80 research outputs found

    Biased feedback in brain-computer interfaces

    Get PDF
    Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject's current skill level

    How Well Can We Learn With Standard BCI Training Approaches? A Pilot Study.

    Get PDF
    International audienceWhile being very promising, brain-computer interfaces (BCI) remain barely used outside laboratories because they are not reliable enough. It has been suggested that current training approaches may be partly responsible for the poor reliability of BCIs as they do not satisfy recommendations from psychology and are thus inadequate. To determine to which extent such BCI training approaches (i.e., feedback and training tasks) are suitable to learn a skill, we used them in another context (without a BCI) to train 20 users to perform simple motor tasks. While such approaches enabled learning for most subjects, results also showed that 15% of them were unable to learn these simple motor tasks, which is close to the BCI illiteracy rate [1]. This further suggests that current BCI training approaches may be an important factor of illiteracy, thus deserving more attention

    Décoder la localisation de l'attention visuelle spatiale grâce au signal EEG

    Get PDF
    L’attention visuo-spatiale peut être déployée à différentes localisations dans l’espace indépendamment de la direction du regard, et des études ont montré que les composantes des potentiels reliés aux évènements (PRE) peuvent être un index fiable pour déterminer si celle-ci est déployée dans le champ visuel droit ou gauche. Cependant, la littérature ne permet pas d’affirmer qu’il soit possible d’obtenir une localisation spatiale plus précise du faisceau attentionnel en se basant sur le signal EEG lors d’une fixation centrale. Dans cette étude, nous avons utilisé une tâche d’indiçage de Posner modifiée pour déterminer la précision avec laquelle l’information contenue dans le signal EEG peut nous permettre de suivre l’attention visuelle spatiale endogène lors de séquences de stimulation d’une durée de 200 ms. Nous avons utilisé une machine à vecteur de support (MVS) et une validation croisée pour évaluer la précision du décodage, soit le pourcentage de prédictions correctes sur la localisation spatiale connue de l’attention. Nous verrons que les attributs basés sur les PREs montrent une précision de décodage de la localisation du focus attentionnel significative (57%, p<0.001, niveau de chance à 25%). Les réponses PREs ont également prédit avec succès si l’attention était présente ou non à une localisation particulière, avec une précision de décodage de 79% (p<0.001). Ces résultats seront discutés en termes de leurs implications pour le décodage de l’attention visuelle spatiale, et des directions futures pour la recherche seront proposées.Visuospatial attention can be deployed to different locations in space independently of ocular fixation, and studies have shown that event-related potential (ERP) components can effectively index whether such covert visuospatial attention is deployed to the left or right visual field. However, it is not clear whether we may obtain a more precise spatial localization of the focus of attention based on the EEG signals during central fixation. In this study, we used a modified Posner cueing task with an endogenous cue to determine the degree to which information in the EEG signal can be used to track visual spatial attention in presentation sequences lasting 200 ms. We used a machine learning classification method to evaluate how well EEG signals discriminate between four different locations of the focus of attention. We then used a multi-class support vector machine (SVM) and a leave-one-out cross-validation framework to evaluate the decoding accuracy (DA). We found that ERP-based features from occipital and parietal regions showed a statistically significant valid prediction of the location of the focus of visuospatial attention (DA = 57%, p < .001, chance-level 25%). The mean distance between the predicted and the true focus of attention was 0.62 letter positions, which represented a mean error of 0.55 degrees of visual angle. In addition, ERP responses also successfully predicted whether spatial attention was allocated or not to a given location with an accuracy of 79% (p < .001). These findings are discussed in terms of their implications for visuospatial attention decoding and future paths for research are proposed

    Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm

    Get PDF
    BACKGROUND: Brain-computer interface (BCI) systems have been developed to provide paralyzed individuals the ability to command the movements of an assistive device using only their brain activity. BCI systems are typically tested in a controlled laboratory environment were the user is focused solely on the brain-control task. However, for practical use in everyday life people must be able to use their brain-controlled device while mentally engaged with the cognitive responsibilities of daily activities and while compensating for any inherent dynamics of the device itself. BCIs that use electroencephalography (EEG) for movement control are often assumed to require significant mental effort, thus preventing users from thinking about anything else while using their BCI. This study tested the impact of cognitive load as well as speaking on the ability to use an EEG-based BCI. FINDINGS: Six participants controlled the two-dimensional (2D) movements of a simulated neuroprosthesis-arm under three different levels of cognitive distraction. The two higher cognitive load conditions also required simultaneously speaking during BCI use. On average, movement performance declined during higher levels of cognitive distraction, but only by a limited amount. Movement completion time increased by 7.2%, the percentage of targets successfully acquired declined by 11%, and path efficiency declined by 8.6%. Only the decline in percentage of targets acquired and path efficiency were statistically significant (p < 0.05). CONCLUSION: People who have relatively good movement control of an EEG-based BCI may be able to speak and perform other cognitively engaging activities with only a minor drop in BCI-control performance

    Training Users' Spatial Abilities to Improve Brain-Computer Interface Performance: A Theoretical Approach

    Get PDF
    National audience—Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain activity alone (typically measured by ElectroEn-cephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user performance led the community to look for predictors of MI-BCI control ability. Mainly, neurophysiolog-ical and psychological predictors of MI-BCI performance have been proposed. In this paper, a newly-depicted lever to increase MI-BCI performance is introduced: namely a spatial ability training. The aims of this paper are to clarify the relationship between spatial abilities and mental imagery tasks used in MI-BCI paradigms, and to provide suggestions to include a spatial ability training in MI-BCI training protocols

    Subject-oriented training for motor imagery brain-computer interfaces

    Get PDF
    Successful operation of motor imagery (MI)-based brain-computer interfaces (BCI) requires mutual adaptation between the human subject and the BCI. Traditional training methods, as well as more recent ones based on co-adaptation, have mainly focused on the machine-learning aspects of BCI training. This work presents a novel co-adaptive training protocol shifting the focus on subject-related performances and the optimal accommodation of the interactions between the two learning agents of the BCI loop. Preliminary results with 8 able-bodied individuals demonstrate that the proposed method has been able to bring 3 naive users into control of a MI BCI within a few runs and to improve the BCI performances of 3 experienced BCI users by an average of 0.36 bits/sec

    Brain-computer interfacing using modulations of alpha activity induced by covert shifts of attention

    Get PDF
    Contains fulltext : 99949.pdf (publisher's version ) (Open Access)Background: Visual brain-computer interfaces (BCIs) often yield high performance only when targets are fixated with the eyes. Furthermore, many paradigms use intense visual stimulation, which can be irritating especially in long BCI sessions. However, BCIs can more directly directly tap the neural processes underlying visual attention. Covert shifts of visual attention induce changes in oscillatory alpha activity in posterior cortex, even in the absence of visual stimulation. The aim was to investigate whether different pairs of directions of attention shifts can be reliably differentiated based on the electroencephalogram. To this end, healthy participants (N = 8) had to strictly fixate a central dot and covertly shift visual attention to one out of six cued directions. Results: Covert attention shifts induced a prolonged alpha synchronization over posterior electrode sites (PO and O electrodes). Spectral changes had specific topographies so that different pairs of directions could be differentiated. There was substantial variation across participants with respect to the direction pairs that could be reliably classified. Mean accuracy for the best-classifiable pair amounted to 74.6%. Furthermore, an alpha power index obtained during a relaxation measurement showed to be predictive of peak BCI performance (r = .66). Conclusions: Results confirm posterior alpha power modulations as a viable input modality for gaze-independent EEG-based BCIs. The pair of directions yielding optimal performance varies across participants. Consequently, participants with low control for standard directions such as left-right might resort to other pairs of directions including top and bottom. Additionally, a simple alpha index was shown to predict prospective BCI performance.10 p
    corecore