11 research outputs found

    Transmitter and Receiver Architectures for Molecular Communications: A Survey on Physical Design with Modulation, Coding, and Detection Techniques

    Get PDF
    Inspired by nature, molecular communications (MC), i.e., the use of molecules to encode, transmit, and receive information, stands as the most promising communication paradigm to realize the nanonetworks. Even though there has been extensive theoretical research toward nanoscale MC, there are no examples of implemented nanoscale MC networks. The main reason for this lies in the peculiarities of nanoscale physics, challenges in nanoscale fabrication, and highly stochastic nature of the biochemical domain of envisioned nanonetwork applications. This mandates developing novel device architectures and communication methods compatible with MC constraints. To that end, various transmitter and receiver designs for MC have been proposed in the literature together with numerable modulation, coding, and detection techniques. However, these works fall into domains of a very wide spectrum of disciplines, including, but not limited to, information and communication theory, quantum physics, materials science, nanofabrication, physiology, and synthetic biology. Therefore, we believe it is imperative for the progress of the field that an organized exposition of cumulative knowledge on the subject matter can be compiled. Thus, to fill this gap, in this comprehensive survey, we review the existing literature on transmitter and receiver architectures toward realizing MC among nanomaterial-based nanomachines and/or biological entities and provide a complete overview of modulation, coding, and detection techniques employed for MC. Moreover, we identify the most significant shortcomings and challenges in all these research areas and propose potential solutions to overcome some of them.This work was supported in part by the European Research Council (ERC) Projects MINERVA under Grant ERC-2013-CoG #616922 and MINERGRACE under Grant ERC-2017-PoC #780645

    Energy Harvesting-Aware Design for Wireless Nanonetworks

    Get PDF
    Nanotechnology advancement promises to enable a new era of computing and communication devices by shifting micro scale chip design to nano scale chip design. Nanonetworks are envisioned as artifacts of nanotechnology in the domain of networking and communication. These networks will consist of nodes of nanometer to micrometer in size, with a communication range up to 1 meter. These nodes could be used in various biomedical, industrial, and environmental monitoring applications, where a nanoscale level of sensing, monitoring, control and communication is required. The special characteristics of nanonetworks require the revisiting of network design. More specifically, nanoscale limitations, new paradigms of THz communication, and power supply via energy harvesting are the main issues that are not included in traditional network design methods. In this regard, this dissertation investigates and develops some solutions in the realization of nanonetworks. Particularly, the following major solutions are investigated. (I) The energy harvesting and energy consumption processes are modeled and evaluated simultaneously. This model includes the stochastic nature of energy arrival as well as the pulse-based communication model for energy consumption. The model identifies the effect of various parameters in this joint process. (II) Next, an optimization problem is developed to find the best combination of these parameters. Specifically, optimum values for packet size, code weight, and repetition are found in order to minimize the energy consumption while satisfying some application requirements (i.e., delay and reliability). (III) An optimum policy for energy consumption to achieve the maximum utilization of harvested energy is developed. The goal of this scheme is to take advantage of available harvested energy as much as possible while satisfying defined performance metrics. (IV) A communication scheme that tries to maximize the data throughput via a distributed and scalable coordination while avoiding the collision among neighbors is the last problem to be investigated. The goal is to design an energy harvesting-aware and distributed mechanism that could coordinate data transmission among neighbors. (V) Finally, all these solutions are combined together to create a data link layer model for nanonodes. We believe resolving these issues could be the first step towards an energy harvesting-aware network design for wireless nanosensor networks

    Internet-das-Bionano-Coisas: Conectando-se às Nanomáquinas

    Get PDF
    The Internet-of-things attracts the attention of many researchers in computer networks with the challenge of providing connectivity to a huge quantity of devices. This reality can be further complicated once again with the recent proposed Internet-of-bionano-things. Nanomachines, natural or synthetic, will be able to communicate to each other and to the Internet through the means of communication systems that are being developed at the nano-scale with the goal of cooperatively executing complex tasks. This technology requires a complete revision of the TCP/IP architecture to accommodate the requirements and demands of the nanonetworks. This chapter aims at introducing this research field to the computer network community, presenting the different types of communicating networks, an initial reformulation of the TCP/IP architecture, research challenges and the applications for the nanonetworks. This technology enables a revolution in the society and affects directly areas, such as medicine, agriculture, pollution and even industry

