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Abstract

Humans use their hands mainly for grasping and manipulating objects and

for performing simple and dexterous tasks. The loss of a hand can signifi-

cantly affects one’s working status and independence in daily life. A restoration

of the grasping ability is important to improve the quality of the daily life of

the individuals with motion disorders. Although neuroprosthetic devices restore

partially the lost functionality, the user acceptance is low, possibly due to the

artificial and unnatural operation of the devices. We seek to improve the user

acceptance of prosthetic devices, hence we developed control approaches that

enable a seamless and more natural operation of hand prostheses.

The motion of an able hand, when grasping an object, is divided into two

phases: (i) the reaching phase, i.e., when the hand approaches the object, and

(ii) the grasping phase, i.e., when the hand closes and touches the object. During

the reaching phase, the configuration of the fingers changes continuously as the

hand moves closer to the object. The closure of the hand is coupled with the

arm extension, resulting in a smooth coordination of the arm, hand and finger.

However, current approaches in neuroprosthetic control enable the hand closure

activation only after the completion of the reaching phase. These approaches

offer a very limited coordination between the prosthesis and the user’s intention.

We introduce an alternative method for controlling prosthetic devices, based on

an early detection of the grasping intention, thus enabling a faster activation

of the device, hence improving coordination between the user’s arm and the

prostheses.

In the first part of thesis, we focus on the identification of the grasping

intention for the reach-to-grasp motion with able-bodied individuals. We pro-

pose an Electromyographic (EMG)-based learning approach that decodes the

grasping intention at an early stage of reach-to-grasp motion, i.e., before the

final grasp/hand pre-shape takes place. In this approach, the utilization of Echo

State Networks encloses efficiently the dynamics of the muscle activation, en-

abling a fast identification of the grasp type in real-time. We also examine the

impact of different object distances and speeds on the detection time and accu-

racy of the classifier. Although the distance from the object has no significant

effect, rapid motions influence significantly the performance.

In the second part of this thesis, we evaluate and extend our approach on four
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real end-users, i.e., individuals with amputations below the elbow. For address-

ing the variability of the EMG signals, we separate the reach-to-grasp motion

into three phases, with respect to the arm extension. A multivariate analysis of

variance on the muscle activity reveals significant differences among the motion

phases. We examine the classification performance on these phases and compare

the performance of different pattern-recognition methods. An on-line evaluation

with an upper-limb prosthesis shows that the inclusion of the reaching motion

in the training of the classifier substantially improves the classification accuracy.

In the last part of the thesis, we further explore the concept of motion phases

on the EMG signals and its potential for addressing the variability of the signals.

We model, over the different phases of the overall motion, the dynamic muscle

contractions of each class with Gaussian distributions. We extend our previous

analysis by providing insights on the Linear Discriminant Analysis (LDA) pro-

jection and by quantifying the similarity of the distributions of the classes (i.e.,

grasp types) with the Hellinger distance. We notice larger values of the Hellinger

distance and, thus, smaller overlaps among the classes with the segmentation to

motion phases. A LDA classifier with phase segmentation affects positively the

classification accuracy.

Keywords: Neuroprosthetics control, Pattern recognition, Biomedical
signals, Electromyography, Machine learning, Signal processing
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Résumé

Les humains utilisent leurs mains principalement pour saisir et manipuler des

objets et pour effectuer des tâches simples et habiles. La perte d’une main

peut affecter de manière significative le statut professionnel et l’indépendance

de la personne au quotidien. Une restauration de la capacité de saisie est im-

portante pour améliorer la qualité de vie quotidienne d’une personne handi-

capée. Malgré que les appareils neuroprothétiques restaurent partiellement la

fonctionnalité perdue, l’acceptation de l’utilisateur est faible, probablement à

cause des mouvements non naturels que ces appareils produisent. Nous cher-

chons à améliorer l’acceptation des appareils prothétiques par les utilisateurs.

C’est pourquoi nous avons développé des approches de contrôle permettant un

fonctionnement transparent et naturel des prothèses de la main.

Le mouvement d’une main lors de la saisie d’un objet est divisé en deux

phases: (i) la phase d’atteinte, c’est-à-dire lorsque la main s’approche de l’objet,

et (ii) la phase de saisie, c’est-à-dire lorsque la main se ferme et touche l’objet.

Pendant la phase d’atteinte, la configuration des doigts change continuellement à

mesure que la main se rapproche de l’objet. La fermeture de la main est couplée

à l’extension du bras, ce qui permet une coordination harmonieuse du bras, des

mains et des doigts. Cependant, les approches actuelles en matière de contrôle

neuroprothétique ne permettent l’activation de la fermeture de la main qu’après

la fin de la phase d’atteinte. Ces approches offrent une coordination très limitée

entre la prothèse et l’intention de l’utilisateur. Nous introduisons une nouvelle

méthode de contrôle des prothèses, basée sur une détection rapide de l’intention

de saisir, permettant ainsi une activation plus rapide de la fermeture de la main,

améliorant ainsi la coordination entre le bras de l’utilisateur et les prothèses.

Dans la première partie de la thèse, nous nous concentrons sur l’identification

de l’intention de saisie pour atteindre et saisir des objets avec des personnes

valides. Nous proposons une approche d’apprentissage basée sur l’électromyogra-

phie (EMG) qui décrypte l’intention de saisir à un stade précoce du mouve-

ment, c’est-à-dire avant que le mouvement du bras ne se termine. Dans cette

approche, l’utilisation des ”Echo State Networks” enferme efficacement la dy-

namique de l’activation musculaire, ce qui permet une identification rapide du

type de saisie en temps réel. Nous examinons également l’impact de différentes

distances d’objet et vitesses du mouvement sur le temps de détection et la
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précision du classificateur. Bien que la distance par rapport à l’objet n’a pas

d’effet significatif, des mouvements rapides ont une influence importante sur les

performances.

Dans la deuxième partie de la thèse, nous évaluons notre approche à quatre

utilisateurs handicapés; plus précisément des personnes amputées au-dessous du

coude. Pour remédier à la variabilité des signaux EMG, nous séparons le mouve-

ment en trois phases, par rapport à l’extension du bras. Une analyse de variance

multivariée sur l’activité musculaire révèle des différences significatives entre les

phases de mouvement. Nous examinons les performances de classification sur

ces phases et comparons les performances de différentes méthodes de reconnais-

sance de formes. Une évaluation en temps réél avec une prothèse du membre

supérieur montre que l’inclusion du mouvement d’atteinte dans les données du

classificateur améliore considérablement la précision de la classification.

Dans la dernière partie de la thèse, nous explorons plus en détail le concept

de phases de mouvement sur les signaux EMG et son potentiel pour traiter la

variabilité des signaux. Nous modélisons, au cours des différentes phases du mou-

vement, les contractions musculaires dynamiques de chaque classe avec des dis-

tributions gaussiennes. Nous étendons notre analyse précédente en fournissant

des informations sur la projection de l’Analyse Discriminante Linéaire (ADL) et

en quantifiant la similarité des distributions des classes (c’est-à-dire des types de

saisie) avec la distance de Hellinger. Nous remarquons des valeurs plus grandes

de la distance de Hellinger et, par conséquent, des chevauchements moins impor-

tants entre les classes avec la segmentation du mouvement complet en différentes

phases. Un classifieur ADL avec segmentation de phase affecte positivement la

précision de la classification.

Mots Clés: Contrôle des neuroprothèses, Reconnaissance de formes,
Signaux biomédicaux, Électromyographie, Apprentissage automatique,
Traitement du signal.

iv



΄Ο,τι δε συνέβη ποτέ, είναι ό,τι
δεν ποθήσαμε αρκετά

(Whatever didn’t happen is
whatever we didn’t desire enough)

Nikos Kazantzakis
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Chapter 1

Introduction

1.1 Motivation

Robotic systems were introduced in our daily lives for more than a decade.

As their popularity increases, robotic and automated systems’ functionalities are

being improved, offering various solutions and improving the quality of life. An

important application of robotic systems includes the rehabilitation of patients

with motor disorders of the upper limb.

The loss of a hand affects all aspects of life (Freeland and Psonak (2007)).

It has been reported that between 37% (Ziegler-Graham et al. (2008)) to 61%

(K. Oltstlie et al. (2011)) of upper-limb amputations concern below-elbow am-

putations due to trauma (Ziegler-Graham et al. (2008)). More than one third of

the amputee population are below 45 years old (Ziegler-Graham et al. (2008);

K. Oltstlie et al. (2011)) and the large majority of them are in early retire-

ment (K. Oltstlie et al. (2011)). Therefore, restoring their lost abilities would

provide them a better quality of life and increase their opportunities for active

employment.

Grasping is one of the most important functionalities of the hand. Human-

hand dexterity makes it capable of adapting to the various tasks and character-

istics of objects. When dining, for example, we grasp differently the forks from

the knives and glasses, or we select different grasp types depending on if we want

to relocate a cup or to drink from it. Indeed, grasping is such a natural activity

that it is very hard to even imagine the consequences of losing this functionality.

Hence, restoring the grasping ability could, indeed, improve the quality of life

of people with upper-limb amputations.

Neuroprosthetic devices are used to partially restore motor abilities lost after

pathologies or trauma (Lambercy et al. (2011)). Despite the potential benefits

of the prosthetic rehabilitation, a large number of people with upper-limb am-

putations do not use a prosthesis (Raichle et al. (2008)). Recent studies (Biddis

(2010); Oltstlie et al. (2012)), examining the causes of rejection, report that

the main reason for secondary, i.e., after a period of usage, prosthesis rejection

is a dissatisfaction with the prosthetic comfort, function or control. Moreover,

it has been reported (Biddis (2010)) that functionality is one of the priorities

for the acceptability of a wearable robotic device, and that inconvenient and
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Figure 1.1: Commercially available prosthetic devices. a) the Bebionic hand1, b) the
i-limb ultra hand2, c) the Michelangelo hand from Ottobock3and d) the
Azzurra hand from Prensilia4

time-ineffective systems might avert individuals from using a prosthetic device.

In order to increase the user’s acceptance, a wearable device should cover

a large variety of human motions that correspond to daily tasks. As these de-

vices are in direct contact with the users, they should operate in harmony with

the users, following smoothly their movements in a natural way. Hence, it is

important that the device reacts promptly to the detection of the movement

intention.

Our goal is to improve the performance of the pattern-recognition system on

reach-to-grasp tasks and, hence, enhance the coordination between the user and

the neuroprosthetic device. Specifically, in order to decode the grasp intention

decoding during the reaching phase, we investigate the muscle activity of able-

bodied individuals and individuals with below-elbow amputations. An accurate

identification of the grasp type in the reaching cycle could enable a prompt

activation of the device and improve the coordination with the user.

1.2 Problem Statement and Approach

When humans engage in reach-to-grasp tasks, the hand opens and closes

in coordination with the extension of the arm (Rand et al. (2008); Wang and

Stelmach (1998)). The motion is distinguished into two phases: (i) the reaching

phase, i.e., when the hand approaches the object, and (ii) the grasping phase,

i.e., when the hand closes and touches the object. Typically, the hand opens

rapidly in the early stages of the reaching motion and decreases its velocity

converging towards its final configuration (Jeannerod (1984)). Before forming

their final configuration, the formation of the fingers, is defined as hand’s pre-

shape (Haggard and Wing (1995)). Figure 1.2, illustrates the velocity profiles

of the arm’s extension and the hand’s opening and closure of the able-bodied

individuals we studied. These profiles are missing from the functionality of neu-

roprosthetic devices. Although the time of the activation of a prosthesis depends

1www.bebionic.com
2http://touchbionics.com/products/active-prostheses/i-limb-ultra
3https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-

overview/michelangelo-prosthetic-hand
4https://www.prensilia.com/
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Figure 1.2: An illustration of the functionality of the able hand and a prosthesis.
The able hand opens and closes during reaching in coordination with the
extension of the arm. Although the time of the activation of a prosthesis
depends on the user, the task and the hardware of the prosthetic limb,
it generally occurs in the very late stages of the reach-to-grasp cycle and
often after the end of the reaching motion.

on the user, the task and the hardware of the prosthetic limb, it generally occurs

in the very late stages of the reach-to-grasp cycle and often after the end of the

reaching motion. Below, we present the main reason of this limitation.

Neuroprosthetic devices for the upper-limb partially restore the grasping

ability of individuals who lost this functionality due to an amputation. In the

case of myoprosthesis, the operation of the device involves two principal stages;

the identification of the grasping intention (i.e. the grasp type) from the muscle

activity of the user and the corresponding activation of the device. The embed-

ded pattern-recognition system, which is responsible for the identification of the

grasp type, computes also a measure of confidence for the predicted grasp type.

Once the confidence is above a threshold, the prosthetic hand closes immedi-

ately, and in a few cases compliantly, to a predefined finger configuration with

a fixed speed.

We notice two characteristics regarding this functionality: a) A high accuracy

of the pattern recognition system is crucial for the proper operation of the device,

and b) the closure of the prosthetic hand occurs regardless of the motion of

the arm, with limited or no coordination between them. These characteristics

indicate an artificial behavior of the prosthesis as it stays idle in the reaching

phase and begins the hand closure only when the object is reached. Figure (1.3)

shows an example of this operation from the work of (Kyranou et al. (2016)).

There is a main reason that renders the device idle during reaching: the pat-

tern recognition system fails to identify properly the desired grasp type during

the reaching phase. Hence, the system produces a low confidence value for the

desired grasp, which is below the selected threshold, and postpones the activa-

3



Figure 1.3: An example of traditional control approach from (Kyranou et al. (2016)).
The prosthetic device is activated approximately 0.7s after the end of the
reaching motion.

tion of the device until it is confident enough for the output.

In this thesis, we address this limitation by focusing on the development of

methods and experimental protocols for a successful decoding of the grasping

intention during the reaching phase from Electromyography (EMG). An early

and accurate prediction of the grasp type during the reaching phase enables

a faster activation of the hand prosthesis, thus addressing the aforementioned

limitation.

In the first part of the thesis, we investigate the stage where an accurate

decoding occurs on able-bodied individuals. In order to do this, we use the

hand’s preshape and compare it with the classification accuracy. We notice that

it is possible to have an accurate decoding of the grasp type in the early stages

of the reaching motion and even, in some cases, before the hand’s preshape.

To demonstrate the feasibility of this approach in neuroprosthetic control, we

integrate it in a real-time control of a robotic hand. The high classification

accuracy in the early stages of the motion results in a high confidence value

that enables an activation of the robotic hand during the reaching phase. As

a result, the EMG activity of the arm during reaching is efficient for achieving

high accuracy in decoding the grasping intention.

In the second part of the thesis, we evaluate our hypothesis by implementing
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the protocol on individuals with below-the-elbow amputations. To address the

variability of the EMG signals, we separate the motion into three phases: (1)

the first phase - where the velocity of the motion increases, (2) the second

phase- where the velocity of the motion decreases, and (3) the third phase -

when the reaching motion is complete. We notice significant differences in the

EMG activity among these phases. This indicates if we train a classifier in only

one phase, it would fail to generalize for the other two. This would result in low

classification-confidence value and in delays in the activation of the devices. The

inclusion of all the phases in training increases significantly the classification

performance and the resulting confidence value. Thus, the device is able to

identify the grasp type and to command the prosthesis to close before the end

of the reaching motion, i.e., in the second phase. The fast activation of the device

improves the coordination with the arm extension and narrows the gap between

prosthesis operation and the behavior of an able-hand.

In the third part of the thesis, we further explore the concept of motion

phases and its effect in the classification performance. First, we perform a Lin-

ear Discriminant Analysis (LDA) for each motion phase and the overall motion.

We model the distributions of the classes (i.e., grasp types) on the projected

space and quantify the overlap among them. The individual projection on each

phase produces overlap smaller than the overall projection hence more distin-

guished classes. By employing one classifier for each motion phase, we address

the variability of the EMG signals and increase the accuracy of the decoder. In

this way, we enhance the efficiency of the pattern recognition system and the

reliability of the prosthetic device.

1.2.1 The role of Pattern Recognition in Prosthetic

Devices for the upper-limb

As previously discussed, the embedded pattern-recognition system is the

”brain” of the prosthetic device. It is responsible for identifying the user’s in-

tention and activating the prosthesis. It employs different sensory inputs and

processes them for directly relating the sensory patterns to actions for the pros-

thesis.

Various control methods were developed for intuitively extracting,in a non-

invasive or invasive way, the user’s intention. In non-invasive control methods,

the user’s intention could be extracted from electromyography (EMG) (Cipriani

et al. (2011)), ultrasound imaging (Gonzales and Castellini (2013)) or force

myography (FMG) (Cho et al. (2016)). Surgical methods, such as Targeted

Muscle Reinnervation (TMR), could increase the number of degrees of freedom

controlled by the EMG activity (Kuiken et al. (2009); Hargrove et al. (2017)).

The accuracy of the pattern recognition system has a significant effect on

the efficiency of the prosthesis. To improve the reliability of the system, dif-
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ferent machine-learning methods have been investigated, such as LDA (Daley

et al. (2012)), Support Vector Machines (SVM) (He et al. (2015)) and Artificial

Neural Networks (ANN) (Jiang et al. (2014)). Furthermore, machine-learning

approaches are used to control multi-DOF prostheses with fewer independent

EMG sites. EMG-based pattern-recognition systems are proposed for the estima-

tion of hand and wrist movements (Smith et al. (2016); Gonzalez-Vargas et al.

(2015)) and even individual finger movements (Naik et al. (2016); Khushaba

et al. (2012)). Generally, subjects performed muscle contractions while maintain-

ing their arm in a fixed position. Training a classifier in a static position results

in classification accuracy lower than when the limb is in positions different than

the ones they are trained for and when it performs dynamic motions (Scheme

et al. (2011)).

To improve the efficiency of the pattern-recognition system during reaching,

we were inspired by the preshape of the hand during reaching. The preshape

of the hand is defined as the formation of the fingers before they take the final

configuration; this preshaping takes place during the reaching cycle (Supuk et al.

(2005)). The posture of the hand can be discriminated well before the contact

with the object (Santello et al. (1998)). In other words, the trajectories of the

fingers before their closure around the object correspond to an indication of

the final grasp type before the grasping phase, i.e., before the fingers are in

contact with the object. As the motion is derived from the muscle activity, the

grasping intention can be decoded from the EMG signals during the reaching

phase. Furthermore, the peripheral nerve function remains functionally intact

many years after amputation (Dhillon et al. (2004)); this indicates that this

information could be detected from the EMG signals of the residual arm. In this

thesis, we explore this assumption and provide evidence that the decoding of

the grasping intention from the EMG activity during reaching can be integrated

into the control of myo-prosthetic devices.

1.3 Main Contributions and Thesis Outline

In this thesis, we describe the three contributions introduced in the previ-

ous section. Here, we present a brief overview of each chapter, as well as the

corresponding contributions.

Chapter 2 - Background

In Chapter 2, we present a literature review of the state-of-art approaches,

with an emphasis on the decoding, from the muscle activity, of the grasping

intention.

Chapter 3 - EMG-Based Decoding of Grasp Gestures in Reaching-to-Grasping Mo-

tions

6



In Chapter 3, we present our first contribution on the decoding of the grasp-

ing intention. In particular, we select five grasp types that involve all the fingers

and are among the most frequent in our daily lives. We employ Echo State Net-

works (ESNs), a form of Recurrent Neural Network, for their high performance

in classification over stochastic signals (Li et al. (2012); Xu and Han (2016)). The

classification accuracy starts at a low level and increases as the hand approaches

the object of interest. In all cases, the classification performance reaches a level

of high accuracy (i.e., above 90%) 0.5s after the motion onset. In order to iden-

tify the stage of the reaching phase where the classification reaches high levels

of accuracy, we relate the classification performance with the hand’s preshape.

We select two criteria for the definition of preshape; the hand’s aperture (i.e.,

the distance between the fingertips of the index finger and the hand) and the

area enclosed from the fingertips that are involved in the grasp type. In three of

the grasp types, before the hand’s preshape, the classification accuracy becomes

higher than 90%. We notice that the object size has an affect on the classifi-

cation performance; grasping thin objects with similar grasp types involves a

sole closure of the fingers, which starts from the motion onset. In this case, the

grasp type could be decoded at a later stage, however, while still in the reaching

phase.

As different speeds and distances from the object can require different dy-

namics, the effect of these factors on the classification accuracy are examined

at a next stage. Although the distance from the object has no significant ef-

fect, rapid motions dramatically influence the classification. The rapid activa-

tion of the arm muscles during rapid motions differentiates the activation of

agonist/antagonists muscles, which influences the EMG signals and results in a

lower performance.

Furthermore, we integrate this approach in a real-time control of a robotic

hand. In this scenario, the robot hand is activated, after a high classification

confidence value, and performs the desired grasp type. The on-line evaluation

shows a fast and accurate activation of the robot hand that completes its closure

before the user reaches the object. This evaluation demonstrates the feasibility

of a prompt decoding of the grasping intention from the EMG signals.

Chapter 4 - Decoding the Grasping Intention from Electromyography during Reach-

ing Motions

In Chapter 4, we evaluate this assumption with four individuals with below-

the-elbow amputations. The participants perform reach-to-grasp motions for five

grasp types with both their intact arm and their phantom limb, attempting to

replicate the motion with the phantom limb. We record the activity of muscles

of the forearm, as well as the upper arm. To examine more precisely the muscle

activity during the motion, we separate the motion into three phases: (1) where

the velocity of the motion increases, (2) where the velocity of the motion de-

creases, and (3) when the reaching motion is complete. We extract time-domain
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features from the signals, then model the overall muscle activity of each phase

with Gaussian Mixture Models (GMMs), as shown in Figure (1.4). A Multivari-

ate Analysis of Variance (MANOVA) reveals significant differences in the EMG

signals among the phases. This indicates limitations on the generalization of a

classifier trained solely on one phase.

