30,102 research outputs found

    Neuronal correlates of functional magnetic resonance imaging in human temporal cortex

    Get PDF
    The relationship between changes in functional magnetic resonance imaging and neuronal activity remains controversial. Data collected during awake neurosurgical procedures for the treatment of epilepsy provided a rare opportunity to examine this relationship in human temporal association cortex. We obtained functional magnetic resonance imaging blood oxygen dependent signals, single neuronal activity and local field potentials from 8 to 300 Hz at 13 temporal cortical sites, from nine subjects, during paired associate learning and control measures. The relation between the functional magnetic resonance imaging signal and the electrophysiologic parameters was assessed in two ways: colocalization between significant changes in these signals on the same paired associate-control comparisons and multiple linear regressions of the electrophysiologic measures on the functional magnetic resonance imaging signal, across all tasks. Significant colocalization was present between increased functional magnetic resonance imaging signals and increased local field potentials power in the 50–250 Hz range. Local field potentials power greater than 100 Hz was also a significant regressor for the functional magnetic resonance imaging signal, establishing this local field potentials frequency range as a neuronal correlate of the functional magnetic resonance imaging signal. There was a trend for a relation between power in some low frequency local field potentials frequencies and the functional magnetic resonance imaging signal, for 8–15 Hz increases in the colocalization analysis and 16–23 Hz in the multiple linear regression analysis. Neither analysis provided evidence for an independent relation to frequency of single neuron activity

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship

    Die Rolle der Zielnähe und der investierten Anstrengung für den erwarteten Wert einer Handlung

    Get PDF
    In human neuroscientific research, there has been an increasing interest in how the brain computes the value of an anticipated outcome. However, evidence is still missing about which valuation related brain regions are modulated by the proximity to an expected goal and the previously invested effort to reach a goal. The aim of this dissertation is to investigate the effects of goal proximity and invested effort on valuation related regions in the human brain. We addressed this question in two fMRI studies by integrating a commonly used reward anticipation task in differential versions of a Multitrial Reward Schedule Paradigm. In both experiments, subjects had to perform consecutive reward anticipation tasks under two different reward contingencies: in the delayed condition, participants received a monetary reward only after successful completion of multiple consecutive trials. In the immediate condition, money was earned after every successful trial. In the first study, we could demonstrate that the rostral cingulate zone of the posterior medial frontal cortex signals action value contingent to goal proximity, thereby replicating neurophysiological findings about goal proximity signals in a homologous region in non-human primates. The findings of the second study imply that brain regions associated with general cognitive control processes are modulated by previous effort investment. Furthermore, we found the posterior lateral prefrontal cortex and the orbitofrontal cortex to be involved in coding for the effort-based context of a situation. In sum, these results extend the role of the human rostral cingulate zone in outcome evaluation to the continuous updating of action values over a course of action steps based on the proximity to the expected reward. Furthermore, we tentatively suggest that previous effort investment invokes processes under the control of the executive system, and that posterior lateral prefrontal cortex and the orbitofrontal cortex are involved in an effort-based context representation that can be used for outcome evaluation that is dependent on the characteristics of the current situation.Derzeit besteht im Bereich der Neurowissenschaften ein großes Interesse daran aufzuklären, auf welche Weise verschiedene Variablen die Wertigkeit eines erwarteten Handlungsziels beeinflussen bzw. welche Hirnregionen an der Repräsentation der Wertigkeit eines Handlungsziels beteiligt sind. Die meisten Untersuchungen beziehen sich dabei auf Einflussgrößen wie die erwartete Belohnungshöhe, die Wahrscheinlichkeit, mit der ein bestimmtes Ereignis eintritt, oder die Dauer bis zum Erhalt einer Belohnung. Bisher liegen jedoch kaum Untersuchungen vor bezüglich zweier anderer Variablen, die ebenfalls den erwarteten Wert eines Handlungsergebnisses beeinflussen. Das sind (a) die Nähe zu dem erwarteten Ziel und (b) die bisher investierte Anstrengung, um ein Ziel zu erreichen. Das Ziel der vorliegenden Dissertation ist zu untersuchen, wie die Nähe zum Ziel und die bisher investierte Anstrengung Gehirnregionen beeinflussen, die mit der Repräsentation von Wertigkeit im Zusammenhang stehen. Dazu führten wir zwei fMRT-Studien durch, in denen wir eine klassische Belohnungs-Antizipationsaufgabe in unterschiedliche Versionen eines „Multitrial Reward Schedule“ Paradigmas integriert haben. Das bedeutet, dass die Probanden Belohnungs-Antizipationsaufgaben unter zwei unterschiedlichen Belohnungskontingenzen bearbeiteten: In der verzögerten Bedingung erhielten die Probanden einen Geldbetrag nach der erfolgreichen Bearbeitung von mehreren aufeinanderfolgenden Aufgaben, in der direkten Bedingung dagegen nach jeder korrekt ausgeführten Aufgabe. In der ersten Studie konnte eine sukzessiv ansteigende Aktivität in Abhängigkeit zur Zielnähe in der rostralen cingulären Zone identifiziert werden. Das deutet darauf hin, dass dieses Areal den Wert einer Handlung in Abhängigkeit zur Nähe zum Ziel kodiert. Die Ergebnisse der zweiten Studie zeigten, dass die bisher investierte Anstrengung kortikale Regionen moduliert, die klassischerweise mit kognitiven Kontrollfunktionen in Zusammenhang gebracht werden. Außerdem repräsentierten der posteriore laterale präfrontale Cortex und der orbitofrontale Cortex den motivationalen Kontext eines Trials anhand des Risikos des Verlustes von bisher investierter Anstrengung. Insgesamt weisen diese Befunde darauf hin, dass die rostrale cinguläre Zone eine entscheidende Rolle spielt für die Kontrolle sequenzieller Handlungsstufen, die auf eine verzögerte Belohnung ausgerichtet sind. Diese Kontrollfunktion scheint auf der kontinuierlichen Aktualisierung des Wertes einer Handlungsstufe zu basieren, der von der aktuellen Zielnähe bestimmt wird. Die Befunde der zweiten Studie lassen darauf schließen, dass sich die bisher investierte Anstrengung zur Erreichung eines Handlungsziels auf die Bereitstellung von allgemeinen kognitiven Ressourcen auswirkt. Das Risiko des Verlustes von bisher investierter Anstrengung kann außerdem ein kontextuelles Merkmal der Situation darstellen, das als Bezugsrahmen für die Evaluation des erwarteten Wertes dienen kann

