γ. We assume that each envelope occupies
one memory word, whence there cannot be more than m envelopes in any local memory. Due
to the restrictions of the I/O model, algorithm B can move the first envelope from a node u
only when all the δin(u) input envelopes are in the local memory of the same processor.

As for the BSP model, a crucial observation is that the switching potential technique does
not simply arise from the data movement implied by the γ permutations that contribute to the
switching potential, but rather by the constraint that all those permutations must be realizable
under the same schedule. Formally, the schedule of an algorithm is defined by the sequence
of read and write operations, and by the memory locations in the shared and local memories
involved in each read and write operation. Since the schedule is given, only the content (not the
source and the destination) of a read and write operation can vary across different runs of the
envelope game that can result in the realization of different permutations. Thus, at any given
time, the memory locations (both shared and local) that contain envelopes are independent of
the run of the game, while the mapping of the envelopes to those location will generally differ
across runs. This fact allows us to introduce a notion of redistribution potential, appropriate
for the parallel I/O model:

Definition 5. Consider an algorithm B for the parallel I/O model that plays the envelope game
on a switching DAG G = (V,E). At any given step of the algorithm, the envelope placement
is the specification, for each envelope, of either the (address of the) shared memory location or
the (index of the) processor whose local memory contains that envelope. (The exact position
of the envelope within a local memory is irrelevant.) The redistribution potential at the j-th
read/write operation, denoted ηj , is the number of different envelope placements, before the j-th
read/write operation, that are achievable in different runs, while complying with the schedule of
B.

From the initial and final conditions of the game, we have η1 = 1 and ηHB+1 ≥ γ.
Intuitively, read and local operations do not increase the redistribution potential. On the

other hand, the increase due to write operations is bounded by the amount of envelopes held
locally by each processor. This amount is naturally bounded by the size m of the local memory,
but it is also effectively bounded by N/p, since the p processors together can at most hold
N envelopes, and it turns out that a balanced allocation of envelopes to processors can result
in the maximum increase of redistribution potential. These statements are substantiated in
the next lemma, leading to a lower bound on the number of write steps needed to bring the
redistribution potential from 1 to γ, hence to the I/O complexity.

Lemma 9. The I/O complexity of an algorithm B that plays the envelope game on a switching
DAG G = (V,E) in the parallel I/O model with p processors, with local memory size m, satisfies

HB ≥ log γ

p logmin{m,N/p} ,

where γ is the switching potential of G.

Proof. An operation on data in the local memories cannot change the redistribution potential,
since it does not affect the shared memory and does not change the set of envelopes present
in each local memory. A read operation moves memory words from the shared memory to the
local memories, in a way that is uniquely prescribed by the schedule of the algorithm. Hence,
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to each envelope placement before the operation there correspond a unique placement after the
operation, whence the redistribution potential does not increase.

On the other hand, each write operation increases the redistribution potential by at most
a factor

∏p
i=1Ni, where Ni denotes the number of envelopes currently in the i-th processor.

In fact, the envelope to be moved to shared memory by the i-th processor can only be one of
the Ni envelopes in its local memory. (For clarity, we observe that the source and the target
addresses of the write are actually fixed by the schedule. It is the envelope currently located
at the source address that can differ across different runs of the game, due to permutations of
envelopes within a local memory.)

We now observe that, on the one hand, for each i, we have Ni ≤ m, whence
∏p

i=1Ni ≤ mp.
On the other hand, by the invariance of the number of envelopes, we have

∑p
i=1Ni = N , a

constraint under which
∏p

i=1 Ni ≤ (N/p)p, as can be established by standard techniques. We
then have ηj+1 ≤ (min{m,N/p})pηj , whence ηHB+1 ≤ min{m,N/p}pHB . Since ηHB+1 ≥ γ, the
claim follows.

We are now ready to provide a lower bound on the I/O complexity of any algorithm evalu-
ating a switching DAG G without recomputation.

Theorem 7. Let A be any algorithm that evaluates without recomputation a switching DAG
G = (V,E) in the parallel I/O model with p processors and with local memory size m. Let N ,
γ, and ∆ be the switching size of G, the switching potential of G, and the maximum out-degree
of any node of G, respectively. Then the I/O complexity of algorithm A satisfies

HA ≥ log γ

∆p logmin{∆m,N/p} .