Figure 1.4: The muscular activity of the
three phases projected on
two principal components and
modeled with GMMs

The classification performance in

the three motion phases is exam-

ined. We compare the performance

of four classification methods; Linear

Discriminant Analysis (LDA), Sup-

port Vector Machines (SVM) with lin-

ear and radial Basis function (RBF)

kernels and the ESN approach from

Chapter 3. The classification perfor-

mance for each classifier follows the

same profile: There is a poor perfor-

mance in the first phase, but the per-

formance increases as the hand ap-

proaches the object. We notice the largest increase on the second phase. By

decreasing the number of classes (i.e., grasp types) to three, the classification

accuracy becomes higher than 80% in the second phase, before the end of the

reaching motion, for three of the four amputee participants.

In our real-time evaluation, we highlight the negative impact that the lack

of good classification over the entire duration of the reaching motion has in the

natural coordination of the motion of the prosthesis with the arm. In particular,

the performance of a classifier is compared when it is trained only with one

phase (i.e., the third motion phase) against our approach that takes the overall

motion into account. Our results show that the muscle contractions when the

arm is fixed are different from the contractions when the arm extends, hence

the pattern-recognition fails to generalize for the other phases. Therefore, the

approach is able to address the problem of dynamically estimating the grasp type

and to reduce the time needed for reaching a sufficient classification confidence.

Chapter 5 - Reach-to-grasp motions: Towards a Dynamic Classification Approach

for Upper-limp Prosthesis

In Chapter 5, we further investigate the concept of motion phases and their

effect on the performance of the patter-recognition system. The same phase

segmentation is used as in Chapter 4. We extract time-domain features and

perform LDA on the data of each phase and on the overall motion. The projected

data of each class (i.e. grasp type) are modeled with Gaussian distributions, and

the overlap is quantified with the Hellinger distance. This distance is a bounded

metric of similarity between distributions. It reaches its maximum value of 1

when the distributions do not overlap. In the above comparison, we notice values
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of the Hellinger distance between the distributions on the LDA space of each

phase larger than the overall LDA space. This indicates that the distributions

of the classes are better separated in the individual space. Furthermore, the

distributions of the classes are better separated in the late stages of the reaching

motion, thus producing even larger values of the Hellinger distance.

The better separation of the distribution has an positive effect on the clas-

sification performance. By employing one classifier for each phase, we are able

to increase the overall accuracy by 6 − 10% on average. As the distributions

become more dissociable in the later motion phases, the classification accuracy

reaches its highest level (74.2 ± 14%) in the final phase. These results indicate

an improved encapsulation of the EMG patterns on each motion phase.

Chapter 6 - Conclusion

In Chapter 6, we summarize the contributions and their limitations. We

discuss potential research directions that could derive from this work.

Chapter 6 - Appendices

In the Appendices, additional materials regarding the contributions are pro-

vided. We, also, present a brief description of the projects supervised by the

author.

1.4 Publications, Source code and Multimedia

The chapter concerning the contributions of this thesis are published in peer-

reviewed journals and at conferences. The context of Chapter 3 is published

in (Batzianoulis et al. (2017)). The evaluation with individuals with below-

elbow amputations, presented in Chapter 4, is published in (Batzianoulis et al.

(2018)). The context of Chapter 5 is published in (Batzianoulis et al. (2019)).

In addition, the author also wrote and coauthored several publications which

are not part of this thesis. During his internship before starting his PhD re-

search, which took place in LASA lab of Professor Aude Billard, he published

an abstract with the pilot results on the decoding of the grasping intention

from the EMG activity (Batzianoulis et al. (2015)). During this period, he

also contributed in a study on regressing the wrist position from the EMG

signals (El-khoury et al. (2015)). He contributed in a study on the development

of a synergistic control method combining the eye-gaze and muscular activity

for proximal upper-limb prosthesis, an abstract of which is published in (Krausz

et al. (2016)). Furthermore, I participated in a project on developing Inverse Re-

inforcement Learning (IRL) methods with the employment of electroencephalo-

graphic (EEG) signals, the pilot results of which are published in (Iwane et al.

(2019)).

The source code of projects mentioned above can be found in this link.

Videos from the projects could be found in these links: first contribution,

second contribution, and in LASA’s YouTube Channel.
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Table 1.1: Links related to the included publications

source code
https://github.com/yias?tab=repositories

Chapter 3
https://www.youtube.com/watch?v=58tjelKFhAg&t

Chapter 4
https://www.youtube.com/watch?v=vnBPR9EexYo&t

LASA YouTube Channel
https://www.youtube.com/channel/UCqnvGUfdlr94mddDQamEBGA
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Chapter 2

Background

In this chapter, we present a literature review of the state-of-art approaches for

decoding hand gestures from the muscle activity. The motion of the human hand

inspired us and we present briefly studies related with the behavior of the hand

in reach-to-grasp motions. Then we focus on the developments in the decoding

of the hand posture, grasping intention, and machine-learning algorithms that

are used.

2.1 Human-Hand Motion During the Reaching

Phase

The human hand is characterized by 21 degrees of freedom (DOFs) con-

trolled by 29 muscles (Jones and Lederman (2006)). Humans are capable of

controlling this large number of DOFs and use their hands dexterously due to a

multidimensional reduction of the controlled variables operated by the central

nervous system. This multidimensional reduction is accomplished through the

use of postural synergies Santello and Soechting (1998) , corresponding to a

number of hand postures that humans combine when grasping objects.

When reaching to grasp an object, the opening and closing of the hand

is in coordination with the motion of the arm (Rand et al. (2008); Wang and

Stelmach (1998)). It opens rapidly in the early stages of the reaching cycle, while

the fingers converge gradually to their final configuration (Jeannerod (1984);

Rand et al. (2008)). The velocity and acceleration profiles of the motion are

in harmonic relation with the motion of the fingers and the wrist, and the

fingers function in a synergistic manner (Wing and Turton (1986); Santello

and Soechting (1998)). It is shown that the reach-to-grasp motion consists of

many components (M. Jeannerod (1998); Supuk et al. (2005)). Specifically, the

motion can be separated into two phases:(1) the reaching phase, when the hand

approaches the object while the fingers are pre-shaping (Supuk et al. (2005)),and

(2) grasping phase, where the hand traveled the distance to the object and the

fingers take their final form.

In the early stages of the reaching cycle, the hand preshapes according to the

selected grasp type. The preshape of the hand is defined as the formation of the
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fingers before they take the final configuration (Supuk et al. (2005)). Specifically,

the fingers extend to a maximum before they start closing around the object,

with respect to its characteristics. Santello et al. (1998) report that the posture

of the hand could be discriminated well before the contact with the object. In

other words, the trajectories of the fingers before their closure around the object

correspond to an indication of the final grasp type before the grasping phase, i.e.,

before the fingers are in contact with the object. In able-bodied individuals, the

hand’s preshape occurs at around 60% of the reach-to-grasp motion (Paulignan

et al. (1990)).

To capture the preshape, objective metrics are considered. Due to its sim-

plicity, the hand aperture is a commonly used metric for describing the hand

preshape (Haggard and Wing (1997)). This metric is defined as the distance

of the thumb from the index finger, as these fingers have an important role in

the vast majority of grasp types. However, this metric is limited, as the relative

motion of these two fingers is not always representative of the grasp type, such

as in the lateral grasp. Hence, grasping modes also require the coordination of

all the five fingers. To address this limitation, Supuk et al. (2005) propose the

area between the fingertips as a metric of preshape. The hand’s orientation is

another metric of preshape (Roby-Brami et al. (2000)). However, in order for

this metric to be considered, different hand orientations should be involved in

the grasping.

All the above studies point out the occurrence of continuous motion for the

fingers during the reaching phase. This gradual molding of the fingers could

be revealed through different patterns of muscle activation during the reaching

motion. These patterns can identify the hand’s preshape, hence, constitute a

direct indication of the grasp type. In this thesis, we exploit this observation

and investigate methods for an efficient recognition of the grasping intension

during the reaching motion.

2.2 Decoding Hand Postures from

Electromyography

It has been extensively demonstrated that a user’s motion intention can be

accurately detected by surface electromyographic recordings (sEMG) (Novak

and Riener (2014)). Different EMG-based systems are proposed for the estima-

tion of hand and wrist movements, and hence used as noninvasive interfaces for

controlling exoskeletons (Leonardis et al. (2015)), prosthetic devices (Scheme

et al. (2011); Ju and Liu (2014)), computer-animated hands in a virtual envi-

ronment Sebelius et al. (2005), or for teleoperating robotic arms (Shenoy et al.

(2008)). Other studies use various machine-learning methods to decode hand

orientations, as well as different combinations of fingers (Shenoy et al. (2008);
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Jiang et al. (2005)). Such strategies are useful for accomplishing power grasps

that require the simultaneous closure of all fingers on an object. However, these

strategies are insufficient to generate differentiated control of all fingers in the

variety of pinch grasps used in dexterous objects manipulation, as required for

grasping a larger variety of objects.

There are studies focused on the investigation of discrete classifications of

wrist flexion/extension (Sebelius et al. (2005); Huang et al. (2005)) and abduc-

tion/adduction (Shenoy et al. (2008)), as well as on the use of EMG signals

to control wrist exoskeletons (Khokhar et al. (2010); Ziai and Menon (2011)).

In (Ma et al. (2015)), the authors use muscles synergies, computed with Non-

negative Matrix Factorization (NNMF), to decode four types of hand move-

ments; hand open/close and wrist pronation/supination. Although they report

high accuracy when the participants were asked to perform independently each

hand motion, the performance drops when they performed simultaneously hand

and wrist motion. Indeed, the inclusion of additional degrees of freedom in EMG-

based controllers increases the difficulty of a successful estimation of the hand

posture.

A few studies focus on the simultaneous and proportional control of the wrist

and fingers. A proportional control scheme of 4 DOFs motions by EMG signals is

presented in (Muceli and Farina (2012)). Their results show a significant drop of

the R2 coefficient when a dimensionality reduction performed on the extracted

features. A simultaneous proportional myoelectric control of 2 DOFs is proposed

in (Fougner et al. (2014)), including an online implementation with able-bodied

subjects. These approaches use a separate classifier for each DOF to recognize

the corresponding motion and achieve dynamic movements in free space with a

robotic hand. Those studies focus mainly on the open and closure of the hand,

as this motion is an important component of prosthetic devices.

Recent studies investigate the relation between EMG signals and the posi-

tion of the fingers (Ju and Liu (2014); Naik and Nguyen (2015); Cipriani et al.

(2011); Su et al. (2007)). In particular, the authors in (Naik and Nguyen (2015))

report a classification scheme of ten finger flexions, individual finger flexion and

simultaneous multiple-finger flexions, using only two sEMG channels. In (Cipri-

ani et al. (2011)) and (Su et al. (2007)), the authors recorded the EMG signals

and the fingers’ joint angles when performing seven hand gestures, creating a

mapping between the fingers’ position and the muscular activity.

These studies examine the muscle activity during the motion of wrist and fin-

gers while the rest of the arm remains in a fixed position. Yet, these approaches

could be inapplicable on reach-to-grasp motions as muscles from the whole arm

are activated in a reaching motions. Training a classifier in a static position,

as mentioned above, results in lower classification accuracy when the limb is

in different positions or performs dynamic motions (Scheme et al. (2011)). To

increase the efficiency of the classification approach, it is important to look into

the patterns of the muscular activation. The authors in (Liu et al. (2014)) point
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out that the muscle activation differs with respect to the arm position and that

examining the EMG patterns is important. This thesis offers an elaboration on

the EMG patterns during reach-to-grasp motions, both on able-bodied subjects

and individuals with amputation.

2.2.1 Electromyographic features

Feature extraction is very commonly used in the processing of the EMG

signals. Those features could be in the time-domain, such as the mean abso-

lute value, the wavelength and the number of slope sign changes, in frequency-

domain, such as the power spectral density, the median frequency and the total

power of the signal, or autoregressive features. The wavelet transformation is

also considered a useful tool as it can provide both time-domain and frequency

domain features.

Boostani and Moradi (2003) performed a comparison of 19 features to eval-

uate their space quality and sparsity. The features were extracted from the

forearm muscles of ten individuals with below-elbow amputations, when they

contracted these muscles to move their phantom-limbs. The results show that

time-domain features produce sufficient sparsity between the classes with the

smallest computation time. This is an important indication of their efficiency in

real-time control schemes. This outcome is aligned with the results of (Phiny-

omark et al. (2012)) where the mean absolute value and the waveform length

could perform efficiently with an LDA classifier.

The mean absolute value is probably the most frequently used feature and it

is often selected as the sole feature for classification (Smith et al. (2016); Cipri-

ani et al. (2011)). Indeed, this feature could encapsulate sufficient information

for a high performance. Other studies have suggested a combination of time-

domain features as an input to a classifier. A common set of time-main features

is the mean absolute value, waveform length, number of zero crossings and slope

sign changes (Young et al. (2013); Li et al. (2010); Earley et al. (2016); Geng

et al. (2017)). In addition to this set, other features, such as the average am-

plitude (Fougner et al. (2014)), the integrated absolute value (Carpaneto et al.

(2012)) and the variance of the signals (Naik et al. (2016)), are frequently se-

lected. A combination of time-domain features with autoregressive coefficients

is used in (Naik et al. (2016); Khokhar et al. (2010); Liu et al. (2014); Krasoulis

et al. (2017); Huang et al. (2005)).

Regardless of the classification method, there is no direct conclusion about

which are the optimal features for decoding the grasping intention from the mus-

cular activity. Generally, the extraction of time-domain features is sufficient for

producing high classification accuracy. Another benefit of time-domain feature

is their little requirement of computational power, which makes them efficient

for real-time control. Therefore, we employ mainly three time-domain features
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in this thesis; the mean absolute value, the waveform length and the number of

slope-sign changes.

2.2.2 Machine-learning methods in neuroprosthetics

control

After the pre-processing step, the extracted features are introduced to a clas-

sifier. However, studies have shown that the introduction of a ”pre-classification”

step could improve the performance of the pattern-recognition system. Naik

et al. (2016) suggest the employment of Independent Component Analysis (ICA)

on the features before introducing them to an LDA classifier and they noticed

significantly improved results. Besides ICA, dimensionality reduction methods,

such as PCA, have also been shown to have beneficial effect on the classification

accuracy (Hargrove et al. (2009)).

Undoubtedly, the most common machine-learning method used to decode a

user’s intention from electromyography is LDA (Young et al. (2013); Li et al.

(2010); Earley et al. (2016); Naik et al. (2016); Hargrove et al. (2009); Geng

et al. (2017); Krasoulis et al. (2017)). This is mainly because of its simplicity

but, most importantly, due to its generally good performance in the analysis of

biomedical signals.

However, there are studies that suggest other classification methods. Cipri-

ani et al. (2011) propose that a k-NN method with the 8 nearest neighbors is

sufficient to classify efficiently the individual motion of the digits, even for indi-

viduals with transradial amputation. Huang et al. (2005) show that GMM could

be a good alternative of LDA, as they noticed an improved classification per-

formance. Furthermore, Khokhar et al. (2010), Carpaneto et al. (2012) and He

et al. (2015) show that SVM could also be used for decoding the user’s intention

from electromyography. Jiang et al. (2014) showed significant improvement in

the classification performance when using an MLP-ANN instead of LDA.

It is clear that the main steps in the pattern recognition systems is a fea-

ture extraction, followed by a classification method. In the large majority of the

studies related to EMG decoding, the researcher selects a-priori the features

extracted from the EMG signals. However, there are machine learning methods

that can perform automated feature extraction. For example, Recurrent Neu-

ral Networks have been shown to have good performance in time series, letting

the feature extraction on the hidden layer. The automated feature-extraction

is a techniques that have not been tested yet on the EMG signals. In the

Chapters 4 and 5, we employ the echo property of ESN as a method of au-

tomated feature-extraction and classification. Echo State Networks have a high-

dimensional and sparse hidden-layer, fixed from a random initialization, and

optimizing the weights of the output layer. In this method, the introduction of

the signals into the hidden equals to a projection to a higher dimensional space.
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This could ”linearize” the non-linear signals, enabling an efficient classification

accuracy performing a linear regression on the output layer.

2.3 EMG-decoding on Individuals with

Transradial Amputations

Most of the studies mentioned above evaluated their control methods on

able-bodied individuals. In this subsection, we review studies that performed

experiments with individuals with below-elbow amputation.

The vast majority of the commercially-available hand-myoprosthesis, in-

cluding the most recent devices with enhanced dexterity, still employ direct-
myoelectric-control (DC) methods, which are offered since the 1970s Graupe

and Cline (1975). In DC methods, the EMG signals are generally recorded from

one or two pairs of muscle, the agonist-antagonist pairs. Each group is respon-

sible for controlling a motor direction; for example, one for opening and one for

closing the fingers. To activate the motor, the user generates specific EMG pat-

terns (i.e., co-contract the muscles) and the recognition of the muscle activation

is based on the magnitude of the EMG signal Williams (2004). The extension of

this control approach to multiple DoF becomes challenging due to several rea-

sons: To activate the motor of a joint, the contraction of each residual muscle

(or group of muscles) should occur independently. Yet, localizing the activation

of specific EMG sites is not trivial on amputees. Furthermore, the intuitiveness

of the DC approach is very limited in multi-DoF control. In order to drive a

particular joint, the user should generate a specific muscle activation, which the

amplitude-based recognition system can identify, for switching from the control

of one joint to another. Besides the demanding training procedure, this method

leads to unintentional toggling between the DoFs potentially creating inconve-

nience to the user (Kuiken et al. (2016)).

Pattern-recognition (PR) based control approaches are relatively new to clin-

ical practice. As we have seen in the previous sections, the training protocols of

the PR-based control follow the reverse principle than the DC approach: Instead

of training the user on the muscle-activation patterns and manually setting the

threshold for the EMG magnitude, the user contracts the muscles in a natural

way whilst a pattern-recognition system is trained on the EMG patterns. Hence,

PR-based approaches could offer a more intuitive control of hand prostheses. Re-

cent studies (Kuiken et al. (2016) and Resnik et al. (2018)), that compare the

two approaches with individuals with below-elbow amputation, support this hy-

pothesis. They report that, although the PR approach requires longer periods

for training and familiarization, it has similar or greater acceptance by the users.

Especially for our study, the use of a DC approach would be counter-intuitive;

the user should voluntary co-contract the muscles in a specific pattern and, in
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the same time, perform a reaching motion by seamlessly extending the arm. It

is clear that those two conditions contradict each other, creating a potential

confusion to the user and to the controller. In contrast, we exploit the benefits

of pattern-recognition methods to adapt to the EMG patterns generated during

the reaching motion and hence improve the intuitiveness of the controller even

more.

The research community on neuro-prosthesis control tends to favor the PR-

based approaches. We will present below studies that are relevant to ours, such

as they too target on a intuitive decoding of the grasping intention and eval-

uate their approaches with individuals with below-elbow amputation. As we

will see, the number of degrees of freedom to control, but also the classification

performance, is significantly lower with individuals with amputations than in

able-bodied individuals that we saw in the previous section.

For example in (Daley et al. (2012) and He et al. (2015)), the authors per-

formed an off-line analysis on the high-density EMG signals for decoding grasp

types and wrist motions with transradial amputees and able-bodied subjects.

From the analysis on the participants with transradial amputations, the classifier

was able to identify from 1− 3 grasp types and 3− 4 wrist motions. Daley et al.

(2012) reported that the average classification accuracy was around 75% across

all the tasks for the two participants who lost their hands due a traumatic inci-

dent and around 50% for the two participants that have congenital hand-loss. In

contrast, the able-bodied participants had a classification accuracy above 81%.

It is clear from this comparison that the classification accuracy could vary de-

pending on the condition of the amputation, and, generally, it could differ even

more from able-bodied individuals. The classification accuracy depends also on

the amputation level; the pattern-recognition system has significantly higher

performance on individuals with partial hand amputation than transradial am-

putation Menon et al. (2017). This indicates that the quality of the EMG signals

decreases with more proximal amputations. In some cases, the employment of fil-

tering methods, such as the Common Spatial Patterns (CSP), could improve the

performance of the pattern-recognition system (Amsuess et al. (2016)). However,

the accuracy degrades exponentially when evaluated over consecutive days He

et al. (2015), which is another of the limitations of the PR-based approaches.

Another noticeable characteristic in the studies with amputees is the differ-

ence between off-line and on-line performance. For example, Kuiken et al. (2009)

reported an offline performance of 94% on a motion test protocol, whilst their

on-line performance dropped to 81.2%. Especially when the number of classes

(i.e., hand gestures) increases, the decrease could be even more significant; in Li

et al. (2010) the classification accuracy dropped from 92.1% (off-line) to 67.4%.

This is a clear indication that improvements in the off-line performance are not

always correlated with the actual control of prosthesis.

To address this limitation, recent studies introduce additional sensory types,

such as near-infrared spectroscopy (Guo et al. (2017) and inertia measure-
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ments (Krasoulis et al. (2017); Cognolato et al. (2018)). The results seem promis-

ing as the hybrid decoders outperform the EMG-only decoder. An interpreta-

tion of these results is that the classifier has a reduced dependency to the noisy

EMG signals and, thus, it becomes more robust. However, there is another out-

come hidden in these studies; when the classifier is trained solely on the data of

the ”external” sensors, it has lower performance than the EMG-only classifier.

Therefore, the EMG signals contain such a valuable information for the motion

intention that it cannot be replaced with other sensory inputs. Thus, the inves-

tigation of intelligent methods for addressing the variability of EMG signals is

of paramount importance for increasing the robustness of the control approach.