    Functional and Biochemical Alterations of the Medial Frontal Cortex in Obsessive-Compulsive Disorder

    Get PDF
    Context: The medial frontal cortex (MFC), including the dorsal anterior cingulate (dAC) and supplementary motor area (SMA), is critical for adaptive and inhibitory control of behaviour. Abnormally high MFC activity has been a consistent finding in functional neuroimaging studies of obsessive-compulsive disorder (OCD). However, the precise regions and the neural alterations associated with this abnormality remain unclear. Objective: To examine the functional and biochemical properties of the MFC in patients with OCD. Design: Cross-sectional design combining volume localized proton magnetic resonance spectroscopy (1H-MRS) and functional MRI (fMRI) with an inhibitory control paradigm (the Multi-Source Interference Task; MSIT) designed to activate the MFC. Setting: Healthy control participants and OCD patients recruited from the general community. Participants: Nineteen OCD patients (10 male, and 9 female) and nineteen age, gender, education and intelligence-matched healthy control participants. Main Outcome Measures: Psychometric measures of symptom severity, MSIT behavioural performance, blood-oxygen-level-dependent (BOLD) activation and 1H-MRS brain metabolite concentrations. Results: MSIT behavioural performance did not differ between OCD patients and control subjects. Reaction-time interference and response errors were correlated with BOLD activation in the dAC region in both groups. Relative to control subjects, OCD patients showed hyper- activation of the SMA during high response-conflict (incongruent > congruent) trials and hyper-activation of the rostral anterior cingulate (rAC) region during low response- conflict (incongruent < congruent) trials. OCD patients also showed reduced levels of neuronal N-acetylaspartate in the dAC region, which was negatively correlated with their BOLD activation of the region. Conclusions: Our findings suggest that hyper-activation of the medial frontal cortex in OCD patients may be a compensatory response to neural pathology in the region. This relationship may partly explain the nature of inhibitory control deficits that are frequently seen in this group and may serve as a focus of future treatment studies

    Thalamo-cortical network activity between migraine attacks. Insights from MRI-based microstructural and functional resting-state network correlation analysis

    Get PDF
    BACKGROUND: Resting state magnetic resonance imaging allows studying functionally interconnected brain networks. Here we were aimed to verify functional connectivity between brain networks at rest and its relationship with thalamic microstructure in migraine without aura (MO) patients between attacks. METHODS: Eighteen patients with untreated MO underwent 3 T MRI scans and were compared to a group of 19 healthy volunteers (HV). We used MRI to collect resting state data among two selected resting state networks, identified using group independent component (IC) analysis. Fractional anisotropy (FA) and mean diffusivity (MD) values of bilateral thalami were retrieved from a previous diffusion tensor imaging study on the same subjects and correlated with resting state ICs Z-scores. RESULTS: In comparison to HV, in MO we found significant reduced functional connectivity between the default mode network and the visuo-spatial system. Both HV and migraine patients selected ICs Z-scores correlated negatively with FA values of the thalamus bilaterally. CONCLUSIONS: The present results are the first evidence supporting the hypothesis that an abnormal resting within networks connectivity associated with significant differences in baseline thalamic microstructure could contribute to interictal migraine pathophysiology

    Fine-Scale Spatial Organization of Face and Object Selectivity in the Temporal Lobe: Do Functional Magnetic Resonance Imaging, Optical Imaging, and Electrophysiology Agree?

    Get PDF
    The spatial organization of the brain's object and face representations in the temporal lobe is critical for understanding high-level vision and cognition but is poorly understood. Recently, exciting progress has been made using advanced imaging and physiology methods in humans and nonhuman primates, and the combination of such methods may be particularly powerful. Studies applying these methods help us to understand how neuronal activity, optical imaging, and functional magnetic resonance imaging signals are related within the temporal lobe, and to uncover the fine-grained and large-scale spatial organization of object and face representations in the primate brain

    FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections

    Get PDF
    Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections
    corecore