13 research outputs found

    Enhancing Upper Limb Prostheses Through Neuromorphic Sensory Feedback

    Get PDF
    Upper limb prostheses are rapidly improving in terms of both control and sensory feedback, giving rise to lifelike robotic devices that aim to restore function to amputees. Recent progress in forward control has enabled prosthesis users to make complicated grip patterns with a prosthetic hand and nerve stimulation has enabled sensations of touch in the missing hand of an amputee. A brief overview of the motivation behind the work in this thesis is given in Chapter 1, which is followed by a general overview of the field and state of the art research (Chapter 2). Chapters 3 and 4 look at the use of closed loop tactile feedback for improving prosthesis grasping functionality. This entails development of two algorithms for improving object manipulation (Chapter 3) and the first real-time implementation of neuromorphic tactile signals being used as feedback to a prosthesis controller for improved grasping (Chapter 4). The second half of the thesis (Chatpers 5 - 7) details how sensory information can be conveyed back to an amputee and how the tactile sensations can be utilized for creating a more lifelike prosthesis. Noninvasive electrical nerve stimulation was shown to provide sensations in multiple regions of the phantom hand of amputees both with and without targeted sensory reinnervation surgery (Chapter 5). A multilayered electronic dermis (e-dermis) was developed to mimic the behavior of receptors in the skin to provide, for the first time, sensations of both touch and pain back to an amputee and the prosthesis (Chapter 6). Finally, the first demonstration of sensory feedback as a key component of phantom hand movement for myoelectric pattern recognition shows that enhanced perceptions of the phantom hand can lead to improved prosthesis control (Chapter 7). This work provides the first demonstration of how amputees can perceive multiple tactile sensations through a neuromorphic stimulation paradigm. Furthermore, it describes the unique role that nerve stimulation and phantom hand activation play in the sensorimotor loop of upper limb amputees

    Flexible Carbon-Based Electronics and Sensorized Neuroprosthesis

    Get PDF
    In the United States alone, there are more than 2 million people living with limb loss and prosthetic devices have long been the solution to recover their activities of daily living. However, many of the prosthetic users reported their dissatisfaction with current prostheses and some even abandoned theirs due to poor comfort and limited performance. To improve prosthetic control, advancements in surgical interfaces and sensorized neuroprosthesis are two major focus and have seen great potential. Both perspectives are presented in this work. Several reinnervated muscle surgeries have been invented to enable a better communication with muscle and nerves and a stable interface is essential to record robust muscle signals which are utilized to control a neuroprosthesis. Each muscle target may have slightly different anatomy and the current state-of-the-art implantable electrodes are complex and not easily reproducible and customizable. To address this problem, I present a simple, rapid electrode fabrication method to record muscle signals and easy-to-use electrode materials using carbon black/polydimethylsiloxane (PDMS) composite. Acute in vivo testing shows that the electrodes are highly functional and have the potential to enable large-scale muscle signal recordings with extensive data to improve the neuroprosthetic control. In addition to novel neural interfaces, sensory perception is also critical to improve the manipulation of objects with a prosthesis and enhances prosthetic performance and embodiment with feedback to the user. With recent advances in tactile sensing technology and neuromorphic stimulation interface, efficient real-time communication and functioning between them are still missing. In this work, I build and test a closed-loop system that integrates tactile sensing and neuromorphic electrical stimulation. The system functions in real time and the parameters of the sensory stimulation through transcutaneous electrical nerve stimulation (TENS) convey temporal information and dynamically change responding to real-time tactile data