In order to achieve this goal, there should be a deeper understanding of the

EMG patterns generated from the muscle contractions. This brings us to our

next observation.

Experiments in laboratory environments are usually concern only the sta-

tionary EMG portions for classification, i.e., the periods where the motion is

kept at approximately constant force without movement (Farina et al. (2014)).

Yet, reach-to-grasp motions, and also other type of motions, involve dynamic

muscle contractions and stationary EMG portions are generated only in specific

periods of the overall motion. This makes them rarely representative of the whole

motion and has a crucial effect on the classification performance. Nevertheless,

research in this field prefer static experimental protocols.

For example, the decoding of the motion intention for the phantom fingers is

examined by Naik et al. (2016) and Cipriani et al. (2011). Specifically, Naik et al.

(2016) present a method for computing the optimal EMG sites of the forearm

employing ICA. Although this work reported up to 92% accuracy, these results

involve only off-line analysis. Cipriani et al. (2011) show a teleoperation of a

prototype robotic hand by individuals with transradial amputation. The results

varied across the participants; the success rate was from 60% to 97%, and the

completion time stayed between 0.8s to 1.8s. In both studies, the arm remained

in fixed position during the recordings and the testings.

A similar experimental protocol was followed by Amsuess et al. (2014). The

authors propose a method for decoding two grasp types and four wrist motions,

together with a resting and hand open condition. Their method is based on a

combination of LDA and an multilayer perceptron Artificial Neural Network

(ANN). In their experimental protocol, the participants performed muscle con-

tractions while maintaining their arms in a fixed position. The four participants

with transradial amputations had an average classification performance above

90% overall classes. However, those results could not be compared with the re-

sults of this thesis for two reasons: (a) their experimental protocol involves static

positions of the arm and (b) the selected classes include the wrist positions and a

hand-open condition, without providing specifically any results on the accuracy

of the two grasp types.

The effect of dynamic training protocols with transradial amputees have
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been examined in (Yang et al. (2017)), (Geng et al. (2017)) and (Kanitz et al.

(2018)). The effect of different postures of the arm was examined in (Geng et al.

(2017)). In their experimental protocol, the participants performed muscle con-

tractions for hand open/close, wrist pronation/supination and flexion/extension

when their arms were resting in five different positions. The classifier performed

significantly better when trained on all the arm positions. Extending their hy-

pothesis, (Kanitz et al. (2018)) propose a method for decoding four grasp types,

regardless the position of the arm. They investigate, in particular, the onset of

the muscle contraction for capturing the temporal information on the muscles

for each grasp type for five positions of the elbow joint and four positions of the

shoulder joint. Their approach showed promising generability over the different

arm positions, when evaluated in a real-time control scheme.

In (Yang et al. (2017)), the authors investigate the classification performance

on the prediction of individual digits of the hand: when the decoder is trained on

a static position of the arm and when the arm moves. In the dynamic experimen-

tal protocol, the arm was extended and the subjects contracted their muscles

while moving from one point of a circle to another. Their analysis showed that,

when trained on a static arm position and tested on the dynamic protocol, there

is a significant decrease in the performance of the decoder, approximately 30%.

Krasoulis et al. (2017) evaluated a hybrid (EMG+IMU) decoder in the real-

time control of a prosthesis with two amputee participants who performed reach-

to-grasp motions. Similar to other studies we reviewed, the hybrid decoder per-

formed better than the EMG decoder in this test and the results were less

accurate than the off-line analysis. This work omitted, however, to report any

improvements on the reaction time of the device.

These studies highlight the improvement on the EMG-decoder, when dy-

namic training protocols are employed. However, they are different with the

work presented in this thesis. Specifically, Yang et al. (2017) focus on the de-

coding of the motion intention of different digits, and no reaching motion was

involved in their protocol. Furthermore, none of these studies addresses the de-

lay in the activation of the device. In contrast, in this thesis we develop decoding

methods for the grasping intention during the reaching motions and investigate

the improvements on the reaction time of prosthetic devices.
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Chapter 3

EMG-Based Decoding of

Grasp Gestures in

Reaching-to-Grasping

Motions

In this chapter, we present our first attempt to decode the grasping intention

during the reaching phase from electromyography. We base our approach on

Echo State Networks and relate the classification performance with the hand

preshape. In this way, we identify the stage of the reaching phase where the

classification reaches high levels of accuracy. We select two criteria for the defi-

nition of preshape: the hand’s aperture (i.e., the distance between the fingertips

of the index finger and the hand) and the area formed by the fingertips involved

in the grasp type. We examine the effect of the motion speed as well as the dis-

tance from the object to classification accuracy. We also integrate the decoding

approach in a real-time control of a robotic hand to demonstrate the feasibility

of the approach for a potential control of a myo-prosthesis.

3.1 Introduction

It has been extensively demonstrated that a user’s motion intention can

be accurately detected by surface electromyographic recordings (sEMG) (No-

vak and Riener (2014)). Different sEMG-based systems were proposed for the

estimation of hand and wrist movements, and used as non-invasive interfaces

for controlling exoskeletons (Khokhar et al. (2010); Ziai and Menon (2011)),

prosthetic devices (Nishikawa et al. (1999); Ju and Liu (2014); Fukuda et al.

(2003)), computer-animated hands in a virtual environment (Sebelius et al.

(2005)), or for teleoperating robotic arms (Fukuda et al. (2003); Shenoy et al.

(2008)). The previous studies focused on the investigation of discrete classifica-

tions of wrist abduction/adduction (Fukuda et al. (2003); Shenoy et al. (2008)),

flexion/extension (Nishikawa et al. (1999); Sebelius et al. (2005); Huang et al.

(2005); Kita et al. (2006)) as well as of a different combination of finger mo-

tions (Fukuda et al. (2003); Shenoy et al. (2008); Jiang et al. (2005)). These

strategies are useful for accomplishing power grasps that require simultaneous

closure of all fingers on the object. However, these strategies are insufficient to

generate differentiated control of all fingers in the variety of pinch grasps used

in dexterous object manipulation, as required by the grasping of a larger variety

of objects.

The differentiated control of all fingers is complex to achieve due to the high
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dimensionality of the hand control. Indeed, the human hand is characterized by

21 degrees of freedom (DOFs) controlled by 29 muscles Jones and Lederman

(2006). It has been hypothesized that humans are capable of controlling this

large number of DOFs and use their hands dexterously thanks to a multidi-

mensional reduction of the controlled variables operated by the central nervous

system. This multidimensional reduction is accomplished through the use of

postural synergies (Santello et al. (1998)), corresponding to a number of hand

postures that humans combine when grasping objects. Dalley et al. (2012);

Sapsanis et al. (2013); Ouyang et al. (2014); Smith et al. (2008) propose to

exploit a mapping between upper limb EMG signals and hand postures, as a

strategy to control the large number of the hand’s degrees of freedom. However,

in these approaches only the grasping phase, i.e., when the fingers have already

reached their final configuration, was examined and the subjects were asked to

perform the corresponding grasp keeping the upper-arm fixed. Nonetheless, the

muscular activity differs between a static and a dynamic position of the arm.

During reaching-to-grasp movements, the configuration of the fingers and of the

wrist changes simultaneously with the arm’s motion, and this might influence

the classification performance. This formation of the fingers, before reaching

their final configuration, is defined as hand preshape. The hand preshape is in

direct relation with the characteristics of the object, specifically to the shape and

width of it. In able-bodied subjects, the hand preshape occurs before the hand

reaches the object, at around 60% of the reach and grasp motion (Paulignan

et al. (1990); Jeannerod (1984); M. Jeannerod (1998); Santello and Soechting

(1998)). Therefore, in order to accomplish a smooth control of the grasping ges-

ture, it is crucial to classify the hand posture during the reaching phase before

the occurrence of the preshape. Indeed, an accurate estimation of the final grasp

posture in the early stages of the reach-to-grasp motion would ensure a faster

reactivity of the assistive and the wearable devices. As a result, these devices

would increase their effectiveness and usability, and increase the natural transi-

tion between the reaching and grasping phase on the prostheses, hence increase

their acceptance by patients. However, at the time of the writing only a limited

number of studies are focused on the detection of different grasp movements

during reaching and grasping motions (González et al. (2010); Liarokapis et al.

(2013); Fligge et al. (2000)), and no measurements were performed to assess

when a good classification was achieved with respect to the hand preshape .

In this chapter, we propose a novel EMG-based learning approach that de-

codes the grasping intention of the user at an early stage of the reach-to-grasp

motion, i.e., before the final grasp/hand preshape takes place. We also demon-

strate the applicability of our work to online applications. This chapter corre-

sponds to the following publication:

Batzianoulis, I., El-Khoury, S., Pirondini, E, Coscia, M., Micera, S. and Bil-

lard A., Emg-based decoding of grasp gestures in reaching-to-grasping motions,
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Grasp types Fingers involved Object

Precision disk

5
(all fingers)

Large cylinder
(10cm diameter)

Tripod
3

(thumb, index, middle)
Small cylinder
(5 cm diameter)

Thumb-2 fingers

3
(thumb, index, middle)

Thin rectangular

Thumb-4 fingers

5
(all the fingers)

Thin rectangular

Thumb-2 fingers
2

(thumb and little finger)
Thin rectangular

Table 3.1: Chosen grasp types Bullock et al. (2013).

Robotics and Autonomous Systems, 2017.

3.2 Methods

3.2.1 Participants

Fourteen healthy young subjects (10 males and 4 females, average age 28.2±3.9)

participated in the experiment. All subjects were right-handed, according to the

Edinburgh inventory test Oldfield (1971), and they had no prior history of neuro-

logical disorders and neuromuscular injuries. They performed the experiments

with their dominant arm. The experiment was approved by the BMI Ethics
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Committee for Human Behavioral Research of EPFL, and the recordings were

carried out in agreement with the Declaration of Helsinki. All subjects gave

written consent to participate at the beginning of the experiment.

3.2.2 Experimental Protocol

The subjects were asked to reach and grasp 3 different objects with five different

grasp types: precision disk, tripod, thumb-2 fingers, thumb-4 fingers, and ulnar

pinch, see Figure (3.1). These grasps were mostly chosen for their common usage

in daily life Bullock et al. (2013).

Figure 3.1: (a):The experimental setup showing the electrodes for EMG recording and the
CyberGlove for capturing the hand joint angles, (b) the plan showing the initial
position of the hand and the three positions of the object

During the experiment, the subjects were seated in front of a table with their

elbow flexed at about 90◦ and their hand placed on the table with the palm

downward and the fingers pointing to the object, see Figure (3.1a). The subjects

were asked to reach the object and grasp it with a predefined grasp type, keeping

the same hand orientation for all the grasp types. The subjects began a self-

paced motion, according to the advice of the experimenter, and they had to

declare that they grasped the object in order to consider the trial completed.

The objects were placed at three different distances (i.e., 30cm, position P1,

20cm, position P2, and 10cm, position P3) from the initial hand position, see

Figure (3.1b). All the fourteen subjects performed 20 trials for each of the five

grasp types for position P1. After completing this first part of the experiment,

six subjects continued the experiment for the positions P2 and P3 performing

15 trials for each grasp type. Three subjects performed additionally fast reach-

to-grasp motions for objects placed at position P1; they were asked to perform

the motions by extending their arm with an higher acceleration than during

the first part of the experiment. The subjects performed all trials for one grasp

before moving to the next grasp.
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3.2.3 Apparatus and pre-processing

The EMG signals, from 16 upper limb muscles (Table 3.2), were recorded using

a Noraxon DTS desktop system, with a sampling rate of 1500 Hz. The elec-

trodes were placed, when it was possible, according to the standard procedure

for surface electromyography for non-invasive assessment of muscles (SENIAM)

guidelines (Hermens et al. (2000)). At the beginning of the recordings, a man-

ual test for the maximum voluntary contraction (MVC) was performed for each

muscle. During the test, the subjects were asked to perform isometric contrac-

tions for each muscle. The test was repeated three times for each muscle, with

a break after each contraction to prevent muscle fatigue.

The data were filtered with a seventh-order band-pass Butterworth filter be-

tween 50Hz and 500Hz for the suppression of movement artifacts. To construct

a linear envelope, a full-wave rectification was performed, followed by a smooth-

ing with a low-pass seventh-order Butterworth filter with cutoff frequency at

20 Hz. Finally, the resulting EMG signals were normalized by the MVC.

Muscles
1 Infraspinatus (INFRA)
2 Deltoid Anterior (DANT)
3 Deltoid Medial
4 Deltoid Posterior (DPOS)
5 Biceps Brachii long head (BICL)
6 Triceps Brachii long head (TRIC)
7 Brachialis (BR)
8 Flexor Digitorum Superficialis (FLDS)
9 Extensor Digitorum Communis (EXDC)
10 Flexor Carpi Ulnaris (FLCU)
11 Extensor Carpi Ulnaris (EXCU)
12 Flexor Carpi Radialis (FLCR)
13 Flexor Pollici Brevis (FLPB)
14 Extensor Pollicis Brevis (EXPB)
15 Adductor Pollicis Transversus (ADPT)
16 Abductor Digiti Minimi (ABDM)

Table 3.2: Muscles which activity is captured for the reaching and grasping experi-
ment.

The joint angles of the fingers were measured using the CyberGlove System’s

CyberGlove1, with a sampling rate of 100 Hz. The Cyberglove has 22 bend

sensors located over the hand joints. As bending can be detected anywhere

along the sensor length, the glove can adapt well to different hand sizes, and

it needs to be calibrated in order to transform raw sensor values to hand joint

angles. Linear regression was used to calibrate the 4 fingers (index, middle, ring,

and little), and a data-driven approach was employed to model the non-linear

relationship between the thumb sensors and the joint angles. The recorded joint

angles were used to compute the fingertip’s position with respect to the wrist

1www.cyberglovesystems.com
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by forward kinematics. More details about the Cyberglove calibration procedure

can be found in (de Souza et al. (2014)).

The two data streams were synchronized using a trigger signal provided by an

Arduino board. At each trial, the subjects began moving only when instructed

to do so by the experimenter. Simultaneously, the experimenter was pressed

a button on the console, which generated a trigger pulse that indicated the

start of the recording of the Cyberglove data. The trigger pulse was introduced

to the Noraxon system as an extra channel. During the offline analysis, all

the data were synchronized with respect to the trigger pulse, thus ensuring

synchronization between the Cyberglove and the Noraxon system. The onset of

the motion was detected from the joint angles of the fingers, as they switched

from a resting position to motion generation. This transition results in a change

on the angular velocity of the joint angles of the fingers; this change was captured

by the Cyberglove and corresponds to the moment t = 0sec on the analysis and

the figures.

3.2.4 Preshape Criteria

The preshape of the hand is considered as the formation of the fingers before

they reach their final configuration (Haggard and Wing (1995)). In this work, we

employed two criteria to identify the occurrence of the hand preshaping (Paulig-

nan et al. (1990),Supuk et al. (2005)). The first criterion is based on the distance

between the fingertips of the thumb and the index finger; they are considered to

be the fingers that participate in most of the grasp types. For this reason, they

provide valuable information for the configuration of the fingers, and in par-

ticular for the opening and closing of the hand. In the case of the ulnar pinch,

which is performed with the thumb and little finger, we replaced the index finger

with the little finger. The first criterion is defined in the literature as the hand’s

aperture and, in this chapter, we will refer to it as aperture.

The second criterion is based on the estimation of the area of the polygon

that is described by the fingertips involved in the grasp. For the precision disk

and the thumb-4 fingers, the area considered is the one of a pentagon created by

the fingertips of all five fingers. For the tripod grasp and the thumb-2 fingers, the

area was the surface of a triangle defined by the fingertips of the thumb, index,

and middle finger. Finally, for the ulnar pinch, the area was again the surface

of a triangle, but consisted of the fingertips of the thumb, the index finger, and

the little finger. In the following sections, we will refer to this criterion as area.

To estimate the aperture and the area, we compute the position of the fin-

gertips with respect to the wrist from the data recorded from the Cyberglove.

The aperture and the area vary with respect to the opening and closing of the

hand, providing objective information for the determination of the preshaping.

In particular, the preshaping is assumed to correspond to the peak value of the

aperture and the area, and the grasp is considered complete when these criteria
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reach stability.

3.2.5 Classification Method

The preprocessed EMG signals were analyzed using a sliding time-window of

150msec with an overlap of 50msec. In order to embed the specificity of the

motion’s time evolution, we combined an Echo State Network (ESN) (Jaeger

(2001)) to classify the data with the Majority Vote (MV) criterion applied to

each time window from the motion onset, as suggested in (Englehart and Hud-

gins (2003)). The MV criterion assigns a class label to the class that gathers the

most votes. The preprocessed EMG data input were provided as input to the

ESN, without extracting any feature from the EMG signals. Each ESN entailed

180 sigmoid units, with a transfer function f = tanh, and it output 5 classes

for each of the 5 grasp types. The activation function of the output units was

chosen to be the identity function. The classification for each time window was

fed to the MV algorithm, where each vote corresponded to the result of the

classification.

As the classification strategy is implemented online, the following analysis

was performed in the time domain, thus avoiding time normalization. As the

hand’s preshape occurs around the 60% of the reaching motion, we chose to an-

alyze the first second of the reaching motion. This approach enables the capture

of the hand preshape in different time steps and in relation with the classification

rates.

One classifier was trained for each subject. For the first position of the object

(P1), the classification machine was built with the 75% of the dataset of 100

trials (i.e., training dataset) and tested in the remaining data (i.e., 25%) by using

the cross-validation method. For the generalization over different distances (i.e.,

positions P2 and P3), two different classifiers were built. In the first case, the

training dataset was constituted by the data from two different positions, and

the testing dataset included only the data from the remaining positions. In the

second case, instead, the classifier was trained on one position and tested in the

other two.

In the case of the trials at different speeds, we tried different combinations of

training and testing data in order to examine the performance of generalization.

First, the classifier was trained with the data of self-paced motions and tested

with data on fast motions. For a second step, the classification machine was

trained with the data of fast motions and tested with the data of self-paced

motions. In the last test, we mixed the data of fast and slow motions, amd the

classification machine was trained with 75% of the data and tested with the

remaining 25%, following a four-folder cross-validation.

In order to examine the robustness of our approach in clinical conditions,

we investigated the classification accuracy with fewer EMG channels as input

to the classifier. We first removed the intrinsic muscles of the hand (Abductor
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Digiti Minimi, Adductor Pollicis Transversus and Flexor Pollici Brevis). These
three muscles are responsible for the motion of the little finger and the thumb.

By removing these muscles from our dataset, we simulated a condition of motor

dysfunction in those two fingers. This condition could be a result of either a

cervical spinal cord injury in the C8 vertebra or partial amputation of the fingers.

For a second step, we excluded the activity of the Extensor Pollicis Brevis
that contributes to the flexion and abduction of the thumb, which left us with

12 EMG sites. The exclusion of this muscle, together with the Adductor Pollicis
Transversus and Flexor Pollici Brevis), simulates a total loss of the functionality

of the thumb. This condition could derive either from a thumb amputation or a

severe cervical injury in the C6 vertebra. Also, the deduction of the most distal

muscles from our dataset corresponds to a simulation of hand loss, such as wrist

disarticulation.

As a next step, we removed the activity of the Flexor Carpi Radialis and the

ulnar muscles (Flexor Carpi Ulnaris and Extensor Carpi Ulnaris), keeping 11

and 9 EMG channels accordingly. These conditions correspond to an amputation

on the forearm level (e.g. transradial amputation close to the elbow), where the

residual extensor muscles remain active.

Finally, we kept only the 7 EMG muscles that correspond to muscles from

the upper arm(i.e Infraspinatus, Deltoid Anterior, Deltoid Medial, Deltoid Pos-
terior, Biceps Brachii long head, Triceps Brachii long head and Brachialis). In
this case, we simulate a more proximal amputation, such as elbow disarticula-

tion, and a total paralysis of the distal upper-limb (e.g., below the elbow) due

to an injury in T1 and C6-C8 vertebrae.

3.2.6 Online Robotic Implementation

For the purposes of the online implementation, we use a right Allegro hand

from Simlab2. This is a humanoid hand with 16 DOFs split equally on 4 fingers.

Although it is only an approximate reproduction of the dexterity of the human

hand and has more DOFs than currently available assistive devices, it serves

as a benchmark for our ability to reproduce grasps with dexterity similar to

those generated by humans. The Allegro hand has also the advantage of being

controlled at an extremely fast rate (400Hz), which enables demonstrating the

benefit of our early pre-shape detection for real-time control of finger closure

during the arm movements.

In the online robotic implementation, the EMG signals were acquired us-

ing a National Instruments USB-6210 data acquisition board with a sampling

rate at 1000Hz. The acquired signals were pre-processed (filtered and rectified

as described in previous subsection) and classified using a C++ project of Vi-

sual Studio 2013 installed in a desktop computer (Intel Xeon @ 2.27 GHz with

2http://www.simlab.co.kr/Allegro-Hand.htm
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Figure 3.2: Control scheme of the robotic implementation.

Windows 8.1). The classification output for each time window was streamed to

a portable computer (Intel i7 @ 2.6 GHz with Ubuntu 14.01) and introduced

to the majority vote algorithm. Finally, the corresponded joint angles were im-

ported to the Allegro hand, using ROS. The straight forward control scheme is

presented in the Figure (3.2)).

3.3 Results

In order to assess the classification accuracy and the robustness of the results, we

defined the success rate as the percentage of movements correctly classified for a

specific grasp type on the total number of reach-to-grasp motions corresponding

to that specific grasp type (Recall column in Table (3.3)). We also computed the

precision measure (i.e., the percentage of trials correctly classified for a specific

grasp type on the total number of reach-to-grasp movements classified to the

same grasp type) and the F-measure, which corresponds to the harmonic average

of the recall and precision values, for each grasp type. An F-measure score of 1

means that each motion belonging to a specific grasp type was perfectly classified

as such.