Proof. An algorithm A that evaluates G on the parallel I/O model with local memory size m
and p processors can be transformed into an algorithm B that plays the envelope game on the
parallel I/O model with local memory size ∆m and p processors. Algorithm B is obtained
from A with the following three changes. (1) Initially, for every u ∈ Vin, δout(u) envelopes are
placed on u and each envelope is univocally assigned to an outgoing arc of the respective input
node. (2) The computation in each internal node u is replaced with a switch that sequentially
forwards the δin(u) input envelopes to the δout(u) output arcs according to some permutation.
This replacement requires that δout(u) ≤ ∆ words are available to store the envelopes forwarded
by u, whereas only one word was required to store the single output of node u: since the local
memory is ∆ times larger than the one used by algorithm A, there is enough space to store the
at most ∆ envelopes for each of the m nodes kept in the local memory by A. (3) For each arc
(u, v) where P (v) differs from P (v), the envelope is first written in the shared memory by P (u)
and then read by P (v) (possibly, other processors can read and write the envelope between
these two operations). As shown in Lemma 1, the above modifications guarantee that the six
rules of the envelope game are satisfied.

We now observe that HB ≤ ∆HA. The first two changes do not increase the I/O complexity.
On the other hand, the third change increases the I/O complexity by a factor ∆: indeed, for each
node u, the output values on the δout(u) outgoing edges can be stored by algorithm A in one word
of the local/shared memory since the output values are indistinguishable; however, algorithm
B requires δout(u) ≤ ∆ words since envelopes are distinct; therefore the I/O complexity of B is
at most ∆HA.

The theorem follows since, by Lemma 9, an algorithm B playing the envelope game on an
∆m-word local memory with p processors requires HB ≥ (log γ)/(p log min{∆m,N/p}) I/Os.
Since HB ≤ ∆HA, the main claim follows.
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We now analyze the above lower bounds for two special cases: the sequential I/O model [31]
and the LPRAM [1]. The I/O model follows by the parallel I/O model by setting p =
1. If we consider the FFT DAG and assume that N ≥ 2m, we obtain a lower bound of
n log(n/2)/(2 log(2m)), which asymptotically matches the lower bound in [31]. On the other
hand, the LPRAM is obtained by setting m = +∞. In this case, we get for the FFT DAG a
lower bound of n log(n/2)/(2p log(2n/p)), which asymptotically matches the lower bound in [1].

Interestingly, we observe that Theorem 7 gives a tight lower bound for the FFT DAG
without additionally resorting to the cyclic shift technique, as we did in the BSP model. The
reason for such behavior is that the I/O protocol requires envelopes to be stored in the shared
memory at the beginning and end of the algorithm. Thus, the redistribution potential cannot be
increased without I/O operations. In contrast, in the BSP model, envelopes are contained in the
processors’ local memories since there is no “external storage” where to store envelopes at the
beginning and at the end of the algorithm. Therefore, if each BSP processor contains at most U
of the N envelopes, it is possible to get (U !)N/U permutations even without communication, by
just rearranging envelopes within each processor (see the proof of Lemma 3). If U is sufficiently
large compared to the switching potential γ, almost all permutations can be reached without
communication and we then need the cyclic shift technique to reinforce the lower bound.

8 Conclusions

In this paper we have studied some aspects of the complexity of communication of parallel
algorithms. We have presented new techniques for deriving lower bounds on communication
complexity for computations that can be represented by a certain class of DAGs. We have
demonstrated the effectiveness of this technique by deriving novel, mostly tight lower bounds
for the FFT and for sorting and permutation networks.

The present work can be naturally extended in several directions, some of which are briefly
outlined next. First, it would be interesting to apply the switching potential technique to other
DAG computations beyond the few case studies of this paper. One example are DAGs that
correspond to merging networks. We conjecture that the switching potential γ of any DAG
corresponding to a merging network of input size n = 2k satisfies log γ = Ω(n log n); we also
conjecture that the same bound holds for any network that can realize all cyclic shifts. It is
also natural to explore the application of the switching potential technique to other models
for distributed and hierarchical computation. Finally, one might ask whether the main lower
bounds presented in this paper also hold when recomputation of intermediate values is allowed.