    On the scalability limits of communication networks to the nanoscale

    Get PDF
    Nanosystems, integrated systems with a total size of a few micrometers, are capable of interacting at the nanoscale, but their short operating range limits their usefulness in practical macro-scale scenarios. Nanonetworks, the interconnection of nanosystems, will extend their range of operation by allowing communication among nanosystems, thereby greatly enhancing their potential applications. In order to integrate communication capabilities into nanosystems, their communication subsystem needs to shrink to a size of a few micrometers. There are doubts about the feasibility of scaling down current metallic antennas to such a small size, mainly because their resonant frequency would be extremely high (in the optical domain) leading to a large free-space attenuation of the radiated EM waves. In consequence, as an alternative to implement wireless communications among nanosystems, two novel paradigms have emerged: molecular communication and graphene-enabled wireless communications. On the one hand, molecular communication is based on the exchange of molecules among nanosystems, inspired by communication among living cells. In Diffusion-based Molecular Communication (DMC), the emitted molecules propagate throughout the environment following a diffusion process until they reach the receiver. On the other hand, graphene, a one-atom-thick sheet of carbon atoms, has been proposed to implement graphene plasmonic RF antennas, or graphennas. Graphennas with a size in the order of a few micrometers show plasmonic effects which allow them to radiate EM waves in the terahertz band. Graphennas are the enabling technology of Graphene-enabled Wireless Communications (GWC). In order to answer the question of how communication networks will scale when their size shrinks, this thesis presents a scalability analysis of the performance metrics of communication networks to the nanoscale, following a general model with as few assumptions as possible. In the case of DMC, two detection schemes are proposed: amplitude detection and energy detection. Key performance metrics are identified and their scalability with respect to the transmission distance is found to differ significantly from the case of traditional wireless communications. These unique scaling trends present novel challenges which require the design of novel networking protocols specially adapted to DMC networks. The analysis of the propagation of plasmonic waves in graphennas allows determining their radiation performance. In particular, the resonant frequency of graphennas is not only lower than in metallic antennas, but it also increases more slowly as their length is reduced to the nanoscale. Moreover, the study of parameters such as the graphenna dimensions, the relaxation time of graphene and the applied chemical potential shows the tunability of graphennas in a wide frequency range. Furthermore, an experimental setup to measure graphennas based on feeding them by means of a photoconductive source is described. The effects of molecular absorption in the short-range terahertz channel, which corresponds to the expected operating scenario of graphennas, are analyzed. Molecular absorption is a process in which molecules present in the atmosphere absorb part of the energy of the terahertz EM waves radiated by graphennas, causing impairments in the performance of GWC. The study of molecular absorption allows quantifying this loss by deriving relevant performance metrics in this scenario, which show novel scalability trends as a function of the transmission distance with respect to the case of free-space propagation. Finally, the channel capacity of GWC is found to scale better as the antenna size is reduced than in traditional wireless communications. In consequence, GWC will require lower transmission power to achieve a given performance target. These results establish a general framework which may serve designers as a guide to implement wireless communication networks among nanosystems

    Odor-Based Molecular Communications: State-of-the-Art, Vision, Challenges, and Frontier Directions

    Full text link
    Humankind mimics the processes and strategies that nature has perfected and uses them as a model to address its problems. That has recently found a new direction, i.e., a novel communication technology called molecular communication (MC), using molecules to encode, transmit, and receive information. Despite extensive research, an innate MC method with plenty of natural instances, i.e., olfactory or odor communication, has not yet been studied with the tools of information and communication technologies (ICT). Existing studies focus on digitizing this sense and developing actuators without inspecting the principles of odor-based information coding and MC, which significantly limits its application potential. Hence, there is a need to focus cross-disciplinary research efforts to reveal the fundamentals of this unconventional communication modality from an ICT perspective. The ways of natural odor MC in nature need to be anatomized and engineered for end-to-end communication among humans and human-made things to enable several multi-sense augmented reality technologies reinforced with olfactory senses for novel applications and solutions in the Internet of Everything (IoE). This paper introduces the concept of odor-based molecular communication (OMC) and provides a comprehensive examination of olfactory systems. It explores odor communication in nature, including aspects of odor information, channels, reception, spatial perception, and cognitive functions. Additionally, a comprehensive comparison of various communication systems sets the foundation for further investigation. By highlighting the unique characteristics, advantages, and potential applications of OMC through this comparative analysis, the paper lays the groundwork for exploring the modeling of an end-to-end OMC channel, considering the design of OMC transmitters and receivers, and developing innovative OMC techniques

    Neurosciences and Wireless Networks: The Potential of Brain-Type Communications and Their Applications

    Get PDF
    This paper presents the first comprehensive tutorial on a promising research field located at the frontier of two well-established domains, neurosciences and wireless communications, motivated by the ongoing efforts to define the Sixth Generation of Mobile Networks (6G). In particular, this tutorial first provides a novel integrative approach that bridges the gap between these two seemingly disparate fields. Then, we present the state-of-the-art and key challenges of these two topics. In particular, we propose a novel systematization that divides the contributions into two groups, one focused on what neurosciences will offer to future wireless technologies in terms of new applications and systems architecture (Neurosciences for Wireless Networks), and the other on how wireless communication theory and next-generation wireless systems can provide new ways to study the brain (Wireless Networks for Neurosciences). For the first group, we explain concretely how current scientific understanding of the brain would enable new applications within the context of a new type of service that we dub brain-type communications and that has more stringent requirements than human- and machine-type communication. In this regard, we expose the key requirements of brain-type communication services and discuss how future wireless networks can be equipped to deal with such services. Meanwhile, for the second group, we thoroughly explore modern communication systems paradigms, including Internet of Bio-Nano Things and wireless-integrated brain-machine interfaces, in addition to highlighting how complex systems tools can help bridging the upcoming advances of wireless technologies and applications of neurosciences. Brain-controlled vehicles are then presented as our case study to demonstrate for both groups the potential created by the convergence of neurosciences and wireless communications, probably in 6G. In summary, this tutorial is expected to provide a largely missing articulation between neurosciences and wireless communications while delineating concrete ways to move forward in such an interdisciplinary endeavor
    corecore