After presenting the Recall, Precision and F-measure values of each time

window, we defined the classification performance as the number of correctly

classified trials over the total number of trials, for simplicity purposes.

3.3.1 Reach-to-Grasp classification strategy

Table (3.3) shows the average and standard deviation of the classification results

across subjects and grasps for 10 different time windows starting from 0.15 to

1.05 seconds with a step size of 100msec. The average classification performance

among subjects increased during time, as the hand moved closer to the object

(see Figure (3.3b)) for all the three positions with a slight decrease only at 450

and 950msec for P1 (see Table (3.3)). In particular, a success rate of 90± 4.5%
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Figure 3.3: a) Confusion matrix of the classification between grasp types in among the subjects,
0.55 sec after the onset of the motion. Warmer color indicates higher classification
performance, b)Average and standard error of the classification performance of all
the grasp types among subjects for 30cm distance of the object.
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was reached 0.5sec after motion’s onset (i.e., half-way through the reaching

motion). On average, an F-measure of 0.91 was obtained for the five grasp types

and for all time windows. However, it was higher than 0.76 already 150msec

after motion onset, thus showing that an accurate classification of the five grasp

types is possible before the grasp occurred.

ESN MV
time(s) Precision Recall F-measure
0.15 0.81± 0.06 0.84± 0.05 0.76± 0.08
0.25 0.89± 0.04 0.91± 0.04 0.88± 0.05
0.35 0.87± 0.06 0.89± 0.06 0.84± 0.06
0.45 0.93± 0.04 0.94± 0.04 0.92± 0.04
0.55 0.91± 0.06 0.92± 0.05 0.90± 0.06
0.65 0.95± 0.02 0.96± 0.02 0.94± 0.03
0.75 0.95± 0.03 0.95± 0.03 0.94± 0.03
0.85 0.97± 0.02 0.97± 0.01 0.96± 0.02
0.95 0.96± 0.03 0.97± 0.02 0.95± 0.03
1.05 0.97± 0.02 0.98± 0.01 0.96± 0.02

Total av. 0.92 0.93 0.91

Table 3.3: The average and standard deviation of the classification results across grasp types
and subjects. The Recall values correspond to the percentage of EMG data correctly
classified as a specific grasp type to the total number of reach-to-grasp motions cor-
responding to the same grasp type. The Precision values correspond to the percent-
age of EMG data correctly classified as a specific grasp type to the total number of
reach-to-grasp motions classified to the same grasp type. The F − measure values
corresponding to the harmonic average of the recall and precision values. The last row
of each of the above tables correspond to the total average across time windows.

Figure (3.3a) shows the confusion matrix averaged across subjects for the

five grasp types, 550ms after motion onset. This timing was chosen because it

corresponded to half-way of the reach-to-grasp motion. Precision disk, tripod

and ulnar pinch were distinguishable already at half motion (89.5%,92.7% and

98.3% respectively), whereas thumb-2 fingers and thumb-4 fingers were distinct

later in the reaching motion when the hand moved closer to the object(85.1%

for both of the classes). As expected from the hand configuration during the

grasping, a misclassification tended to occur between tripod and precision disk

and between thumb-2 and thumb-4 fingers (85.5% and 85.8% respectively). From

Figure (3.3b), we notice that thumb-2 fingers and thumb-4 fingers reach 90% of

classification rate 0.7sec after the onset of the motion.

Figure 3.4 presents a comparison between two strategies; (a) the classification

strategy that we followed in previous paragraphs, over the complete reach-to-

grasp motion and (b) the classification performance when one ESN classifier was

trained with the last time-window, where the reaching motion is complete.The

second strategy shows lower accuracy than the first throughout the motion.

Its accuracy reaches 90% only late in the motion, approximately 1s after the

motion onset. In contrast, the strategy that includes the whole reaching motion

presents an accuracy of 90% in a much earlier stage, approximately 0.5s after

the motion-onset. This outcome indicates that the muscle activity varies during

the reaching phase of the motion, as we will see in greater detail in Chapter 4.
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Figure 3.4: The evolution of classification performance and its standard error when training one
ESN for each time-window against training an ESN with the final time-window (i.e.,
the last motion phase). The blue and red lines correspond to the average performance
among the subjects for each method, respectively. Accordingly, the blue and red
shade-areas correspond to their standard errors.

3.3.2 Decreasing the number of EMG channels

In this subsection, by removing the more distal muscles, we examine the perfor-

mance of the approach when using a smaller number of EMG sites. As previously

stated, for this analysis we kept 13,12,11,9 and 7 muscles from the initial muscle

set as input to the classifier.

Figure (3.5) presents the evolution through time of the classification success

rates. As depicted, the classification performance decreases as the number of

muscles becomes lower. The success rate at t = 0.55sec (0.55sec after the onset

of the motion) is between 90.95± 1.85% and 85 ± 1.9% when using more than

10 muscles, and drops rapidly to 77.65 ± 2.36% and 68.95 ± 3.03% when using

9 and 7, muscles respectively.

p values, t = 0.55sec after the motion onset
16 13 12 11 9

13 0.9435
12 0.4039 0.9157
11 0.3743 0.8981 0.9989
9 0.0004 0.0087 0.1276 0.1424
7 < 10−3 < 10−3 < 10−3 < 10−3 0.0243

Table 3.4: The results from the pairwise comparison of the classification performances, 0.55sec
after the onset of the motion, when using different muscle groups. The highlighted
cells depict the pairs in which the null hypothesis was not rejected at the significant
level of 5%.

The one-way analysis of variance (ANOVA) performed on the classification

performances rejected the null hypothesis at the significant level of 5% (p < 10−3
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Figure 3.5: The evolution of classification performance and its standard error while reducing the
number of EMG sites. The object was 30cm away from the initial position of the
hand.

p values, t = 1.05sec after the motion onset
16 13 12 11 9

13 0.9007
12 0.3921 0.9493
11 0.4977 0.9798 0.9989
9 0.0006 0.0189 0.1715 0.1188
7 < 10−3 < 10−3 < 10−3 < 10−3 0.0001

Table 3.5: The results from the pairwise comparison of the classification performances, 1.05sec
after the onset of the motion, when using different muscle groups. The highlighted
cells depict the pairs in which the null hypothesis was not rejected at the significant
level of 5%.

for α = 0.05). The Tables (3.4)) and (3.5)) present the results of the pairwise

comparison analysis of the classification performances at the moment of t =

0.55sec and t = 1.05sec. As it is shown, the performance decreases significantly

when reducing the number of EMG channels from 16 to 9, though it is not

significantly different when using 13, 12 and 11 muscles. A significant drop in

performance was observable when using 9 and 7 muscles.

3.3.3 Generalization on different distances

For a second step, we examined the generalization across distances by (i)

training the classifier on two positions (i.e., P1 and P2 or P1 and P3) and test-

ing it on the remaining third position (P3 or P2, respectively) and, (ii) training
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Figure 3.6: Classification success rate in different distances: (a) Average classification perfor-
mance and standard error on the reaching motion: The blue line presents the perfor-
mance of the classification of grasp types on position P1. The red line corresponds to
the classification performance when all the positions (P1, P2 and P3) are taken into
account, (b) Average classification performance and standard error on training with
two positions and testing on the third: The blue line presents the performance when
training on reaching motions to two positions P2 and P3 and testing on position
P1. Respectively, the red line corresponds to training on positions P1 and P3 and
testing on position P2 while the magenta line corresponds to training on positions
P1 and P2 and training on position P3, (c) Average classification performance and
standard error on training with one position and testing on the other two positions:
The blue line presents the performance when training with reaching motions to po-
sitions P1 and testing on positions P2 and P3. Respectively, the red line corresponds
to training on position P2 and testing on positions P2 and P3, while the magenta
line corresponds to training on positions P3 and training on position P1 and P2.
The green line corresponds to training with position P2 and testing on position P3.
The brown line corresponds to training with position P3 and testing on position P2.
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Figure 3.7: a: Average classification performance and standard error on the fast motions: The
red line presents the performance of the classification of grasp types with the data
of fast motions. The blue line corresponds to the classification performance when
the data of fast motions were mixed with the data of normal motions. The green
line corresponds to the performance when training with fast motions and testing on
normal motions. The brown line corresponds to the performance when training with
normal motions and testing on fast motions. the magenta and cyan vertical lines
indicate the peak of the preshape criteria then subject 11 performed the precision
disk grasp with fast and normal motions respectively as depicted in Figure (3.7b).
b: Preshape criteria on the precision disk of subject 11: The subject opens its fingers
sooner in fast motions than it does in normal motions.
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the classifier on one position (i.e., P1 or P2 or P3) and testing it on the other two

(i.e., P2 and P3 or P1 and P3 or P1 and P2, respectively). The performances

were higher when the classifier was trained with a single position, with respect

to a classifier trained on two positions (see Figures (3.6b) and (3.6c)). Indeed,

the average performance at 0.45sec after movement onset was 93.93± 1.7% and

90.78± 2.5%, when training on one position and on two positions, respectively.

For the classifier trained with two positions, the performance was better when

the training set included movements from the farthest distances (i.e., P1 and P2)

and the testing set included the shortest distance (i.e., P3) (see Figure (3.6b)).

The performance in this case was 93.6± 3.6% after 0.45sec from the motion on

set. For the classifier trained with a single position, the best classification perfor-

mance was achieved when the classifier was trained in the middle distance (i.e.,

P2) and tested on the other two distances (i.e., P1 and P3) (see Figure (3.6c)).

In this case, a classification accuracy of 95.2± 2.0% was achieved 0.45sec after

movement onset. It is worth mentioning that this case (i.e., training with P2

and testing on P1 and P3) presented, as well the smallest standard error when

compared to the other generalizations. A one-way analysis of variance on the

classification performance at the moments t = 0.55sec and t = 1.05sec after the

onset of the motion failed to reject the null hypothesis on the significant level

of 5% (p = 0.12 and p = 0.88 respectively).

3.3.4 Speed effect

In order to further evaluate the generalizability of our approach, we examined

the effect of the speed on the classification. We first analysed the differences in

finger motions in fast movements with respect to self pace motions. As expected

there was a significant difference in the timings of hand opening and closing

between motions performed at self-paced speeds and at fast speeds (see Fig-

ure (3.7a)). Indeed, the subjects opened and closed their hands in fast motions

more rapid than in self-paced motions.

For a first step, we mixed the data of the self-paced and fast motions for

training and testing. The classification performance reached 90±2.3% of success

after 0.55sec from movement onset. We then compared this first classification

with the results obtained from training the classifier in the fast motions and

testing it in either for fast or self-paced motions, or training the classifier with

the movements at self-selected speed and testing it for the fast motions. As

expected when using data from only the fast motions both for training and

testing, the classification performance reached an accuracy higher than 90%

sooner than when mixing the motions (0.35sec for fast motions, 0.55sec for self-

paced motions). Whereas the classifiers that were trained and tested in different

datasets achieved lower performances than that trained and tested with mixed

data. In particular, the accuracy of 90% was achieved 0.7sec after motion onset.

Moreover, the standard error of these classifiers was higher than 4.5%, which
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indicated that the classifier performed significantly better in some subjects than

in others.

3.3.5 Classification rate Vs Hand preshape

To quantify how early into the preshape phase, we could detect the grasp in-

tention, we used two criteria: (a) the hand textitaperture: the distance between

the fingers involved during the grasp (i.e., thumb and index finger for precision
disk, tripod, thumb-2 fingers and thumb-4 fingers and thumb and pinky finger

for ulnar pinch grasp) and (b) the area of the fingertips: the surface obtained

interconnecting the tips of the fingers involved in each grasp.

It is worth mentioning that the aperture involves solely the behavior of the

thumb and index finger. Hence, the area criterion could be more informative of

the motion of the fingers, as it encapsulates the behavior of all the fingers in-

volved in the grasp (Supuk et al. (2005)). In order to examine the general trends

of the motion of the fingers, we computed the two criteria in normalized time

and present the results in Figure (3.8). As it is shown, the preshape is indicated

in three grasp types (precision disk, tripod and thumb-4 fingers) by the peak of

the area criterion that is followed by a smooth convergence to the final point. In

the case of the thumb-4 fingers grasp, the start of the preshape phase is also re-

vealed through a peak in the aperture; this peak occurs simultaneously with the

peak of the area criterion. Both curves then decrease smoothly until full closure

onto the final grasp. In the case of thumb-2 fingers grasp, it is more difficult to

define the moment of preshape occurrence (see the third graph of Figure (3.8a)

and (3.8b)), as the fingers begin their motion with a flexion, until the 30− 40%

of the duration of the self-paced motions. At this point, the value of the area

criterion stays approximately stable for a period of time before closing smoothly

to the final grasp. During the same period, the value of the aperture criterion

decreases, indicating a flexion of the index finger and the thumb. As the thumb-

2 fingers grasp involves also the middle finger, the area criterion encapsulates

the behavior of the middle finger. In order for the value of the area criterion to

stay stable while the index finger and the thumb are flexing, the middle finger

extends until all the fingers start to close simultaneously. We considered that

the preshape occurs when the area criterion starts converging smoothly to its

final value. Regarding the ulnar pinch, two fingers are involved, the thumb and

the little finger. In this case, the aperture criterion, which corresponds to the

distance between the fingertips of the thumb and the little finger, is more rep-

resentative of the preshape than the area criterion, which involves more fingers.

Hemce, we considered that the preshape occurs on the peak of the aperture cri-

terion. Figure 3.9 presents the fingers configuration on the initial hand position,

on the preshape and in the end of the motion.

Table (3.7) presents the average real time of preshape occurrence as well

as the completion time for all the motions. The one-way analysis of variance
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Figure 3.8: The average value of preshape criteria across all subjects.

P1 = 30cm P2 = 20cm P3 = 10cm Fast
precision disk 0.74± 0.17sec 0.62± 0.18sec 0.52± 0.24sec 0.40± 0.25sec

tripod 0.71± 0.24sec 0.60± 0.17sec 0.56± 0.25sec 0.53± 0.21sec
thumb-2 fingers 0.53± 0.28sec 0.48± 0.24sec 0.47± 0.24sec 0.38± 0.19sec
thumb-4 fingers 0.38± 0.2sec 0.31± 0.22sec 0.30± 0.23sec 0.42± 0.22sec
ulnar pinch 0.43± 0.21sec 0.42± 0.23sec 0.42± 0.25sec 0.41± 0.12sec

Table 3.6: The average times and standard deviations of the preshape occurrence per grasp type

(ANOVA) rejected the null hypothesis at a significant level of 5% for the pre-

shape occurrence and the completion time (p < 0.001 for α = 0.05). A pairwise

comparison analysis of the timings of the preshape and task completion shows

that the timings are not significantly different between the self-paced motions

Precision disk Tripod Thumb-2 fingers Thumb-4 fingers Ulnar pinch
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Figure 3.9: Configuration of the fingers in three different moments of the reaching motion: Initial
configuration (before the onset of the motion), configuration on the preshape, final
configuration (when grasping the object).
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preshape occurrence completion time
P1 = 30cm 0.56± 0.26sec 1.30± 0.27sec
P2 = 20cm 0.49± 0.21sec 1.19± 0.22sec
P3 = 10cm 0.46± 0.25sec 1.14± 0.25sec

Fast 0.40± 0.11sec 0.83± 0.17sec

Table 3.7: The average times and standard deviations of the preshape occurrence and task com-
pletion on the different motions

preshape occurrence

30cm 20cm 10cm
20cm 10−3

10cm < 10−3 0.91
Fast < 10−3 < 10−3 < 10−3

Table 3.8: The results from the pairwise comparison between the timings of the preshape oc-
currence. The highlighted cells depict the pairs in which the null hypothesis was not
rejected at the significant level of 5%.

when the object is placed 20cm and 10cm away of the initial position of the

hand (Tables (3.8) and (3.9)).

After examining the behavior of the fingers, we extracted the timings of

the preshape occurrence with a visual inspection of the criteria for each trial.

The average and standard deviation of the time of the preshape occurrence

and completion time are presented in Table( 3.7). As it is shown the preshape

occurs on average between 0.46− 0.56sec after the onset of self-paced motions.

Figure( 3.6a) presents the evolution of the classification performance through

real time. As it is shown, the success rate reaches 90% of classification accuracy,

on average, at 0.45sec after the onset of the self-paced motions. These results

suggest that it is possible to classify the grasp type during the preshape of the

fingers.

We also compared the classification performance with the preshape occur-

rence for each grasp type individually. Table (3.6) presents the time of the

preshape occurrence for all the grasp types, and Figure (3.3b) presents the evo-

lution of the classification performance for all grasp types in real time. Compar-

ing the time preshape occurrence from Table 6 with the classification results of

the Figure (3.3b), we notice that the success rate for the precision disk reaches

89.5 ± 3.8% of accuracy 0.55sec after the onset of the motion, and the corre-

sponding preshape appears 0.74 ± 0.17sec after the motion onset. Concerning

the tripod grasp, a 94.1± 2.7% of classification accuracy is observed at 0.55sec,

and the preshape occurs at 0.71 ± 0.24sec after the motion onset. Continuing

with the thumb-2 fingers grasp type, a 92.1± 1.8% of classification accuracy is

noticed 0.75sec after the onset of the motion, and the corresponding preshape

occurs 0.53± 0.28sec after the motion onset. Regarding the thumb-4 fingers, a

90.7 ± 2.8% of classification accuracy is noticed 0.65 sec after the onset of the
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completion time
30cm 20cm 10cm

20cm 10−3

10cm < 10−3 0.21
Fast < 10−3 < 10−3 < 10−3

Table 3.9: The results from the pairwise comparison between the task completion times. The
highlighted cells depict the pairs in which the null hypothesis was not rejected at the
significant level of 5%.

motion, and the corresponding preshape occurs 0.38± 0.20sec after the motion

onset. Finally or the ulnar pinch, a 94.46 ± 2.1% of classification accuracy is

noticed 0.15sec after the onset of the motion, while the corresponding preshape

occurs 0.43± 0.28sec after the motion onset. In summary, 90% of classification

performance is achieved before the preshape occurrence for three grasp types

(precision disk, tripod and ulnar pinch). For the other two, the preshape pre-

ceded the 90% of classification accuracy.

3.3.6 Online Robotic Implementation

In order to demonstrate the usability of the proposed approach for the es-

timation of the final grasp gesture in the early stages of the reaching motion

for an assistive or a rehabilitative application, we present here an online robotic

implementation of our approach. The system was trained offline, whereas the

testing was performed online using the aforementioned control scheme of the

Figure (3.2)). We defined a set of desired joint configuration for the 4 fingers

of the Allegro hand, so that these correspond to similar postures to the human

hand, see Figure 3.11. As soon as the classifier reached the confidence threshold

of 0.5, the fingers of the robotic hand were driven to their desired final pos-

ture. The confidence of the majority vote was defined as the difference in votes

between the two most ”popular” classes, divided by the sum of all the votes.

Five able-bodied subjects participated in the online implementation experi-

ment(four males and one female). The subjects performed 15 self-paced reach-

to-grasp motions for each grasp type with the objects placed 30 cm away from

the initial position of the hand. The recorded dataset, consisting of 75 trials,

was used to train the system offline. After the training phase, the subjects per-

formed 30 reach-to-grasp motions for different objects, using a grasp type of

their choice, between these five grasp types. The results of the online implemen-

tation are presented on the Figure 3.10. The 92.5± 2.9% of the test trials were

successful allowing the execution of the correct grasp type. In the 88.58± 3% of

the successful trials the robotic hand reached its final configuration before the

subject reached the object(see the video3and Figure (3.11)). Moreover, all the

grasp types have an average success rate above 90% at the end of the motion
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Figure 3.10: Online implementation results.

grasp type activation time closure
Precision disk 0.53± 0.13sec 0.32sec

Tripod 0.54± 0.16sec 0.41sec
Thumb-2 fingers 0.58± 0.25sec 0.41sec
Thumb-4 fingers 0.63± 0.30sec 0.42sec

Ulnar pinch 0.54± 0.12sec 0.41sec

Table 3.10: The activation times of the robotic hand for all grasp types in the online implemen-
tation. The third column of the table corresponds to time needed for the robotic
hand to take its final configuration closing with its maximum velocity.

and above 80% on the early prediction of the grasp type. The lowest perfor-

mances on the early prediction appear at the thumb-2 fingers and thumb-4
fingers grasp types with 82.6±4.3% and 84.75±3.7%, respectively. The highest

performance on the early prediction of the grasp type was noticed at the ulnar
pinch (96.3 ± 0.5%) followed by the tripod grasp (90.4 ± 3.3%) and precision
disk (89.4 ± 2.3%). Table (3.10) presents the average and standard deviation

of the activation times of the robotics hand among the correctly classified tri-

als. The average activation time of the robotic hand among all grasp types was

0.54 ± 0.05sec. Thumb-2 fingers and thumb-4 fingers had the largest variance

on the activation time (0.25sec and 0.3sec respectively).

3.4 Discussion

Previous studies Dalley et al. (2012); Ouyang et al. (2014); Liarokapis et al.