    Somatic Nerve Reconstruction and Reinnervation

    Get PDF
    Somatic nerves include somatic sensory and somatic motor, both of which are part of the peripheral nervous system. When somatic motor nerve or somatosensory nerve produces injury, then it belongs to peripheral nerve injury. Peripheral nerve injuries are common disease and complex process in clinical surgery. The severe physical dysfunctions such as motor/sensory loss, dyskinesia, and nutritional disorders in the area innervated caused by the peripheral nerve injury and even leave a lifelong disability. Therefore, somatic nerve reconstruction is essential and remains a major challenge for surgeons. Therapeutic methods include neurorrhaphy and nerve transfer or redistribution reconstruction; traditional Chinese medicine-assisted nerve regeneration and repair methods have been increasingly improved, even the functional recovery of peripheral nerve has not made breakthrough progress. All kinds of reconstruction and neural rehabilitation technologies have their own advantages, but they all have some limitations. Although great progress has been made in nerve electrophysiology and microsurgery, the results are still unsatisfactory. This chapter reviews the application of peripheral nerve reconstruction technology and briefly describes the advantages and disadvantages of each method, which will be useful for the selection of clinical treatment

    A hybrid sensory feedback system for thermal nociceptive warning and protection in prosthetic hand

    Get PDF
    BackgroundAdvanced prosthetic hands may embed nanosensors and microelectronics in their cosmetic skin. Heat influx may cause damage to these delicate structures. Protecting the integrity of the prosthetic hand becomes critical and necessary to ensure sustainable function. This study aims to mimic the sensorimotor control strategy of the human hand in perceiving nociceptive stimuli and triggering self-protective mechanisms and to investigate how similar neuromorphic mechanisms implemented in prosthetic hand can allow amputees to both volitionally release a hot object upon a nociceptive warning and achieve reinforced release via a bionic withdrawal reflex.MethodsA steady-state temperature prediction algorithm was proposed to shorten the long response time of a thermosensitive temperature sensor. A hybrid sensory strategy for transmitting force and a nociceptive temperature warning using transcutaneous electrical nerve stimulation based on evoked tactile sensations was designed to reconstruct the nociceptive sensory loop for amputees. A bionic withdrawal reflex using neuromorphic muscle control technology was used so that the prosthetic hand reflexively opened when a harmful temperature was detected. Four able-bodied subjects and two forearm amputees randomly grasped a tube at the different temperatures based on these strategies.ResultsThe average prediction error of temperature prediction algorithm was 8.30 ± 6.00%. The average success rate of six subjects in perceiving force and nociceptive temperature warnings was 86.90 and 94.30%, respectively. Under the reinforcement control mode in Test 2, the median reaction time of all subjects was 1.39 s, which was significantly faster than the median reaction time of 1.93 s in Test 1, in which two able-bodied subjects and two amputees participated. Results demonstrated the effectiveness of the integration of nociceptive sensory strategy and withdrawal reflex control strategy in a closed loop and also showed that amputees restored the warning of nociceptive sensation while also being able to withdraw from thermal danger through both voluntary and reflexive protection.ConclusionThis study demonstrated that it is feasible to restore the sensorimotor ability of amputees to warn and react against thermal nociceptive stimuli. Results further showed that the voluntary release and withdrawal reflex can work together to reinforce heat protection. Nevertheless, fusing voluntary and reflex functions for prosthetic performance in activities of daily living awaits a more cogent strategy in sensorimotor control

    Hierarchical tactile sensation integration from prosthetic fingertips enables multi-texture surface recognition\u3csup\u3e†\u3c/sup\u3e

    Get PDF
    Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    The SoftHand Pro: Functional evaluation of a novel, flexible, and robust myoelectric prosthesis

    Get PDF
    Roughly one quarter of active upper limb prosthetic technology is rejected by the user, and user surveys have identified key areas requiring improvement: function, comfort, cost, durability, and appearance. Here we present the first systematic, clinical assessment of a novel prosthetic hand, the SoftHand Pro (SHP), in participants with transradial amputation and age-matched, limb-intact participants. The SHP is a robust and functional prosthetic hand that minimizes cost and weight using an underactuated design with a single motor. Participants with limb loss were evaluated on functional clinical measures before and after a 6-8 hour training period with the SHP as well as with their own prosthesis; limb-intact participants were tested only before and after SHP training. Participants with limb loss also evaluated their own prosthesis and the SHP (following training) using subjective questionnaires. Both objective and subjective results were positive and illuminated the strengths and weaknesses of the SHP. In particular, results pre-training show the SHP is easy to use, and significant improvement in the Activities Measure for Upper Limb Amputees in both groups following a 6-8 hour training highlights the ease of learning the unique features of the SHP (median improvement: 4.71 and 3.26 and p = 0.009 and 0.036 for limb loss and limb-intact groups, respectively). Further, we found no difference in performance compared to participant's own commercial devices in several clinical measures and found performance surpassing these devices on two functional tasks, buttoning a shirt and using a cell phone, suggesting a functional prosthetic design. Finally, improvements are needed in the SHP design and/or training in light of poor results in small object manipulation. Taken together, these results show the promise of the SHP, a flexible and adaptive prosthetic hand, and pave a path forward to ensuring higher functionality in future

