29 research outputs found

    Prompt Gamma-ray 3D-Imaging for Cultural Heritage Purposes

    Get PDF
    The development of new, and the enhancement of existing element-sensitive imaging methods utilizing neutrons of different energy regions was the aim of the European ANCIENT CHARM project. During the present work the setup for Prompt Gamma-ray Activation Analysis (PGAA) at the research reactor FRM 2 in Garching near Munich was modified to enable the spatial mapping of elemental abundances in the analysed samples. Because the PGAA setup at FRM 2 was under construction at the beginning of the project first tests and the development of calibration and measurement procedures for the new imaging method were done by the PGAA group at the Budapest Research Reactor in cooperation with the Institute for Nuclear Physics of the University of Cologne. Due to the higher neutron flux at the PGAA setup at FRM 2 the equipment was transferred from the Budapest Research Reactor to FRM 2 after the PGAA setup at FRM 2 started its regular operation. After further optimizations and the characterization of the setup, measurements were started on replicas of real archaeological objects before several measurements on real objects were performed and analysed. Several measurement configurations were applied. Additional to 2D and 3D imaging measurements a new application for the measurement of thin surface layers in the order of a few 100 micro-meters was developed. For the quantitative analysis of elemental distributions the exact knowledge of the neutron flux at each measured position in the analysed sample has to be known. Based on the well-established cold Neutron Tomography (NT) method a method and software have been developed, which enables the calculation of the neutron flux inside samples with the map of attenuation properties obtained through NT. A new data acquisition system was developed for the regular operation of the PGAA setup at FRM 2, which supports traditional bulk PGAA measurements as well as measurements in the new imaging configuration. The high automation of the system allows a significantly more efficient use of the available measurement time than it was the case before. The new software �HDTV� for the analysis of gamma-ray spectra, which is currently under active development at the Institute for Nuclear Physics of the University of Cologne, was extended by some functionality for the analysis of PGAA spectra. It is a proposed modern successor of the currently used software �TV� and allows the semiautomatic analysis of multiple, similar spectra, what is essential for the new imaging PGA method

    Integration of neutron-based elemental analysis and imaging methods and applications to cultural heritage research

    Get PDF
    The present paper describes the merits of the combined neutron-based elemental analysis and neutron imaging techniques, called prompt-gamma activation imaging - neutron tomography (PGAI-NT), and illustrates its application to cultural heritage science with relevant case studies. The approach is proven to be best applicable to samples with corroded/layered/gilded/painted/coated structures where the surface weighted response would bias the analysis results obtained with simpler, more widespread, but less representative techniques (such as Xray fluorescence spectroscopy or laser-ablation ICP-MS), as well as to answer questions related to the inner composition of a sealed objec

    Recent Advances in Small-Angle Neutron Scattering

    Get PDF
    Over the decades, small-angle neutron scattering has became a definitive method for structural investigation on the mesoscale between a few Angstrom up to a few 100 nm. This makes it an indispensable tool for non-destructive material investigations in fields ranging from chemistry and biology, over material sciences to solid state physics, especially taking into account the fundamental nature of neutrons, which makes it possible to probe different isotopes and, therefore, enhance contrast by choosing an appropriate isotope distribution or to probe the spin state of the investigated materials. This Special Issue is dedicated to elucidate the advances made with SANS over the last few years, which includes new instrumentation, sample environment and experimental control, as well as novel approaches and experimental techniques. The ideas and approaches collected here will serve both the experienced experimenter as well as the novice to appraise whether their specific experimental setup is feasible with new ideas

    Nuclear Physics for Cultural Heritage

    Get PDF
    Nuclear physics applications in medicine and energy are well known and widely reported. Less well known are the many important nuclear and related techniques used for the study, characterization, assessment and preservation of cultural heritage. There has been enormous progress in this field in recent years and the current review aims to provide the public with a popular and accessible account of this work. The Nuclear Physics Division of the EPS represents scientists from all branches of nuclear physics across Europe. One of its aims is the dissemination of knowledge about nuclear physics and its applications. This review is led by Division board member Anna Macková, Head of the Tandetron Laboratory at the Nuclear Physics Institute of the Czech Academy of Sciences, and the review committee includes four other members of the nuclear physics board interested in this area: Faiçal Azaiez, Johan Nyberg, Eli Piasetzky and Douglas MacGregor. To create a truly authoritative account, the Scientific Editors have invited contributions from leading experts across Europe, and this publication is the combined result of their work. The review is extensively illustrated with important discoveries and examples from archaeology, pre-history, history, geography, culture, religion and curation, which underline the breadth and importance of this field. The large number of groups and laboratories working in the study and preservation of cultural heritage across Europe indicate the enormous effort and importance attached by society to this activity

    Rapid Radiochemical Analysis of Radionuclides Difficult to Measure in Environmental and Waste Samples

    Get PDF

    Nuclear Physics for Cultural Heritage

    Get PDF
    Nuclear physics applications in medicine and energy are well known and widely reported. Less well known are the many important nuclear and related techniques used for the study, characterization, assessment and preservation of cultural heritage. There has been enormous progress in this field in recent years and the current review aims to provide the public with a popular and accessible account of this work. The Nuclear Physics Division of the EPS represents scientists from all branches of nuclear physics across Europe. One of its aims is the dissemination of knowledge about nuclear physics and its applications. This review is led by Division board member Anna Macková, Head of the Tandetron Laboratory at the Nuclear Physics Institute of the Czech Academy of Sciences, and the review committee includes four other members of the nuclear physics board interested in this area: Faiçal Azaiez, Johan Nyberg, Eli Piasetzky and Douglas MacGregor. To create a truly authoritative account, the Scientific Editors have invited contributions from leading experts across Europe, and this publication is the combined result of their work. The review is extensively illustrated with important discoveries and examples from archaeology, pre-history, history, geography, culture, religion and curation, which underline the breadth and importance of this field. The large number of groups and laboratories working in the study and preservation of cultural heritage across Europe indicate the enormous effort and importance attached by society to this activity
    corecore