(2013); Carpaneto et al. (2012), presented different approaches for mapping

EMG signals to reaching and grasping motions, according to object’s features

and locations and during static or dynamic gestures. In these approaches, the

3https://www.youtube.com/watch?v=58tjelKFhAg&t
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Figure 3.11: Snapshots of the finger motions of the robotic hand and human hand.

system is trained as the subject is asked to perform a grasp type, with or without

holding an object, and to stay there for a few seconds. Using this technique, the

classifier is able to recognize different grasp types, but only after they are already

performed. Transferring this method to an on-line application, the hand should

first travel the distance to the object location and then start closing according

to the preferred grasp type. This equals a mechanical and unnatural motion in

comparison to the seamless natural motion of the human hand. In our approach,

the classifier is trained with data of the reaching motion and the classification

performance is related to the time of fingers/hand preshape. A decode of the

grasping type in the early stages of the motion is important, as it would enable

the device to react promptly to the intention of the user. Therefore, we propose

an EMG-based learning approach that decodes the grasping intention of the user

at an early stage of the reach to grasp motion. Our approach is based on an

Echo State Network (ESN) (Jaeger (2001)) combined with a Majority Vote (MV)

criterion applied to time windows of 150ms, from the motion onset to the grasp

of the object. We applied the algorithm to an offline classification of five different
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grasp types: precision disk, tripod, ulnar pinch, thumb-2 fingers and thumb-4

fingers grasp. Furthermore, we examined whether our approach was robust to

different objects’ location and to different motion speeds. Indeed, the object’s

distance and the movement velocity could differentiate the activation of the

muscles, especially for the muscles of the upper arm, influencing the classification

performance. Finally, we demonstrated in three subjects the usability of our

approach for the online control of the Allegro hand.

Reaching-to-grasp motions are decomposed into two phases: (a) the reaching

phase, where the hand travels towards the object location, and (b) the grasping

phase, where the hand reached the object and the fingers are in contact with the

object (Paulignan et al. (1990); Jeannerod (1984); M. Jeannerod (1998)). In a

natural self-paced motion the hand spontaneously opens and closes while being

in the reaching phase (Paulignan et al. (1990); Jeannerod (1984); M. Jeannerod

(1998); Santello and Soechting (1998)). The preshape of the hand is defined

as the formation of the fingers before they take the final configuration, and

it takes place during the reaching cycle (Supuk et al. (2005)). In particular,

the fingers extend to a maximum before they start closing (continuously flex)

around the object with respect to its characteristics. It has been reported that

the posture of the hand could be discriminated well before the contact with

the object (Santello and Soechting (1998)). In other words, the trajectories of

the fingers before their closure around the object correspond to an indication

of the final grasp type before the grasping phase, i.e. before the fingers are in

contact with the object. In this chapter, we showed that this information could

be revealed from the muscular activity.

It was shown that the hand’s pre-shaping occurs from 60% to 80% of the

reach-to-grasp motion, which corresponds to the time instant when the dis-

tance between the thumb and the index reached its maximum (Paulignan et al.

(1990), Supuk et al. (2005)). Our analysis with normalized time suggests that

hand preshape occurs after the 30% with respect to the completion time of the

task. We observe that the fingers preshape between the 30− 60% of the reach-

ing cycle regardless of the distance from the object or the speed of the motion.

Furthermore, the initial position of the hand as well as the characteristics of

the object could play an important role on the detection of the preshape: For

example, when reaching to grasp a thin object by starting from an open-hand

configuration, the hand might not need to open more in order to adjust to the

size of the object. In this case, detecting the preshape becomes less trivial, and

additional principles should be considered for the definition of the preshape.

In this chapter, we consider the onset of a smooth closure of the fingers (flex-

ion without extension) as such a principle. Yet, the detection of the preshape

becomes more obvious when the task demands large extension of the fingers.

Moreover, Martelloni et al. (2009) suggested that a period between the 25%

and the 50% could be sufficient to obtain differences in muscle activity when

reaching to grasp three different objects. We expand this suggestion and our
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results showed that it is possible to classify five grasp types using EMG data from

early stages of the reaching motion. We related the classification performance

with the hand’s preshape and our offline results showed that a classification rate

of 90% was achieved before the hand preshaping for the precision disk, tripod,

and ulnar pinch. Whereas, for the thumb-2 fingers and the thumb-4 fingers

grasps, instead, the computed hand preshape criteria did not always show a

peak, hence the hand preshaping was not always clearly detected.

We evaluated the accuracy of our approach by decreasing the number of

EMG channels inserted as input to the classifier. By removing the muscles from

the hand and forearm, we kept less information regarding the motion of the

fingers, expecting that this would influence negatively the performance. The

results showed a significant decrease in the classification performance when us-

ing 9 and 7 muscles from the initial muscle set. In particular, the classification

performance reduces as the muscles of the hand and forearm are removed, but

this does not lead to a significant drop in the performance, as long as we re-

tained at least 7 muscles from the upper arm and 4 from the forearm (i.e Flexor
Digitorum Superficialis, Flexor Carpi Ulnaris, Extensor Digitorum Communis
and Extensor Carpi Ulnaris). These results indicate that our method success-

fully classifies grasps early, without the muscular activity of the more distal

muscles. In particular, our classification approach could offer high accuracy in

distal amputations, such as wrist disarticulation and transradial amputation,

and in SCI cases on low cervical vertebrae (C6-T1). Although the results with

less EMG channels are promising, we should keep in mind that the activation

of the residual muscles of an amputated arm could be different concluding to a

different performance. This aside, our control method performs efficiently with

able-bodied users, as presented in the online implementation.

In addition, we examined the proposed approach when the object is placed

in different distances. Our results showed no significant differences between the

classification performance on different object’s distances. This outcome can be

explained from the training of the classifier in time steps without normaliz-

ing the time. With this approach, we were able to capture enough variability

of the EMG activity of motions with different duration and speed. We also

took advantage of the short-term memory capacity of the Echo State Networks

(ESNs) by avoiding extracting features and treating the signals as time series.

This approach imparted a level of tolerance to different muscle activation to

the classifier. Furthermore, we evaluated different combinations of training and

testing dataset acquired at different object’s distances and we concluded that

the best performance was achieved when the classifier was trained in the middle

distance and tested in distances 10 cm larger or shorter. When we compared

the performances between the same training approaches (as presented in 3.6b

and 3.6c), we observed the lowest classification performances when the classifier

was trained with the shorter distance and tested on further distances. This re-

sult suggests a better generalization over the shorter distances than the further
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positions. A potential expansion of the generalization would be the inclusion of

different positions in space.

Although no significant differences were found when considering different

object’s distances, as the motion velocities in self-paced motions are slightly dif-

ferent, depending on the object’s location, a fast motion influences significantly

the classification performance. Although the preshape appears in the same stage

on the reaching cycle, regardless of the speed of the motion, we notice that the

hand preshapes significantly sooner in time than in self-paced motions. In some

cases the fingers follow trajectories different than in self-paced motions. The

rapid activation of the arm muscles during fast motions differentiates the acti-

vation of agonist/antagonists muscles, influencing the EMG signals and resulting

in a lower performance when significantly different velocities were taken into ac-

count. A classifier that included different speed motions performed sufficiently

well only when the training involved both data form normal and fast motions.

The reduction of the performance obtained when the classifier was trained with a

single speed motion can cause inconvenient behavior for assistive and prosthetic

devices. A cervical injury usually results in low motor functionality also for the

upper arm, even in cases where the median and musculocutaneous nerves are

intact, and individuals with SCI execute reaching motions in very low speed.

Hence, training a decoding system in various speeds could be rather difficult

and, in many cases, non-applicable. In contrast, individuals with below-elbow

amputation have the ability to extend their arms fast. Therefore, more attention

should be paid to the effect of speed on the design of more human-friendly and

convenient myo-prosthetic devices. Indeed, seamless control and robot-human

interfaces represent two pivotal aspects in robotic-rehabilitation approaches.

For a proof of concept, we integrated our approach in the control of an Al-

legro hand. After a training phase performed offline including 15 repetitions for

each object of the five grasp types, the success rate of classification was around

92.5%. The difference between the offline and online classification performance

could be due to different sampling frequency used in the online implementation.

This robotic implementation leads to the conclusion that the early estimation

of the final grasp from the EMG signals could be applied to a robotic system

and, as an extension, could be applied to the control of a prosthetic device or

of an exoskeleton. An important extension of the approach is the introduction

of a robotic control scheme that derives from the natural motion of the human

hand, which would impart a human-like behavior to the robotic device. Addi-

tional works could be done to integrate to the robotic system tactile sensors for

the attainment of a safe/stable grasp. Indeed, recent developments on the sen-

sory field (D’Anna et al. (2017); Novak et al. (2013)), showed that the design

of compliant prosthesis should also include the sensory feedback to the user.

This feedback could involve visual and tactile information in order to provide a

compliant solution to the demands of the different conditions. A control scheme

of an upper arm prosthesis that combines a variety of sensors (e.g EMG, vision,
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tactile sensors) would provide a robust use of the device . Moreover, a potential

next step would be to include the proposed approach in the control of the fin-

gers’ exoskeleton in order to examine any inconvenience that this causes and be

further developed on a semi-autonomous control scheme.

Fligge et al. (2000) report that it possible to relate the object’s characteristics

with the muscular activity. To do so, the decode of the preshape by the EMG

signals, as presented in our work, could provide valuable information for object

before the contact of the fingers with the object. As this information comes in

advance of the contact, it could be used for accomplishment of a safe grasp.

Finally, a further interesting extension of this work is the classification of

specific-finger configuration with different hand orientations. In this case, a clas-

sifier could tackle the problem of the high dimensionality of the task with the

use of postural synergies (Santello and Soechting (1998)), that correspond to

a number of hand postures that humans combine when grasping. Furthermore,

during grasping different orientations of the hand are used. Young et al. (2013)

and Fougner et al. (2014) has reported a successful classification of the simul-

taneous motion of the wrist and fingers. A potential combination of the decode

of the grasping intention of the user with the simultaneous control of the wrist

will provide a more natural motion of the wearable device with respect to the

human motion.

3.5 Conclusion

In this chapter, we have made a first step towards enabling a more fluent control

of prosthesis. Specifically, we have compared the classification accuracy with the

hand pre-shape, investigating the stage where the accuracy becomes higher than

90%. The results have shown that it is possible to have high accuracy before

the hand preshape and in some cases, such as the precision disk grasp type,

before the hand has completed the opening stage. We ave also observed that

90% of accuracy occurs approximately 0.5s after the motion onset. Integrating

this approach in a real-time control of a robotic hand, we noticed that the

robotic hand was activated whilst the user was still in the reaching phase. These

results indicate that the EMG activity of the first stages of the reaching phase is

sufficient for providing high prediction accuracy. This study is limited, however,

by the participation of only able-bodied individuals and, for this reason, we

evaluate the assumption with end-users in the next chapter.
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Chapter 4

Decoding the Grasping

Intention from

Electromyography during

Reaching Motions

In this chapter, we focus on the evaluation of the decoding approach with four

individuals with below-elbow amputations. As the preshape criteria are not ap-

plicable in this case, we introduce the concept of motion phases in the control

approach. In particular, to better examine the evolution of the classification ac-

curacy over the reach-to-grasp motion, we separate the EMG into phases with

respect to the angular velocity of the elbow joint. We perform an analysis in

order to explore the differences, among the EMG patterns, in the motion phases

and to compare the performance of different classification methods. Further-

more, we investigate the effect of different muscle-groups on the classification

accuracy. Lastly, we highlight the benefits of including all the motion phases in

the real-time control of a prosthesis and the resulting confidence of the pattern

recognition system.

4.1 Introduction

Surface electromyography (EMG) has been widely studied as an intuitive

human-machine interface for controlling intelligent external devices, such as

prosthetic hands (Novak and Riener (2014); Earley et al. (2016)). As amputees

generally have a limited number of independent EMG sites available for control-

ling a multi-degree of freedom (DOF) prosthesis, we cannot rely on a one-to-one

EMG-to-DOF control. Surgical methods, such as targeted muscle reinnervation

(TMR) (Miller et al. (2008); Kuiken et al. (2009)) and regenerative peripheral-

nerve interfaces (RPNIs) (Urbanchek et al. (2011)), can enable the control of a

larger number of DOFs.

Advanced signal-processing approaches could also be used to control multi-

DOF prostheses with fewer independent EMG sites. EMG-based pattern recog-

nition systems are proposed for the estimation of, both independent and si-

multaneous (Fougner et al. (2014); Young et al. (2013)), hand and wrist move-

ments (Smith et al. (2016); Gonzalez-Vargas et al. (2015); Li et al. (2010)).

Using extrinsic hand muscles, pattern recognition has effectively classified func-

tional hand-grasp patterns (Smith et al. (2016)) and even individual finger move-

ments (Naik et al. (2016); Khushaba et al. (2012)).

In these previous studies, subjects generally performed muscle contractions
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while maintaining their arm in a fixed position. However, training a classifier

in a static position, as mentioned above, results in lower classification accuracy

when the limb is in different positions or performs dynamic motions (Scheme

et al. (2011)).

Reach-to-grasp movements are important activities that require dynamic

contraction of the muscles. A few studies have attempted to decode grasping

intention from EMG during reach-to-grasp motions, but only with able-bodied

subjects (Batzianoulis et al. (2017); Martelloni et al. (2009)). When reaching

to grasp an object, the opening and closing of the hand is in coordination with

the motion of the arm (Rand et al. (2008); Wang and Stelmach (1998)), see

Figure 4.1a. More specifically, the human hand opens rapidly in the early stages

of the reaching cycle, whereas the fingers converge gradually to their final con-

figuration (Jeannerod (1984); Rand et al. (2008)).

Figure 4.1: a) Typical profiles of velocities of the elbow and hand aperture in abled-bodied sub-
ject Rand et al. (2008); Gentilucci et al. (2000); Bongersa et al. (2012) compared to
that generated with a traditional prosthetic device, as presented in Ghazaei et al.
(2017); Amsuess et al. (2016). During reaching, the aperture of the human hand
(solid green line) changes in coordination with the extension of the arm (dashed
blue line). In contrast, the prosthetic hand (dash-dotted red line) begins its motion
later in the reach-to-grasp cycle, once the elbow is fully extended. In our approach,
we separate the reach-to-grasp motion into three phases (denoted by dashed vertical
lines) according to the angular acceleration of the elbow joint ael. We distinguish
between acceleration, deceleration and rest phases. We present that a pattern recog-
nition system, trained including the reaching motion, could gain efficient prediction
confidence early in the reaching motion and, thus, activate faster a prosthetic de-
vice. b) ) The selected five grasp types used in our classification, following the names
and using figures from the taxonomy of Feix et al. (2015). c) Experimental set-up
for training the system with amputee subjects in data recordings. EMG-information
from the amputated arm are recorded while the subject performs the reach and grasp
motion with his/her intact arm.

A self-paced reaching motion of an able-bodied hand could take approxi-

mately 1s to complete (Batzianoulis et al. (2017); Haggard and Wing (1995)).

In contrast, the activation of prosthetic hands could occur more than one second

48



after the onset of the motion (Ghazaei et al. (2017); Amsuess et al. (2016)) (see

Figure 4.1a). This makes unnatural the actuation of a prosthetic hand, due to

the lack of the natural arm-hand coordination. It also slows down the reach-

to-grasp motion. It is crucial that prosthetic devices react promptly to human

intentions in order to enable natural and intuitive operations (Farrell and Weir

(2007)). To convey a seamless coordination between the device and the residual

arm, it is important that the device identifies the grasping intention during the

reaching phase.

In the previous chapter and in (Batzianoulis et al. (2017)), we showed that

the detection of the grasp type in synchrony with the reaching motion could

enable a smooth coordination of hand closure with the reaching motion, thus

providing a more natural and seamless motion of the arm and a robotic hand.

In our approach, the classification performance is related to the occurrence of

hand pre-shape during reaching motions, following the natural pre-shape phase

as documented in (Jeannerod (1984); Santello and Soechting (1998)). Our prior

study was limited to able-bodied subjects. Here, we extend this approach to

decoding residual EMG in individuals with a below-elbow amputation. We com-

pare the performance of four different classifiers: LDA, two SVMs, and an Echo

State Network (ESN). Additionally, we explore a relationship between classifi-

cation performance and the phases of the reach-to-grasp motion. This chapter

corresponds to the following publication:

Batzianoulis, I., Krausz, N., Simon, A., Hargrove, L. and Billard, A., De-
coding the grasping intention from electromyography during reaching motions,
Journal of NeuroEngineering and Rehabilitation, 2018.

4.2 Methods

4.2.1 Experimental Protocol

Eight able-bodied subjects (6 males and 2 females 25−32 years old) with no

known neurological or physical deficits and four unilateral transradial amputees

participated in the experiment. All able-bodied subjects were right-handed and

performed the experiment with their dominant hand. All subjects were naive to

pattern recognition control, with the exception of three of the amputee subjects.

Two of the amputee subjects had undergone a TMR surgery. Table 4.1 presents

the demographic information about the amputee subjects.

During the experiment, both the able-bodied subjects and the amputee sub-

jects sat in front of a table, facing a computer screen, with their elbows at a 90o

angle. The able-bodied subjects had their right-hands closed on the table and

they were asked to reach the object and grasp it with a predefined grasp type
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and to maintain the same wrist orientation for all grasp types. Custom computer

software, called Control Algorithms for Prosthetics Systems (CAPS) (Kuiken

et al. (2009)), prompted users to initiate the reach-to-grasp motion and to go

back to a resting position. Subjects performed the motions at their own pace.

They were tasked to reach and grasp an object placed 30cm away from the

initial position of their hand. Once they had reached the objects, they were

asked to remain in the same posture until they received a cue from CAPS to go

back to the resting position. The duration of each trial was 4s with a 10s rest

between trials, to avoid fatigue. All subjects performed 30 trials for five grasp

types, resulting in 150 trials in total.

In the experiments with the amputee subjects, the subjects were asked to

reach the object and grasp it with their intact hand while trying to replicate

the motion with their phantom limb, see Figure 4.1c. These subjects started

their self-paced motions when cued by the experimenter. Whenever a subject

perceived an irregular or unexpected muscle contraction, the experiment was

paused and the trial was repeated. Regular breaks were taken in order for the

subjects to relax from the stress and effort of contracting their phantom limb.

All the amputee subjects were able to complete the experiments.

Table 4.1: Demographic information of the four transradial amputatee subjects. TR1
and TR3 underwent a TMR operation for neuroma pain, not for improving
prosthetic control. TR1 is not a user of a myoprosthesis due to financial
reasons.

Subject TMR User of myoprosthesis Age Years since amputation

TR1 Yes No 25 7

TR2 No myoelectric prosthesis 53 38

TR3 Yes myoelectric prosthesis 51 2

TR4 No myoelectric prosthesis 68 >30

4.2.2 Apparatus and Pre-processing

Custom computer software Kuiken et al. (2009) was used for signal acquisi-

tion, with EMG signals acquired at 1000Hz with a 30− 350Hz band-pass filter

using TI ADS1298 biosignal amplifiers. The EMG activity of 12 muscles was

recorded: Trapezius (Trap), Deltoid Anterior (DA), Deltoid Medial (DM), Del-
toid Posterior (DP), Biceps Brachii long head (BB), Triceps Brachii long head
(TB), Brachialis (BR), Flexor Digitorum Superficialis (FDS), Extensor Digito-
rum Communis (EDC), Flexor Carpi Ulnaris (FCU), Extensor Carpi Ulnaris
(ECU), Flexor Carpi Radialis (FCR) (seven muscles of the upper arm and five

muscles of the forearm). To construct a linear envelope, full-wave rectification

was performed, followed by smoothing with a low-pass seventh-order Butter-

worth filter with cut-off frequency at 20Hz. At the end of this step, each chan-
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nel was normalized by the maximum value recorded in the trials. A goniometer

was placed on the subjects’ elbow for measuring the onset and extension of the

elbow.

In order to evaluate the quality of the EMG signals, we computed the root

mean square of signal-power (Prms), following the method presented in Agostini

and Knaflitz (2012). In particular, we accumulated the raw EMG signals of all

the trials for each participant and calculated the Prms for each EMG channel. We

grouped the 8 able-bodied participants as our control-group. We, then, compared

the signal-powers of EMG signals of each amputee participant with our control

group.

4.2.3 Phases of the Motion

As illustrated in Figure 4.1a, during a natural reach-to-grasp motion, the

opening and closing of the hand is coordinated with the extension of the el-

bow Rand et al. (2008); Wang and Stelmach (1998). Typically for able-bodied

subjects, the hand opens rapidly in the early stages of the reaching motion and

decreases its velocity while approaching the object and reaching the final con-

figuration Jeannerod (1984). The hand’s velocity peak occurs before the peak

velocity of the elbow extension Rand et al. (2008). Thus, the hand reaches its

final grasp-posture after the peak velocity of the elbow extension. Because EMG

recordings from upper and lower arm muscles encapsulate information on the

hand motion, the EMG patterns will likely differ in the different phases, specifi-

cally before and after the elbow extension velocity peak. Taking inspiration from

this behavior, we divided the reach-to-grasp motion into three phases, with re-

spect to the extension of the elbow joint. The first phase is defined as the interval

from motion onset (i.e. when the angular velocity of the elbow joint exceeds a

velocity threshold) until the angular velocity of the elbow reaches its maximum.

The second phase is the interval between the aforementioned maximum angular

velocity and the end of the reaching motion (i.e. when the angular velocity of the

elbow drops below a velocity threshold). We define the third phase as the phase

after the completion of the elbow extension. More specifically, we selected 25%

of the duration of the reaching motion selected after the velocity drops below

a threshold. The velocity threshold was set at 10% of the maximum angular

velocity recorded for each subject.

We normalized the time of the duration of the reaching cycle. The reaching

cycle corresponds to the time interval between the motion onset and the end

of the extension of the elbow, i.e. when the angular velocity of the elbow drops

below the velocity threshold. We performed a one-way multivariate analysis

of variance (MANOVA) on the average values of the 12 EMG channels over

the three phases for each grasp type. The Wilks Lambda test and the Pillai-

Barlett Trace test were used to compare the results to a significance level of 5%
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(a = 0.05). We present the results in Section III.