    Improving the arm-hand coordination in neuroprosthetics control with prior information from muscle activity

    Get PDF
    Humans use their hands mainly for grasping and manipulating objects, performing simple and dexterous tasks. The loss of a hand may significantly affect one's working status and independence in daily life. A restoration of the grasping ability is important to improve the quality of the daily life of the patients with motion disorders. Although neuroprosthetic devices restore partially the lost functionality, the user acceptance is low, possibly due to the artificial and unnatural operation of the devices. This thesis addresses this problem in reach-to-grasp motions with the development of shared control approaches that enable a seamless and more natural operation of hand prosthesis. In the first part, we focus on the identification of the grasping intention during the reach-to-grasp motion with able-bodied individuals. We propose an Electromyographic (EMG)-based learning approach that decodes the grasping intention at an early stage of reach-to-grasp motion, i.e. before the final grasp/hand pre-shape takes place. In this approach, the utilization of Echo State Networks encloses efficiently the dynamics of the muscle activation enabling a fast identification of the grasp type in real-time. We also examine the impact of different object distance and speed on the detection time and accuracy of the classifier. Although the distance from the object has no significant effect, fast motions influence significantly the performance. In the second part, we evaluate and extend our approach on four real end-users, i.e. individuals with below the elbow amputation. For addressing the variability of the EMG signals, we separate the reach-to-grasp motion into three phases, with respect to the arm extension. A multivariate analysis of variance on the muscle activity reveals significant differences among the motion phases. Additionally, we examine the classification performance on these phases and compare the performance of different pattern recognition methods. An on-line evaluation with an upper-limb prosthesis shows that the inclusion of the reaching motion in the training of the classifier improves importantly classification accuracy. In the last part of the thesis, we explore further the concept of motion phases on the EMG signals and its potentials on addressing the variability of the signals. We model the dynamic muscle contractions of each class with Gaussian distributions over the different phases of the overall motion. We extend our previous analysis providing insights on the LDA projection and quantifying the similarity of the distributions of the classes (i.e grasp types) with the Hellinger distance. We notice larger values of the Helinger distance and, thus, smaller overlaps among the classes with the segmentation to motion phases. A Linear Discriminant Analysis classifier with phase segmentation affects positively the classification accuracy

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy

    Optimizing Common Spatial Pattern for a Motor Imagerybased BCI by Eigenvector Filteration

    Get PDF
    One of the fundamental criterion for the successful application of a brain-computer interface (BCI) system is to extract significant features that confine invariant characteristics specific to each brain state. Distinct features play an important role in enabling a computer to associate different electroencephalogram (EEG) signals to different brain states. To ease the workload on the feature extractor and enhance separability between different brain states, the data is often transformed or filtered to maximize separability before feature extraction. The common spatial patterns (CSP) approach can achieve this by linearly projecting the multichannel EEG data into a surrogate data space by the weighted summation of the appropriate channels. However, choosing the optimal spatial filters is very significant in the projection of the data and this has a direct impact on classification. This paper presents an optimized pattern selection method from the CSP filter for improved classification accuracy. Based on the hypothesis that values closer to zero in the CSP filter introduce noise rather than useful information, the CSP filter is modified by analyzing the CSP filter and removing/filtering the degradative or insignificant values from the filter. This hypothesis is tested by comparing the BCI results of eight subjects using the conventional CSP filters and the optimized CSP filter. In majority of the cases the latter produces better performance in terms of the overall classification accuracy
    corecore