As a broader consideration, our lower bound techniques, as well as others in the literature,
crucially exploit the circumstance that the execution of some algorithms embeds the evaluation
of the same DAG for different inputs. The development of communication lower bound tech-
niques for algorithms (e.g., heapsort or quicksort) which do not fall in this class remains an
open, challenging problem.
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[3] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica,
3(1):1–19, 1983.

[4] G. Ballard, J. Demmel, A. Gearhart, B. Lipshitz, Y. Oltchik, O. Schwartz, and S. Toledo.
Network topologies and inevitable contention. In Proceedings of the 1st International Work-
shop on Communication Optimizations in HPC (COMHPC), pages 39–52, 2016.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numerical
linear algebra. SIAM J. Matrix Anal. Appl., 32(3):866–901, 2011.

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communication
costs of fast matrix multiplication. J. ACM, 59(6), 2012.

[7] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS Spring
Joint Computer Conference, volume 32, pages 307–314, 1968.
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APPENDIX

A.1 An Improved Dominator Analysis for the FFT DAG

Given a DAG, D(k) denotes the maximum size of a set U of nodes that has a dominator W
of size k. Hong and Kung showed that, for the FFT DAG, D(k) ≤ 2k log k [31, Theorem 4.1].
In this section we show that this bound can be improved to D(k) ≤ k log 2k, which is tight for
every k power of two. This can be done by modifying the inductive proof of Hong and Kung
accordingly. In the proof we will use the following lemma.

Lemma 10. If 0 ≤ x ≤ y and x+ y ≤ m, then

x log x+ y log y + 2x ≤ m logm.

Proof. Let m′ = x+ y. Standard calculus shows that, in the interval 0 ≤ x ≤ m′/2,

x log x+ (m′ − x) log(m′ − x) + 2x ≤ m′ logm′.

Since, by hypothesis, m′ ≤ m, we obtain x log x+ y log y + 2x ≤ m′ logm′ ≤ m logm.

We are now ready to show the result claimed at the beginning of this section.

Proposition 1. For k ≥ 2, any node set U of the FFT DAG that has a dominator set of size
no more than k can have at most k log 2k nodes.

Proof. The proof is by induction on k. Since 2k log k = k log 2k when k = 2, the base case is
the same as in the proof of Hong and Kung.

We now mimic the inductive argument in the proof of Theorem 4.1 of [31]. We partition
the nodes of the FFT DAG into three parts, A, B, and C, defined as follows.

A = {nodes 〈w, l〉 s.t. 0 ≤ w < n/2 and l < log n},
B = {nodes 〈w, l〉 s.t. n/2 ≤ w < n and l < log n},
C = {nodes 〈w, l〉 s.t. l = log n}.

The set of nodes 〈w, l〉 ∈ C such that 0 ≤ w < n/2 is said to be the upper half of part C,
whereas the set of nodes 〈w, l〉 ∈ C such that n/2 ≤ w < n is said to be the lower half of part C.
(See also the figure depicted in the proof of Theorem 4.1 of [31].) The dominator is partitioned
into three parts, DA, DB , and DC , which have dA, dB, and dC nodes respectively. Without
loss of generality we assume dA ≤ dB . The set U is partitioned into three parts, UA, UB , and
UC , which have uA, uB , and uC nodes respectively. If uC > dC + 2dA then either there are
more than dA nodes of UC \DC in the upper half of part C or there are more than dA nodes of
UC \DC in the lower half of part C. In either case, there are more than dA independent paths
from the upper half inputs (i.e., the set of input nodes of the FFT DAG such that 0 ≤ w < n/2)
to these nodes in UC \DC . Since the set DA has only dA nodes, this is impossible. Therefore
we have

uC ≤ dC + 2dA.
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By inductive hypothesis we have

uA ≤ dA log 2dA,

uB ≤ dB log 2dB .

Thus
|U | ≤ dA log 2dA + dB log 2dB + dC + 2dA.

Combining Lemma 10 with the hypothesis x+ y ≤ m yields

x log 2x+ y log 2y + 2x ≤ m log 2m. (8)

Since 0 ≤ dA ≤ dB and dA + dB ≤ k − dC , applying (8) yields

|U | ≤ (k − dC) log 2(k − dC) + dC ≤ k log 2k,

as desired.
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