To further investigate the three phases, we grouped the EMG signals of

the classes together for each phase. The signals were divided into sliding time-

windows and the average activity of each channel was extracted, thus creating

a vector of N elements (N corresponds to the number of EMG channels). A

principal component analysis (PCA) was performed with the data from the third

phase, and the data of the two remaining phases were projected into the new

hyperplane. The distribution of the data on the first two principal components

was fitted to Gaussian Mixture Models (GMMs) for each phase, and the number

of Gaussian components was optimized by the Bayesian Information Criterion

(BIC). We performed an analysis on the complete muscle set (N = 12) and an

analysis using only the muscles of the forearm (N = 5).

4.2.4 Classification Methods for Decoding the

Grasping Intention

The preprocessed EMG signals were analyzed using a sliding time-window of

150ms with an increment of 50ms. The time window and increment lengths were

chosen to be between the preferred values for an online implementation, as sug-

gested in (Smith and L. J. Hargrove (2011)). We did not use any dimensionality-

reduction method (such as PCA) in this step. For each grasp type, 10 trials were

randomly selected as the testing set. The remaining 20 trials of each grasp type

constituted the training and validation sets. A four-fold cross-validation was

performed to optimize the hyper-parameters for each classification method.

The classification accuracy of four classification methods was compared,

specifically for an LDA classifier, an SVM with linear kernel, an SVM with a Ra-

dial Basis Function (RBF) kernel and an ESN. For each classification method,

one classifier was trained per subject. We did not attempt any inter-subject

training. We inserted the classification outcome of each time window into a Ma-

jority Vote (MV) algorithm that uses a buffer of 0.5s history to predict the

winning class.

In the cases of LDA and SVM, we extracted three features for each time

window and introduced them into the classifier. Following the previously de-

scribed methods for EMG pattern recognition (Englehart and Hudgins (2003)),

we chose three features; the average activation of each time window, its waveform

length, and the number of slope changes. In the case of ESN, we did not perform

any feature extraction, treating the problem as a multidimensional time-series

problem.
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Linear Discriminant Analysis

LDA is one of the most commonly used classification algorithms for biomed-

ical signals, due to its performance and robustness. LDA finds a linearly optimal

combination of the features in order to separate the classes. A fitting function

estimates the parameters of a Gaussian distribution for each class and finds the

probability of each point belonging to a class. Despite the linear nature of LDA,

it has been shown to perform well in the classification of EMG signals (Daley

et al. (2012)).

Support Vector Machine

We tested two types of kernels, i.e. a linear kernel and an RBF kernel. In the

case of the linear kernel, after a grid search, we optimized the penalty factor C.

Likewise in the case of the RBF kernel, we optimized by a grid search both the

penalty factor C and the γ parameter.

Echo State Networks

ESN (Jaeger (2001)) is an effective recurrent neural network (RNN) that

has attracted substantial interest due to its performance in time-series (Li et al.

(2012); Xu and Han (2016)). The core of ESN is a large fixed reservoir. The

reservoir contains a large number of randomly and sparsely connected neurons.

The determination of the readout weights is the only trainable part; the weights

can be obtained simply by linear regression. The necessary and sufficient con-

dition for generating the echo state is based on information from the dynamic

reservoir, such as the spectral radius of the internal weight-matrix. We optimized

the three hyper-parameters; number of neurons, spatial radius and regulariza-

tion parameter, by a grid search.

4.2.5 Physical Prosthesis Control

For the purpose of the online implementation, we used the RIC hand (Lenzi

et al. (2016)), a prototype prosthesis with two degrees of actuation, that is able

to perform two grasping postures: hand open, power grasp, and prismatic 2 fin-

gers. Due to its design, the RIC hand can offer access to a low-level control of

the actuators. In this control scheme, we control the actuators directly hence

avoid any delays that arise from using control interfaces offered by commercial

prosthesis. We mounted the prosthesis on a socket fitted to the user’s residual

forearm and placed a goniometer was placed on the elbow joint to record arm

extension. We collected 12 EMG signals from the arm, preprocessed and classi-

fied them in real time and inserted the classification output into a majority vote

algorithm. The buffer of the majority vote was 0.5s. Once the majority vote

confidence exceeded a threshold of 0.5, i.e. more than half of the votes belonged

to the same class, the corresponding command was sent to the prosthesis.
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One subject, TR4, participated in a real-time control experiment. During the

training phase, we cued the subject to perform 20 reach-to-grasp motions for

each trained grasp type. The collected EMG signals were used to train two SVMs

with RBF kernels: the first classifier used EMG from all the motion phases,

whereas the second classifier was trained with EMG collected after arm extension

(only the third phase). During the testing phase, the subject performed two sets

of 20 reach-to-grasp trials for each classifier with the prosthesis turned on. Prior

to the testing phase, the subject controlled the prosthesis for 10 − 15 minutes

to familiarize themself with the device control. We used two metrics to compare

the performance of the classifiers: the classification accuracy, and the time to

reach a 0.5 majority-vote confidence level. We performed a two-sample t-test to

validate the null hypothesis and to determine if there were significant differences

between the results from the two classifiers.

4.3 Results

4.3.1 Kinematics of the Elbow Joint Angle and

Quality of the EMG signals

Figure 4.2: The normalized average velocity of the elbow joint angle for the control group and
each of the TR subjects. The blue shadow area corresponds to the standard deviation
of the normalized velocity across the control group. The peak of the velocity occurs
approximately in the same stage for all the participants. TR4 completes the reaching
motion later than the other participants.

As a first step of our analysis, we examine the kinematics of the elbow joint

angle. Figure 4.2 presents the velocity profiles of the elbow joint for all the

participants in our study. All the velocities present approximately the same

profile: a rapid acceleration in the first stages of the motion with a smoother

deceleration as the arm extension is close to the end. The peak of the velocity
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occurs approximately in the same stage for all the participants. An one-sample

t-test revealed no significant differences among the moments of the velocity

peaks (p = 0.89). TR4 completes the reaching motion slower than the rest of

the participants.

Figure 4.3: The signal-power (Prms) for all the EMG channels recorded in our study. The blue
dashed squares correspond to the box-plots of the control group (the red horizontal
lines correspond to the medians of the group for each muscle). The orange squares
correspond to the Prms of each EMG signal for the subject TR1. The blue triangles,
purple stars and green diamonds correspond to the Prms of each EMG signal for the
subjects TR2, TR3 and TR4, respectively.

Figure 4.3 shows the root mean square of signal-power (Prms) for the control

group and the amputee participants. The Prms of the amputee participants is

the same level of the control group for the muscles of the upper-arm (Trap-
BRA). In contrast to this, their signal-power is generally lower than the control

group in the muscles of the forearm. In particular, the difference in the signal-

power is more obvious for the muscle ECU, where only the subject TR2 is in the

same level as the control group. The signal-power of the other forearm muscles

of TR2, however, are in a significantly lower level than the control group. This

could be an indication for low classification accuracy for the subject TR2, as we

will see later in the subsection 4.3.3.

4.3.2 Phases of the Motion

To examine the muscle-activation patterns during the reaching motion, we

divided the recorded EMG signals in two groups: muscles of the forearm and

muscles of the upper arm. Figure 4.4 presents representative examples of the

average EMG activity of each muscle group in normalized time; the blue color

corresponds to the muscles of the forearm and the red color corresponds to the

muscles of the upper arm. The vertical dashed lines highlight the average time
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of the shift from the 1st phase to the 2nd phase, with the green shaded areas

corresponding to the standard deviation of that shift. We calculated these events

from the kinematic data recorded by the goniometer. The mean reaching time

varied between 0.97 ± 0.16s to 1.26 ± 0.3s for able-bodied subjects and from

1.13± 0.23s to 1.7± 0.3s for amputee subjects.

We identified the maximum elbow-joint angular velocity at 30− 45% of the

reaching motion for all the participants. Regarding the timing of maximum

elbow-joint angular velocity, we found no significant difference between able-

bodied and amputee subjects (p = 0.55, t−value = 1.45). The activation pattern

of the distal muscles (muscles of the forearm) differed between amputee and

able-bodied participants. In particular, the activation of the distal muscles in

able-bodied subjects occurred earlier than in amputees. The muscular activity

of the forearm muscles of able-bodied subjects reached a peak from 20− 60% of

the motion, decreasing as the motion came closer to completion.

The EMG activity of the forearm muscles of the amputee subjects increases

gradually during the reaching. Whereas, the proximal muscles remain at a con-

stant level of activation after the maximum angular velocity is reached. This

difference in activation timing could have an effect on classification performance.

We compared the average activity across the three phases with a one-way

MANOVA. As it rejected the null hypothesis, we found significant differences

between the phases (p < 0.01, Degrees of Freedom (DoF)= 2) for all the subjects

(able-bodied and amputees). Figure 4.4 presents the Gaussian models of the

phases on the first two principal components for the complete muscle-set and

the muscles of the forearm, respectively.

Although some models partially overlap, they have different mean values

for all subjects, regardless of the muscle-set. In able-bodied subjects, the third-

phase models are concentrated around the origin and have standard deviations

smaller than the other phase models.

For amputees, the third-phase models are concentrated around the origin,

similar to the able-bodied results. However, these models cover an area larger

than the corresponding models for the able-bodied subjects. For all amputee

subjects, a larger overlap was found between the models first and second phases

with a larger distance from the models of third-phase.

By performing a one-way MANOVA, we compared the average muscle ac-

tivity during the three phases for each class (i.e. grasp type). The one-way

MANOVA failed to reject the null hypothesis (p < 0.001, DoF = 2); this in-

dicates significant differences between the means of the phase models for all

the subjects. The significant differences between the three phases show that the

data, from all classes in the space, change continuously, thus reducing the ability

for a classifier to generalize across the three phases if it is trained on only one

of them.
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Figure 4.4: Representative examples of the EMG activity and the phases of the motion of the
able-body subject 4 (left) and the amputee subject TR4 (right). The graphs in
the middle correspond to the linear envelope of the EMG signals of the upper-arm
(red lines) and the forearm (blue lines). The grey shadow areas correspond to the
standard deviations of the timings where the shifts between the phases occurred.
The graphs on the bottom of the figure show a representation with Gaussian Mixture
Models (GMMs) of the EMG activity of the three phases projected on the first two
components of third phase after performed Principal Component Analysis (PCA).
The analysis was performed on the complete muscle set (N = 12) and when using
only the muscles of the forearm (N = 5). The GMR representation shows limited
overlap between the three phases, indicating differences on the EMG activity of the
phases. Occasionally, an extended overlap occurred between the first and second
phases as presented in the bottom-right graph. However, the third phase had rarely
overlapped with any of the other two phases.

4.3.3 Decoding the Grasping Intention

In this subsection, we compared the performance of four classifiers (LDA,

SVM with linear kernel, SVM with RBF kernel and ESN). Figure 4.5 presents

the average classification accuracy of each classifier over a time interval of 2s.

After performing an analysis of variance (ANOVA) for a significance level of

5%-a = 0.05, we did not notice any significant differences between the classi-

fiers’ performances for each group of classes ({p = 0.7, F-value=0.43}, {p = 0.5,

F-value=0.97} and {p = 0.8, F-value=0.35} for 5, 4 and 3 classes, respectively).

However, the SVM classifier with the RBF kernel performed better than the

other classifiers, with 60.45± 8.2%, 65.82± 8% and 77.4± 5.88% classification

accuracy for 5,4 and 3 classes, respectively; but this difference was not signifi-

cant. This was followed by the SVM with the linear kernel, the ESN, and the

LDA. As the SVM-RBF classifier achieved slightly better performance, the rest

of the results correspond to the performance of this classifier.

Figure 4.6 presents the classification performances of the five grasp types in

each of the three motion phases. Poor classification performance occurred during

the first phase in both amputee and able-bodied subjects. Accuracy improved

in the subsequent two phases (see Figure 4.6a and d). The grasp types precision

disk, palm pinch and lateral grasp, yielded the best performance in second and
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Figure 4.5: The average performance of all the classification models through out the whole tra-
jectory of 2s among all the subjects.No significant differences were noticed between
the performances of the classifiers for each group of classes(p = 0.7, p = 0.5 and
p = 0.8 for 5, 4 and 3 classes respectively.

third phases for amputee subjects (see Figure 4.6b and c). The lateral grasp

improved from 58.1±6.2% in the second phase to 60.45±8.2% in the third phase.

Accordingly, the precision disk and palm pinch increased from 60.2± 10.2% to

70.5± 1.2% and 68.4± 6.8% to 71± 8.9%, respectively. The precision disk and

lateral grasp types had the best classification accuracy also for the able-bodied

subjects (see Figure 4.6e and f). These grasp types’ performances increased

from 60.2 ± 10.2% and 50.8 ± 9.9% in the second phase to 75.5 ± 7.6% and

87.1± 3.5% in the third phase, respectively. We noticed the worst performance

in the prismatic-4 fingers for the amputee subjects, with 49.6±5.6% in the third

phase (Figure 4.6c), and in prismatic-2 fingers for the able-bodied subjects,

with 47.7 ± 8% in the third phase (Figure 4.6f). The prismatic-2 fingers and

palm pinch were misclassified for one another in the third motion phase for the

able-bodied subjects about 25 − 30% (see Figure 4.6f). This indicates that the

muscular activity during the preshaping of the fingers is similar for these grasp

types. The reason for this could the similarity of the two grasp types, as they

differ mainly on the configuration of the middle finger.

Figure 4.7a-c presents the evolution of average classification performance

of the control group that consists of the eight able-bodied subjects and of the

individual performance of all the amputee subjects, until 2s after the motion on-

set. For the cases of 4−grasp and 5−grasp types, the classification performance

of each classifier follows the same profile: poor classification performance in the

first phase of the motion, and the performance increases as the hand approaches

the object. Subject TR1 achieved the best performance of all amputee subjects,

with a performance comparable to that of the able bodied subjects, whereas

TR2 had the lowest performance. TR3 and TR4 exceeded the level of 60− 70%

in the accuracy at the end of the first phase and the beginning of the second

phase, and they stayed at this level until the end of the third phase.

In the case of 3−grasp types, TR3 and TR4 appeared to performance better

than the control group in the first phase, reaching 80% of accuracy during the
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Figure 4.6: The confusion matrices for all the motion phases. The confusion matrices present
the average classification accuracies and their standard deviations for the five grasp
types. The matrices on the top correspond to the classification performances among
the amputee subjects while the matrices on the bottom correspond to the classifica-
tion performance of the able-bodied subjects. The horizontal axis of the confusion
matrices correspond to the predictions while the vertical axis correspond to the
ground-truth. The color of the tile was assigned according to the colormap of the
classification accuracy on the right.

shift to the second phase. In the second phase, the performance among the

subjects TR1, TR3 and TR4 reached an accuracy of 90± 10%, higher than the

corresponding performance of the control group (76 ± 20%). The classification

accuracy in the third phase for the these amputee subjects stayed above 80%,

though lower than the control group (95± 5%).

Reducing the Number of Channels

In this section, we compare classification performance for when only the

forearm EMG is used with that of the complete muscle set. An SVM classifier

with an RBF kernel was trained for each muscle set: the complete muscle set

and the five muscles of the forearm. Figures 4.7d-e present the evolution of the

classification accuracy for a duration of 2s. As shown, using fewer EMG sites

led to decreased performance for the amputee subjects. From the end of the

second phase, the average classification accuracy decreased significantly from

67.2 ± 8.4% to 60 ± 8.2% when predicting among 5−grasp types (p < 0.01, t-
value=4.33). Although the reduction of the EMG sites available had an impact

on the performance of amputee subjects, when only the muscles of the forearm

are used the performance of able-bodied subjects was higher than when using

the full muscle set.

Comparing the Performance of TMR versus Non-TMR Subjects
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Figure 4.7: The evolution of classification performance and standard error through time for 2s
after the motion onset. The vertical dashed lines correspond to the average moments
of the shifts of between the phases while the shaded areas present the corresponding
standard deviations accordingly. Figures a,b and c present the evolution of the clas-
sification performance of the control group and the amputee subjects for 5, 4 and
3 classes accordingly. Figures d and e compare the classification performance on 5
classes when using the forearm muscles and complete muscle-set as an input to the
classifier.

In this section, we compare the classification performance between TMR

subjects (TR1 and TR3) and non-TMR subjects (TR2 and TR4). In the case of

5 classes, the average classification accuracies and standard errors in the first,

second and third phases of the TMR subjects are 44.1 ± 10.1%, 62.7 ± 86.5%

and 74.9±6.1%, respectively. The corresponding performances of the non-TMR

subjects in the three motion-phases are 47.6± 8.9%, 54.9± 7.5% and 67± 2.5%.

The classification accuracies are also at the same level in the case of 4 classes.

More specifically, the average classification accuracies and standard errors of

the TMR subjects are 45.5 ± 8.9%, 76.45 ± 6.4% and 77.7 ± 8.4% in the first,

second and third phase, respectively. The corresponding performances of the

non-TMR subjects in the three motion-phases are 48.33 ± 10.7%, 58.3 ± 6.9%

and 77.72± 8.6%. In the case of 3−grasp types, both the TMR and non-TMR

groups have improved accuracies with respect to the other two cases (5 and

4 classes). In the first and third phase, the average classification accuracies of

the non-TMR group are at the same level as the TMR group; 68.6± 8.8% and

64 ± 14.4% for the first phase and 87.6 ± 3.4% and 83.6 ± 4% for the third

phase, respectively. However, the accuracy of the TMR subjects exceeds the one

of the non-TMR subjects in the second phase; 90.2 ± 4.6% and 77.8 ± 10.9%,

respectively. As stated above, TR1 (a TMR-subject) has the better performance

among the amputee subjects.
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4.3.4 On-line Evaluation

To demonstrate the usability of our proposed approach for controlling a pros-

thetic hand, we present an on-line implementation of our approach. We followed

the protocol described in Section IIE. One amputee subject took part in this

validation. The subject performed reach-to-grasp motions while commanding

the device to close in one of two grasp types: a power grasp or a prismatic-2 fin-

gers grasp. In total, the subject performed two sets of 20 trials for each training

approach: training over all phases or training only over the third phase.

An SVM with an RBF kernel was trained off-line, whereas the testing was

performed on-line, where the subject performed 20 reaching motions for each

of the aforementioned training approaches. As soon as the classifier reached the

confidence threshold of 0.5, the corresponding motor commands were sent to the

prosthetic hand to drive the fingers to their desired final posture. We assessed the

performance through two metrics: classification accuracy and time to generate

a confident prediction on grasp type. Results are shown in Figures 4.8b-c.

When trained with all three phases of the motion, the pattern recognition

system showed a higher performance, in terms of the overall classification accu-

racy, compared to the one that used only the third phase. The overall classifica-

tion accuracy, when using all three phases for training the system, was 80±5%;

whereas the corresponding accuracy when the system was trained only with the

third phase was 55± 5%, see Figure 4.8c. When using only the third phase for

training the system, it identified poorly the power grasp type, despite having

similar performance for the prismatic-2 fingers grasp type.

The system that trained on all 3 phases was also faster at delivering a robust

prediction. On average, it offered a confident prediction 25 − 40% earlier than

the system trained only on the 3rd phase. For the correctly classified trials, when

the system trained over all the phases the time needed to exceed the confidence

level was significantly lower(p = 0.0194, t-value=2.49) than when it used only

the third phase, 0.3 ± 0.10 and 0.42 ± 0.12s, respectively (Figure 4.8b). The

pattern recognition system trained with all the phases reached the confidence

threshold at 0.26 ± 0.04s for the prismatic-2 fingers grasp; it was significantly

faster (p = 0.003, t-value=3.49) than the system trained with only the third

phase. Regarding the power grasp, the system trained with all the phases reached

the confidence threshold faster, but not significantly (p = 0.3841, t-value=0.93),

0.37± 0.13s than 0.48± 0.18s, respectively.
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Figure 4.8: The results of the on-line evaluation. a) Screen-shots of two examples of the on-line
implementation showing an activation of the prosthetic device during the second
phase. The graph presents the confidence of the majority vote with the elbow’s
angular velocity profile. b) the average time and standard deviations until the con-
fidence threshold was reached for the correctly classified trials. The pattern recogni-
tion system exceeds the confidence threshold of 0.5 significantly faster (p = 0.019)
when trained including all the phases of the motion. c) the classification accuracy of
the testing phase of the on-line evaluation. The pattern recognition system presents
better accuracy when trained including all the phases of the motion.

4.4 Discussion

We present an approach for decoding the grasping intention during reach-to-

grasp motions. Although the classification results for our proposed approach are

comparable with previous studies (Daley et al. (2012); He et al. (2015); Peerde-

man et al. (2011)), it is different for two main reasons. Previous studies examine

the classification performance of different hand gestures, including wrist mo-

tion, hand open/close, a small number of grasp types (2-4), and in some cases

the resting condition( Geng et al. (2017); Liu et al. (2014); Yang et al. (2017)).

Whereas, we focus only on grasping gestures with different finger configurations.

Most importantly, previous studies examined static hand-gestures, whereas we

investigate the classification of EMG activity during dynamic motions. The in-

clusion of the reaching motion in the training procedure increases classification

performance and confidence, enabling faster activation of the prosthetic device

while yielding a seamless and intuitive interaction with the user.
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When a hand reaches for an object, the velocity and acceleration profile of

the motion are coordinated with the motion of the fingers and the wrist, and

the fingers function in a synergistic manner (Wing and Turton (1986); Santello

and Soechting (1998)). It is shown that the reach-to-grasp motion consists of

many components (M. Jeannerod (1998); Supuk et al. (2005)). Specifically, the

motion can be separated into two phases; (1) the reaching phase, when the

hand approaches the object while the fingers are preshaping (Supuk et al.

(2005)),and (2) grasping phase, where the hand has traveled the distance to

the object and the fingers have taken their final form. This gradual molding

of the fingers is revealed through different patterns of muscle activation visible

during the reaching motion, which we noticed this in our analysis on able-bodied

subjects. Although we cannot observe preshaping in amputees, we assume that

this pattern of muscle activation would be preserved partially and that it would

be revealed through different patterns of muscle contractions, as propagating in

reach-to-grasp movement.

Taking inspiration from human behavior, we examine the classification per-

formance with respect to the velocity of elbow extension. In particular, we seg-

ment the reach-to-grasp motion into three phases: (1) the first phase - where the

velocity of the motion increases, (2) the second phase - where the velocity of the

motion decreases, and (3) the third phase - when the reaching motion is com-

plete. As the average activity of the EMG signals between the three phases is

significantly different, training a classifier with only one phase could increase the

difficulty of generalizing over the three phases. To highlight these differences,

we model the first two principal components with Gaussian Mixture Models

(GMMs) for each phase and show that phase models occupy different spaces

and that they only partially overlap(Figure 4.4). Hence, classification during

different phases of the reaching motion could reduce the variability of the EMG

signals, thus increasing the classification accuracy. The lack of motion after the

contraction of the muscles could lead to different EMG patterns. As shown in

Figure 4.4, amputee subjects contract their forearm muscles even in the lat-

ter stages of the reaching motion, whereas the EMG of able-bodied subjects

converges to lower levels in the final stages. Furthermore, in the case of able-

bodied subjects, the fingers preshape during the early stages of the reaching

motion (Supuk et al. (2005)) which results in earlier activation of the forearm

muscles. As no preshape occurs in transradial amputees, they potentially con-

tract the muscles but solely to close their phantom hand. This could lead to

high accuracies in the predictions of the grasp types, even from the first phase

with a smaller number of grasp types, as presented in Figures 4.7c and 4.8c.

Therefore, to increase the efficiency of the classification approach, it is im-

portant to look into the patterns of the muscular activation. The authors in Liu

et al. (2014) point out that the muscle activation differs with respect to the

arm position and that examining the EMG patterns is important. In this chap-

ter, we elaborate on the EMG pattern during reach-to-grasp motions, both on
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able-bodied subjects and individuals with amputation.

In our real-time evaluation, we intend to highlight the negative impact that

the lack of good classification over the entire duration of the reaching motion

could have in the natural coordination of motion of the prosthesis with the arm.

More specifically, we compare the performance of a classifier when it is trained

only with one phase (i.e., the third motion phase) against our approach that

takes the overall motion into account. Previous approaches (Smith et al. (2016);

Gonzalez-Vargas et al. (2015); Li et al. (2010)) train a pattern recognition system

while maintaining the arm in a fixed position and monitoring the contraction

of the muscles. This arm configuration is similar to our third phase, where the

extension is complete and the arm remains in the same position. Our results

show that the muscle contractions when the arm is fixed are different from

the contractions when the arm extends hence the pattern recognition fails to

generalize. This leads to low classification accuracy that results in a slower

reaction of the prosthesis. This outcome is aligned with the findings of (Geng

et al. (2017)), where a classifier that takes into account different arm positions

outperformed a single-position classifier. The benefits of a dynamic training

protocol are also shown in (Yang et al. (2017)). Our work is complementary to

these approaches in that it focuses on the timing of classification. As in (Yang

et al. (2017)), we address the problem of dynamically estimating the grasp type.

To reduce the time needed for reaching a sufficient classification confidence, so

as to provide faster reaction time, we focus on combining detection mechanisms.

Relating muscle activation of amputee subjects to the classification accuracy

in Figure 4.4, we notice that as the activation level increases, the performance

also increases. The evolution of the classification accuracy follow the same trend

on all the subjects: lower classification in the first phase an higher in the sec-

ond and third phase(Figure 4.7). Although it seems that forearm muscles are

most important for classification performance, as they are responsible for finger

motion, the muscles of the upper arm can help improve the classification per-

formance. Our results show that, when we remove upper arm EMG data, there

is a decrease in accuracy for our amputee subjects by 10% on average, see Fig-

ure 4.7e. This outcome is aligned with the findings of (Martelloni et al. (2009)),

where it is shown that the activation of the proximal muscles is statistically

different when the arm reaches to grasp objects with different characteristics or

orientations. Although our experimental protocol constrains subjects to a single-

hand orientation, the decreased accuracy when removing the upper-arm EMG

indicates that the proximal muscles are important for an efficient classification

accuracy during reaching.

We notice that there is an improvement on the performance of the individu-

als who undergo a TMR operation. More specifically, the classification accuracy

on the TMR subjects becomes better than the non-TMR subject on the second

motion phase, whereas it stays at the same level of performance in the third

phase. These results are aligned with studies (Miller et al. (2008); Kuiken et al.
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(2009)) that indicate the potential benefits of TMR on the classification accu-

racy. However, considering the small sample size of the group in our study, these

results should be taken with a grain of salt. The improvements that TMR op-

erations could provide on the performance of a myoelectric pattern-recognition

system should be further investigated.

We compare four different classification methods, but find no significant

differences in classification performance. LDA performs well: delivering similar

results with SVM with either a linear or RBF kernel. The performance of the

Echo State Network was on a level similar to the other classification methods. It

is worth mentioning that no feature extraction is performed on the EMG before

being inserted in the ESN. In this case, we let the random reservoir select the

features and then train a linear regressor for classification. This indicates that a

random projection of the EMG signals to a very high-dimensional space could

be sufficient for achieving good classification results.

In this chapter, we present an approach to improving the reaction time of

a hand prosthetic devices through a systematic assessment of the accuracy of

a myoelectric pattern-recognition system over different phase periods during

reach-to-grasp motions. The EMG signals are collected from seven muscles of

the upper arm and five muscles of the forearm, as we focus on a potential ap-

plication for individuals with transradial amputation. Our approach could be

implemented for proximal amputations in cases where the user has an enhanced

ability to control a myoprosthesis, e.g. after undergoing a TMR operation. TMR

has been shown to increase the accuracy of a myoelectric pattern-recognition

system also for the case of transhumeral amputation (Kuiken et al. (2009);

Hargrove et al. (2017)). This improvement increases the number of degrees of

freedom that individuals with transhumeral amputations can control. A poten-

tial extension of our approach to a proximal upper-limb amputation could be

possible for individuals with TMR. This extension would, however, require fur-

ther work in modeling the activation of the residual muscles of the upper arm

during reach-to-grasp motions and in selecting a smaller number of grasp types,

for increasing the classification confidence.

An important extension of our approach is the introduction of a robotic

control scheme that derives from the natural motion of the human hand and

that imparts a human-like behavior to the prosthesis. As the EMG activation is

significantly different among the three phases of the motion, a combination of

different classifier for each phase, or a combination of those, could improve the

classification performance. This approach could also be applied in conjunction

with a synergistic closure of the hand Santello and Soechting (1998), tackling

the problem of the high dimensionality of the task.
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4.5 Conclusion

In this chapter, we have presented an electromyography-based approach for

decoding the grasping intention during reach-to-grasp motions. Four able-bodied

subjects and four individuals with transradial amputation participated in our

study. In order to examine the evolution of the classification accuracy over the

reach-to-grasp motion, we have separated the motion into three phases: (1) the

first phase- where the velocity of the motion increases, (2) the second phase-

where the velocity of the motion decreases and (3) the third phase- when the

reaching motion is complete. Our results have shown that it is possible to decode

the grasping intention before the end of the reaching motion, especially during

the second motion phase. The inclusion of the muscular activity of the upper arm

to the pattern recognition algorithm increases its accuracy by 10% on average.

As a proof of concept, we have evaluated our approach with an individual with a

transradial amputation controlling a myo-prosthesis in real-time. The real-time

evaluation shows a significant improvement in classification accuracy as well as

in the reaction time of the device when all the motion phases are included in the

training data. In the next chapter, we further investigate the concept of motion

phases elaborating more on the distribution of the classes in each phase.
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Chapter 5

Reach-to-grasp motions:

Towards a Dynamic

Classification Approach

for Upper-Limb Prostheses

In this chapter, we take a closer look at the concept of motion phases, introduced

in the previous chapter, and its potential to address the variability of the signals.

In the previous chapter, we modeled the overall muscle activity of each motion

phase with GMMs, as we intended to examine the differences among the phases.

In an attempt to investigate the variability of the EMG signals to increase

the performance of the pattern-recognition system, we focus on the differences

among the classes (i.e., grasp types) and their evolution throughout the reach-

to-grasp motion. Specifically, we project the EMG activity of each phase on

the LDA space and model each class with Gaussian distributions. We use the

Hellinger distance to quantify the similarity of distributions when projected on

the overall LDA space (i.e., a common space including all the phases) and the

individual space of each phase. The projection on the individual LDA space

produces large values of the Hellinger distance and, hence, smaller overlaps

among the classes.

5.1 Introduction

Low accuracy introduces delays in the operation of the myo-prosthesis and

limits the coordination with the user’s intention (Batzianoulis et al. (2018)).

Therefore, in order to increase the efficiency of the system, it is crucial to address

the variability of EMG signals.

Different arm positions and levels of activation are confounding factors that

introduce signal variations and affect the performance of the pattern-recognition

system (Lorrain et al. (2011); Liu et al. (2014)). The changes in EMG pattern

characteristics during dynamic motions also lowers the accuracy of the sys-

tem (Yang et al. (2017)). The introduction of dynamic, and more complicated,

training protocols improves the accuracy of the system by including larger con-

traction intervals (Krasoulis et al. (2017)) and containing the EMG activity

of the complete motion. In long intervals, however, the EMG signals become

non-stationary, and this is reflected in the variation on EMG patterns.

To address the variability of the EMG signals over arm motions, the patterns

over different motion phases should be further investigated, especially in indi-

viduals with amputation. The authors in Liu et al. (2014) show that the muscle
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Figure 5.1: a) Experimental set-up for training the system with amputee subjects in data record-
ings. EMG-information from the amputated arm are recorded while the subject per-
forms the reach and grasp motion with his/her intact arm, b) The selected three
grasp types used in our classification, following the names and using figures from
the taxonomy of Feix et al. (2015), c) An illustration of the classification approach
with one classifier per phase. The classifier is selected with respect of the angular
velocity (uel) and angular acceleration (ael) of the elbow joint. For each time win-
dow, the angular velocity on the elbow (uel) is compared with a velocity threshold
(ut). If the angular velocity is less than the threshold, the arm has completed its ex-
tension and the classifier of the third phase is selected. Otherwise, the motion phase
is defined by the angular acceleration (ael). If the angular acceleration is greater
than zero then the classifier of the first phase is selected. Accordingly, if the angular
acceleration is less than zero then the classifier of the second phase is selected.

activation differs with respect to the arm position, and that examining the EMG

patterns is important. In this chapter, we elaborate on the EMG pattern during

reach-to-grasp motions in individuals with amputation.

We offer an approach to modeling the stochastic nature of the EMG pattern,

and relate this to the evolution of the muscular activity during the three typical

phases underlying a reach and grasp motion. Specifically, we separate the mo-

tion into three phases and model the muscular activity of each class (i.e., grasp

type) with Gaussians after performing Linear Discriminant Analysis (LDA). We

analyze the result of the LDA projection and relate this to the muscular activity.

Moreover, we examine the classification accuracy when training three LDA clas-

sifiers: one for each phase. We compare it with the accuracy of an LDA classifier

over all phases. We evaluate the approach off-line with four individuals with

transradial amputations. This chapter corresponds to the following publication:

Iason Batzianoulis, I., Simon, A., Hargrove, L. and Billard. Reach-to-grasp
motions: Towards a dynamic classification approach for upper-limp prosthesis,
in Proceeding of the 9th International IEEE EMBS Conference on Neural En-

gineering, 2019, San Francisco, CA, USA.

5.2 Methods

5.2.1 Experimental protocol

Four individuals with below-elbow amputations participated in the experi-

ment. All the participants gave written consent, and the experiments were per-

formed at the Shirley Ryan Abilitylab in Chicago under a protocol approved
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by the Northwestern University Institutional Review Board (IRB). Two of the

amputee subjects had undergone a TMR surgery.

During the experiment, the subjects sat in front of a table, faced a computer

screen, and held their elbow at a 90o angle. The subjects would start their self-

paced motion when cued by the experimenter, grasping the object with their

intact hand and, simultaneously, imitating the motion with their phantom limb,

see Figure 5.1a.

5.2.2 Apparatus

Custom computer software (Kuiken et al. (2009)) was used for signal ac-

quisition, with EMG signals acquired at 1000Hz with a 30− 350Hz band-pass

filter using TI ADS1298 biosignal amplifiers. The EMG activity of 5 muscles

of the residual arm was recorded: Flexor Digitorum Superficialis (FDS), Exten-
sor Digitorum Communis (EDC), Flexor Carpi Ulnaris (FCU), Extensor Carpi
Ulnaris (ECU), Flexor Carpi Radialis (FCR). To construct a linear envelope,

full-wave rectification was performed, followed by smoothing with a low-pass

seventh-order Butterworth filter with cut-off frequency at 20Hz. Finally, each

channel was normalized by the maximum value recorded across the trials. A

goniometer was placed on the elbows for measuring the onset and extension of

the elbow.

5.2.3 Phases of the motion and classification method

Taking inspiration from the behavior reported in Rand et al. (2008), we

divided the reach-to-grasp motion into three phases with respect to the extension

of the elbow joint. The first phase is defined as the interval from motion onset,

i.e., when the angular velocity of the elbow joint exceeds a velocity threshold,

until the angular velocity of the elbow reaches its maximum. The second phase

is the interval between the aforementioned maximum angular velocity and the

end of the reaching motion, i.e., when the angular velocity of the elbow drops

below a velocity threshold. We defined the third phase as the phase after the

completion of the elbow extension. In particular, we selected 25% of the duration

of the reaching motion selected after the velocity drops below a threshold. The

velocity threshold was set at 10% of the maximum angular velocity recorded for

each subject.

For each grasp type, 10 trials were randomly selected as the testing sets. The

remaining 20 trials of each grasp type constituted the training and validation

sets.

The preprocessed EMG signals were analyzed using a sliding time-window

of 150ms with an increment of 50ms. Three features were extracted from each

time window: the average (Ave), the number of slope changes (SC) and the
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waveform length (WFL). The features of each EMG channel were concatenated

and introduced to an LDA classifier. Due to its performance and robustness,

LDA is one of the most commonly used classification algorithms for biomedical

signals. LDA finds a linearly optimal combination of the features in order to

separate between classes. A fitting function estimates the parameters of a Gaus-

sian distribution for each class and finds the probability of each point belonging

to a class.

In our approach, instead of building one model for all time -windows, we

train three classifiers with respect to the angular velocity of the elbow joint.

Specifically, we create one model for the phase with increasing angular velocity,

a second model for the phase with decreasing angular velocity and a third model

for the phase when the angular velocity is below the threshold. We set this

threshold as the 10% of average of the peak velocity recorded from all training

trials. We assume that by building a classifier for each phase, the muscular

activity of the trials of the same grasp type will be more proximal to its average,

which will decrease the variability of the data and, hence, improve classification

performance. Figure 5.2 presents an illustration of the approach. We compare

this approach (ldaI) with the performance of one LDA classifier for all the phases

(ldaA).

To further investigate the three phases, we use the squared Hellinger dis-

tance to quantify the similarity of the distributions of the classes (i.e., grasp

types). The squared Hellinger distance (H2) between two multivariate Gaussian

distributions P ∼ N (μ1,Σ1) and Q ∼ N(μ2,Σ2) is given by the formula:

H2(P,Q) = 1− det(Σ1)
1/4det(Σ2)

1/4

det(Σ1+Σ2

2 )1/2
ed (5.2.1)

where d =
{
− 1

8 (μ1 − μ2)
T
(
Σ1+Σ2

2

)−1
(μ1 − μ2)

}

The Hellinger distance is a type of f-divergence metric, with 0 and 1 bring-

ing its lower and upper bound, respectively. It reaches its maximum value (1)

when the distributions do not overlap. In our case, a small Hellinger distance

would indicate that the means of the distributions would be close to each other.

Hence, a lager overlapping would occur between them, leading subsequently

to poor classification. Whereas, large values close to 1 would indicate that the

distributions are well separated from each other.

5.3 Results
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Figure 5.2: a) The Gaussian distributions of the classes (i.e. grasp types) for each phase of
the subject 1. The red color corresponds to precision disk, whereas the blue and
magenta color corresponds to palm pinch and lateral grasp. The three graphs on the
top show the Gaussian distributions over the space of all the phases (SA). The three
graphs on the bottom present the Gaussian distributions on the space of each phase
separately (SI) b) The average across the subjects and the standard deviation of the
projection weights after LDA and c) The average Hellinger distance across subjects
between classes on all the phases. gr1, gr2 and gr3 correspond to precision disk,
palm pinch and lateral grasp respectively d)The average classification accuracy and
standard deviation across subjects on the three motion phases.

5.3.1 Phases of the motion and Hellinger distance

Figure 5.2a presents the Gaussian distribution of the classes on each phase

for the subject 1. The three graphs on the top the Figure 5.2a correspond to the

distributions of the classes when the data are projected to the space of all phases

(SA), whereas the three graphs on the bottom correspond to the distributions

with the data projected on the space of each phase separately (SI). We observe

that the overlapping among the distributions on the SA space is larger than the

SI space for all the phases. A representative example of this is the distribution

of lateral grasp in the first motion phase, which is completely overlapped by the
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distribution of the palmar pinch on space SA. However, the distribution of the

lateral grasp is partially overlapped by the one of the palmar pinch on the space

SI .

The projection weights on the new hyperplane after LDA are presented in

Figure 5.2b for all the motion phases. The distribution of weights is different in

each phase; the wavelengths of the muscles FDS and EDC have larger values on

the 1st phase, whilst the weight of the average value of FDS increases signifi-

cantly on the 2nd and 3rd phase. The distribution of weights is more balanced

in the 3rd phase across the muscles FDS, EDC, FCU and ECU. FCR has the

smallest value among the muscles in all the phases. This could be explained by

the fact that FDS and EDC are primarily responsible for the motion of three

fingers; index, middle and ring fingers.

The Hellinger distance, presented in Figure 5.2c, indicates that the distri-

butions of the classes are better separated in the late stages of the reaching

motion. More specifically, H2 increases in all the phases for the pairs precision

disk-lateral grasp and lateral grasp-palm pinch. The H2 between the class dis-

tributions of the precision disk and the lateral grasp has a large value between

the 1st and 2nd phase, whilst it decreases in the 2nd and increasing in the 3rd

phase.

5.3.2 Classification performance

In this subsection, instead of building one classifier for all the phases, we

trained one classifier for each phase. Figure 5.2d shows the average classifica-

tion accuracy and standard deviation among subject for each phase. The ap-

proach with the three classifiers (ldaI) outperforms the one classifier in all the

phases(ldaA). Specifically, ldaI has an accuracy of 42.7 ± 8.2%, 57.8 ± 14.4%

and 74.2± 14% in the first, second and third phase accordingly. Whereas, ldaA

presents an accuracy of 33.6± 12.5%, 51± 15.4% and 66.2± 11% for each phase

accordingly. Two-sample t-tests on the classification performances for each phase

failed to reject the null hypothesis, revealing not significant improvement on the

performance (the p− values are 0.61, 0.87 and 0.75 for each phase accordingly).

5.4 Discussion

Following the previous chapter and (Batzianoulis et al. (2018)), we explore

the concept of motion phases on the EMG signals and its potential to address

the variability of the signals. We extend our previous analysis, providing insights

on the LDA projection and quantifying the similarity of the distributions of the

classes (i.e., grasp types) with the Hellinger distance.

Different arm movements reflect on different patterns in muscular activity

in able-bodied individuals (Liu et al. (2014)). These different EMG patterns
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are produced due to gravity and inertia compensation, but also the fingers’

motions during the hand preshape. Our work is complementary to previous

approaches, thus focusing on the EMG patterns on individuals with below-elbow

amputation, where no finger motion occurs. Moreover, we offer insights into the

EMG patterns of each class (i.e., grasp type) and quantify their evolution over

time.

Previous studies (Liu et al. (2014); Yang et al. (2017); Krasoulis et al. (2017);

Gu et al. (2018)) have shown that the arm motion introduces variations in the

EMG patterns and affects dramatically the classification accuracy. Our out-

comes are aligned with these findings: The arm extension in the reach-to-grasp

motion creates confounds in the EMG activity that influence the classification

performance regardless of the fact that our experimental protocol involves the

extension of the arm towards a specific direction.

Specifically, the different projection weights (see Figure 5.2b) reveal that the

EMG activity differs in each phase. During the reaching motion (phase 1 and

2), a dynamic contraction of the muscles occurs to compensate the gravity and

inertia of the arm. This factor increases the overlapping of the class-distributions

(see Figure 5.2a) and results in small values of the Hellinger distance (see Fig-

ure 5.2c). In the case the user wears a prosthetic device, the gravity compen-

sation of a larger weight could have a greater effect on the EMG patterns and

result in even harder separation of the classes. As no pre-shape occurs in tran-

sradial amputees, they potentially contract the muscles but solely to close their

phantom hand. This leads to the generation of more stationary EMG signals

from the forearm muscles close to end of reaching motion and after it (e.g., late

phase 2 and phase 3). As the muscle contractions become gradually isometric,

the Hellinger distance (see Figure 5.2c) presents increased values in two of the

three cases, hence the classes become more separable. An interesting extension

of this work would involve the use of Hellinger distance as a component of an

objective function for separating the classes among each other.

The changes on the EMG patterns over the motion phases have an effect on

the classification performance. To examine the improvement of the classification

accuracy, we compared the performance when an LDA classifier is trained for

each phase with the performance of one LDA classifier in all the phases. The

former approach with the three classifiers presents a higher accuracy for all

the phases, indicating an improved encapsulation of the EMG patterns on each

motion phase. Although the improvement is important, the performance is not

significantly better.

A direct extension of the proposed approach would be the introduction of

the kinematics of the arm, towards a multi-sensor pattern-recognition system.

An on-line implementation of this work would include the angular position or

velocity as a parameter of the system. This would provide information regarding

the motion phase in real-time for selecting the proper classifier. The introduction

of different hand orientations and an additional wrist control could be a further

73



expansion of the approach.

Furthermore, the introduction of different motions, besides reach-to-grasp

motions, could be an interesting extension of this work. In this case, the motion

phases could be employed for segmenting the overall motion, whilst a second

decoder, running in the background, could identify the overall motion intention.

In particular, the background decoder would predict the state of the motion,

such as reach-to-grasp, reach-no-grasp, arm-flexion or arm-adduction/ abduc-

tion, and selects the corresponding classification method to use. Introducing,

however, more components to the system would increase its complexity. The

investigation of the trade-off between control-complexity and convenience could

be an interesting topic of research.

5.5 Conclusion

In this chapter, we have presented a close investigation of the distribution of

classes inside the motion phases. We have quantified the overlap among the

classes with the Hellinger distance and notice larger values, hence smaller over-

laps among the classes with the segmentation to motion phases. The better sep-

aration of the classes affected positively the accuracy of a LDA classifier, thus

improving the accuracy by 6 − 10% on average. These findings indicate that

a system that switches the classifiers according to the arm kinematics could

improve the performance and, hence, the efficiency of a myo-prosthesis.

In the following chapter, we summarize the main contributions of the thesis

and discuss future research directions that derive from this study.
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Chapter 6

Conclusion

In this chapter, we summarize our key contributions in the thesis. We discuss

the limitations of the present study and potential directions for future research.

6.1 Main Contributions

To the best of our knowledge, this is the first approach to enabling real-

time decoding of grasp intention during the reaching phase. It is based on a

key observation from biology; the activation of the hand muscles follows specific

temporal patterns with an early preshape. We have exploited machine-learning

techniques to model these different stages of activation from EMG, and we have

shown that this could be used at run-time to decode on-line the different grasps.

Furthermore, we have shown that this decoding remains successful when used

with amputees, as it can detect the preshape muscular activity from the residual

muscles.

In Chapter 3, we have presented an approach for decoding the grasping

intention from the muscle activity during the reaching phase. We have also

compared the performance of the pattern recognition system with the hand’s

preshape and noticed a successful decoding before the preshape occurrence. Ini-

tially, we assumed that the muscle activity of the residual arm could be efficient

for identifying the grasping intention with amputee individuals. In Chapters 4

and 5, we have focused on the evaluation of this assumption by testing four indi-

viduals with below-elbow amputations. In order to examine the evolution of the

classification accuracy over the reach-to-grasp motion, we have introduced the

concept of motion phases. This concept was the key to examining properly the

significant differences in the muscle activity over the stages of the reach-to-grasp

motion and to defining the stage where the classification accuracy is efficient for

on-line decoding. Most importantly, this thesis highlights the requirement of

including the complete motion for addressing the variability of the EMG sig-

nals during reaching. The real-time evaluation of this approach in Chapter 4

has shown a significant improvement in classification accuracy, as well as in the

reaction time of the device.

Different arm positions affect the EMG patterns significantly (Liu et al.

(2014)) resulting in a greater variability on the EMG signals. The inclusion of
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different static arm postures can increase the generability of the classifier (Geng

et al. (2017)), though this could still be limited over the dynamic muscle con-

tractions that occur in reach-to-grasp motions. This thesis offers a solution to

bypassing the problem of the arm-position sensitivity of the classifier, by ex-

ploiting the ability of machine-learning algorithms to embed local models for

the arm motion in the reaching phase. By addressing the sensitivity of the clas-

sifier to the arm motion, we can predict correctly the grasp type before the end

of the reaching motion.

Yang et al. (2017) show that using a dynamic training protocol could rather

improve the performance of the pattern recognition system. We have confirmed

this finding and expanded it in the decoding of the grasping intention in the

reaching phase of the motion. We have focused, in contrast to other stud-

ies (Yang et al. (2017); Krasoulis et al. (2017)), on the effect of poor classification

performance on the delayed prosthesis activation and its coordination with the

arm motion. Furthermore, in a first attempt to include the arm kinematics in our

system, we have investigated the improvement on the performance of a pattern-

recognition system when a series of classifiers were employed, depending on the

angular velocity of the elbow joint.

6.2 Limitations and Future Work

We have focused on the decoding of the grasping intention thus on the fi-

nal configuration of the fingers. Hence, we did not consider decoding the wrist

motion, a topic already well covered in the literature.

The introduction of different hand orientations, however, would increase the

functionality of the system because the wrist dexterity is an important addition

for prostheses Montagnani et al. (2015). Studies (Young et al. (2013); Fougner

et al. (2014)) have shown that it is possible to successfully decode the wrist

flexion/extension and rotation from the EMG activity. The wrist motion is gen-

erally decoded by introducing either additional classifiers Jiang et al. (2018) or

classes Li et al. (2010) into the pattern recognition system. Nevertheless, the

inclusion of an additional component increases the complexity of the system

and could result in fatigue for the user.

As the results have shown in the Chapter 4, including the reaching motion in

the training set improves the classification accuracy during the reaching motion.

Additionally, the performance of the pattern-recognition system in the real-time

control of a prosthesis indicates that the high accuracy produces high confidence

on the detection of the grasping type and enables an early activation of the

prosthesis. However, improvements on the pattern-recognition system are not

always noticeable from the users when controlling a prosthesis in daily tasks. Due

to the small sample size of our study, it is difficult to reach concrete conclusions

towards this direction. A usability study with a larger number of participants,
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controlling in real-time a prosthesis, would reveal the potential applicability of

the approach to the control of a prosthesis.

In Chapters 3 and 4, we have evaluated the approaches with real-time con-

trol for a robot hand and a myo-prosthesis, respectively. To demonstrate a fast

activation of the device, the pattern-recognition system commands the robot

to close once the classification confidence is above a threshold. This strategy

decreases the chances of grasping an object, as the device could obtain the final

configuration before reaching the object. To avoid this inconsistency the device

must be in perfect coordination with the motion of the arm or be aware of

the location of the object. Here, we will discuss different ways to address this

limitation in the following parts.

Gradual formation of the fingers during the reaching phase

Our work substantially improves the coordination of the prosthesis with the

user. However, the prosthesis controller could be even more involved with the

arm kinematics. An important extension would be the integration of arm motion

in the system, by introducing a gradual formation of the robotic fingers while

reaching.

There are a few studies that attempt to improve the coordination of upper-

limb prosthesis with the motion of the body. In Legrand et al. (2018) and Merad

et al. (2018), the authors model the inter-joint coordination of the arm to control

the phantom joints in order to relax the device’s dependency on the muscular

activity and offer a more intuitive control. Specifically, they model the coupling

between the shoulder and elbow joints of able-bodied individuals and use the

information from the shoulder motion of an individual with transhumeral am-

putation as input to control the elbow joint of a prosthesis. These approaches

are limited to the control of the elbow joint and omit any relation between the

arm motion (i.e., flexion/extension) and the hand closure. Nevertheless, they in-

dicate that the employment of the inter-joint kinematic relations could enhance

the functionality of a prosthesis and inspire alternative control methods.

The authors in Markovic et al. (2015) and Ghazaei et al. (2017) use computer

vision techniques in order to provide a form of hand preshape that occurs during

reaching with respect to the object characteristics. They propose finite-state

machine approaches to triggering the activation of the vision system by the

muscular activity. Also, they produce a hand preshape that depends on the

object classification and close the hand with another trigger that comes from

the muscular activity. Although these approaches introduce a hand preshape to

the prosthesis, the closure of the hand has a very limited coordination with the

extension of the arm. The aforementioned approaches do not encapsulate the

natural coupling and the dynamic relation between the hand and the arm.

Dynamical systems (DS) have been successful in modeling human motions

(Bullock and Grossberg (1988); Diedrichsen and Dowling (2009)) and generating

them in robot motion (Schaal et al. (2000); Gribovskaya et al. (2010); Shukla
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and Billard (2012)). A key feature of the dynamic system is that it generates the

next state with respect to the current state. The dynamic model encapsulates

the motion primitives of the given demonstrations and is able to reproduce the

dynamic of the task; such a task could be a reach-to-grasp motion. The dynamic

behavior of this task could be analyzed into two motions: the extension of the

arm and the open/closure of the hand. As these motions occur in coordination,

the underlying coupling could be also learned by a coupled dynamical-system

approach. In this scenario, the master dynamical system would derive from the

arm motion, and the slave dynamical system would derive from the motion

of the fingers. As the master DS generates the next state of the robot (e.g.,

the next position of the end effector), the next state of the fingers would be

generated from the slave DS through the learned coupling function. In this way,

the motion of the fingers would be in coordination with the arm motion as the

hand approaches an object, thus offering a gradual convergence to the targeted

fingers’ configuration.

As we focus on the case of hand prostheses for transradial amputation, the

kinematics of the residual arm could correspond to the master system. In this

case, the next fingers’ positions will be generated in coordination with the po-

sition of the arm through the coupling function. This approach could also offer

a solution for the case of transhumeral prostheses, enabling a coordination be-

tween the elbow joint and the hand closure.

Integration with computer vision and other sensory inputs

When humans engage in object manipulation tasks, eye movements are also

related with the motion of the hand (Biguer et al. (1982)). The gaze fixates on

the object of interest, and this fixation generally precedes the reaching motion.

This principle has inspired various methods in robot control for grasping strate-

gies (Levine et al. (2018)) and obstacle avoidance (Lukic et al. (2012)). In the

case of neuroprosthetic control, the gaze of the user can be used to identify the

object of interest before the onset of the reaching motion. Furthermore, the use

of stereovision could enable the localization of the object and the extraction of

object’s characteristics (such as the size of the object) to direct the hand pros-

thesis to close accordingly (Markovic et al. (2014)). Stereovision, as well, can

potentially enable an estimation of the distance from the object. In this case,

the hand prosthesis could perform a gradual closing with respect to the distance

from the object.

It is clear that the coupling between the motion of the residual arm and the

prosthetic hand is crucial for a seamless coordination and intuitive control. As

already discussed in the previous subsection, the principal input of this coupling

should derive from the kinematics of the residual arm. The introduction of sen-

sory inputs, such as goniometers or Inertia Measurement Units (IMUs), could

enable the on-line tracking of the arm kinematic. Studies have integrated IMUs

with EMG to control hand and wrist motions, either by introducing the signals
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either to individual classifiers (Bennett and Goldfarb (2018)) or combining them

as input to the same classifier (Kyranou et al. (2016)). In our case, the input

from the IMU could be used to control the closure of the hand prosthesis.

Tactile sensing and feedback to the user

When manipulating an object, the tactile sensing plays an important role

in achieving secure grasps. It is shown that the mechano-receptors on the non-

hairy part of the human hand is the most important information for grasping,

whereas proprioception and vision provide less essential information (Johansson

and Flanagan (2009)). Despite the importance of the tactile sensing, the benefits

of it are demonstrated only in experimental prostheses (Osborn et al. (2016);

Imbinto et al. (2018)). In contrast, tactile sensing becomes a key component in

robotic grasping (Sun et al. (2016); Li et al. (2016)). The integration of tactile

sensing with the grasping intention from the EMG signals could be combined

in a shared-control framework. In this framework, the high-level information

of grasping intention is derived from the user whilst the grasping stability is

secured from the robot controller with the employment of tactile sensing.

Furthermore, tactile sensing could provide valuable feedback to the user thus

restoring partially this ability (Valle et al. (2018); Raspopovic et al. (2014)). This

feedback could also involve a sensing of slippage or even a measure of grasp sta-

bility encoded in the returned signal. The recent developments in the restoration

of tactile sensing are very promising and could become a key component of hand

prostheses in the future.

Automated feature extraction

Furthermore, this thesis has presented one of the first attempts to automated

feature extraction from the EMG signals. In contrast to traditional approaches,

where the researcher selects a priori the extracted features, we took advantage

of the echo property of ESN for extracting the relative information from the

signals. The classification accuracies, produced by ESN, have been comparable

with the ones produced by other classification methods with a priori feature

extraction. Therefore, this type of automated feature extraction could act as

an alternative to traditional feature extraction. This outcome also indicates

a potential next step of this work. One possible direction is the systematic

comparison of the classification performance between ESN, without any a priori
feature extraction, and methods that use a diverse selection of features; In our

work, we focused on three time-domain features due to their advantages in low

computational time. However, the enrichment of the approach with other type

of features, such as frequency-domain and auto-regressive features, might have

resulted in a better classification accuracy. Hence, this comparison would reveal

the strengths and weaknesses of the method and its potential.

Another possible direction is the employment of other types of neural net-
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works, such as RNN and CNN, for automated feature extraction. Specifically,

RNN have shown promising performance on time-series classification on se-

quences of images and speech (Keren and Schuller (2016)). Recently, Côté-Allard

et al. (2019) trained a CNN for decoding hand-gestures with EMG datasets that

are available online and noticed a better classification accuracy than LDA. This

outcome is another indication that alternative methods for feature extraction

could be equally or even more powerful than traditional selection of features.

6.3 Concluding Summary

This thesis offers an alternative method of the pattern-recognition system for

controlling hand myo-prosthesis. We focused on decoding the grasping intention,

from the EMG activity, during the reach-to-grasp motion. Our results showed

that it is possible to decode accurately the grasping intention for 5 grasp types,

from able-bodied individuals, during the hand’s pre-shaping phase. The early

and accurate prediction of the grasp type enabled us to activate the motion of

a robotic hand in the early stages of the reaching motion.

In our evaluation with four individuals with below-elbow amputation, we

separated the overall motion into three phases. When the number of grasp types

was reduced to three, we noticed that the residual EMG activity is efficient for

producing high classification accuracy in the second motion phase. Furthermore,

we tested our approach in real-time control of a prosthesis. The high accuracy of

our method resulted in high confidence in the pattern-recognition system during

the reaching motion and enabled the activation of the prosthesis before the end

of the reaching motion, hence improving the coordination with the motion of

the arm.

Furthermore, we noticed that the overlap among the distributions of the

classes becomes smaller when we performed LDA on each motion phase individ-

ually than on the overall motion. Therefore, training a LDA classifier for each

motion phase resulted in an improved classification accuracy.

This thesis contributes to the enhancement of the coordination between the

user’s intention and the hand prosthesis by improving the performance of the

pattern-recognition system. The EMG patterns, developed during the reaching

motion, are examined for the first time, together with their effect on the classi-

fication performance. Additionally, we have introduced the concept of motion-

phases on the EMG activity and explored its benefits on the control of a pros-

thesis. We have demonstrated that the high accuracy of our method enables a

fast reaction of the prosthesis and provides an improved coordination with the

motion of the user’s residual arm.
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Appendix A

Supplementary Materials

for Chapter 4

In this section, we present additional results regarding the muscular activity of

the motion phases. Figure A.1 shows the location of the electrodes and muscles

set which is selected in Chapter 4.

Figure A.1: The location of the electrodes and the muscles set of this study.

Figures (A.2) and (A.3) presents the average EMG activity the muscles of

each group in normalized time. The green vertical like shows the moment that

the angular velocity of elbow joint reached its maximum, while the shaded area

around it corresponds to its standard deviation of the moment the maximum

velocity occurred. The activation of the more distal muscles in able-bodied sub-

jects occurs in an earlier phase than in amputees. The muscular activity of the

forearm muscles of ABD 2, 3 and 4 is reaching its peak from 20 − 60% of the

motion, while only the forearm muscles of ABD5 and TR4 are activating in the

early stages of the reaching motion. Moreover, the EMG activity of the fore-

arm muscles is decreasing as the motion is getting closer to completion on the

able-bodied subjects. On the other hand, the EMG activity of forearm muscles

of the amputee subjects increases, either gradually during the reaching motion

(TR1,TR3, TR4-chapter 4) or more rapidly in the end of the motion (TR2).

The different timing of activation could have an impact to the classification per-

formance as we see later in the document. The more proximal muscles stay in
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the same level of activation after the maximum angular velocity is reached.

Figure A.2: The linear envelope of the EMG signals of the able-bodied subjects (left)
and amputee subjects (right).

Figures A.4, A.5 and A.6 present the Gaussian models of the phases on the

first two principal components for the complete muscle-set and the muscles of

the forearm respectively for able-bodied (Figures A.4 and A.5) and amputee sub-

jects (Figure A.6). Although some models are partially overlapping, the means

of the models are different with each other in all the subjects, regardless the

muscle-set. In able-bodied subjects (Figure A.4 and A.5), the models of the

third phase are concentrated on the area around the origin and their corre-

sponding standard deviations are smaller than the standard deviation of the

models of the other two phases. The larger overlapping was noticed on the mod-

els of first and third phases for the complete muscle-set of the subjects ABD1

and ABD2 and between all the models of the forearm muscles of ABD3. While
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Figure A.3: The linear envelope of the EMG signals of able-bodied subjects 5-8.

the models of the third phase are concentrated around the origin, similarly to

the able-bodied subjects, they cover a larger area than the corresponding mod-

els of the able-bodied subjects. A larger overlapping area is noticed between

the models of the first and second phase for all the amputee subjects, while the

models of the third phase are more distant form the other two.

Similar results are noticed regarding the phases of the motion for the am-

putee subjects (Figure A.6). More particularly, the models of the second and

third phase are partially overlapping for TR2 and TR3. The models of the third

phase of the forearm muscles of TR2 and TR3 occupy a larger area than the

other two, while the models occupy approximately equal space when the com-

plete muscle-set in taken into account. Regarding the subject TR1, the models

of the second and third phase are overlapping more extensively than the other

subjects.
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Figure A.4: A representation with Gaussian Mixture Models (GMMs) of the EMG
activity of the three phases projected on the first two components of
third phase after performed Principal Component Analysis (PCA). The
analysis was performed on the complete muscle set (N = 12) and when
using only the muscles of the forearm (N = 5). The blue color corresponds
to the first phase, the red color to the second phase and the green color
to the third phase. The results presented in this figure regard the EMG
activity of able-bodied subjects 1-3.
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Figure A.5: A representation with Gaussian Mixture Models (GMMs) of the EMG
activity of the three phases projected on the first two components of
third phase after performed Principal Component Analysis (PCA). The
analysis was performed on the complete muscle set (N = 12) and when
using only the muscles of the forearm (N = 5). The blue color corresponds
to the first phase, the red color to the second phase and the green color
to the third phase. The results presented in this figure regard the EMG
activity of able-bodied subjects 5-8.
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Figure A.6: A representation with Gaussian Mixture Models (GMMs) of the EMG
activity of the three phases projected on the first two components of
third phase after performed Principal Component Analysis (PCA). The
analysis was performed on the complete muscle set (N = 12) and when
using only the muscles of the forearm (N = 5). The blue color corresponds
to the first phase, the red color to the second phase and the green color
to the third phase. The results presented in this figure regard the EMG
activity of amputee subjects.

88



Appendix B

Student Projects

Supervised by the Author

In this appendix, we provide a list of the projects supervised by the author.

Semester Project1, Fall 2016

Student: Paul Rolland

Title: Motion onset detection of the arm from EMG signals using Machine

Learning methods

Description

As we have discussed in this thesis, it is crucial for the the prosthesis to

follow the user’s intention seamlessly. Besides expressing the grasping intention,

the device should also be able to identify the moments to stay idle without

performing any type of motion. This project provided a solution to the identifi-

cation of the idle state for the device by predicting the onset as well as the end

of the motion from the EMG signals. The accurate estimation of the motion

onset could avoid any untimely activation of the device whilst the estimation

of the end of the motion would signal the device keep the same configuration

constant.

In this project, a method based on SVM was developed as decoding method.

Specifically, the EMG signals were pre-processed and divided into time windows.

A PCA was performed on the resulted signals before introducing them to the

SVM classifier. Two different classifiers were trained in this project; one for

the prediction of the motion onset and one for the prediction of the end of

the motion. The results showed high accuracy on the prediction of the motion

onset, while the estimation of the end of the motion had significantly lower

performance.

Semester Project2, Fall 2017

Student: Teo Gaudin

Title: Analysis of error-related potential elicited by the motion of a robotic

arm

Description:

1This project was co-supervised by Denys Lamotte
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When humans work together with robots, the interaction between them

should involve a smooth coordination. The robot should be able to understand

the intention of the user in order to follow smoothly her/his motion. This prin-

ciple is applied not only to the case of prosthesis but also in any type of human-

robot interaction (HRI). Examples of this interaction can be found in industrial

sites, where humans and a robots work together for moving and assembling

various objects. In addition, a key component of robotic rehabilitation systems

is the seamless interaction with the user, especially when the user has limited

motor functionality. In this case the robotic system should be able to identify

the user’s intention from biomedical signals, such as Encephalography (EEG).

A very useful type of brain signal in this case is the Error Potential.

The Error Ponential is occured in the middle-central region of the brain and

is associated with erroneous observations during an execution of a task. This

type of signals could be employed to identify mistakes and errors in the robot

motion. This project investigated this control principle. It involved a design of

experimental protocol in which the user was observing various erroneous robot

motions while its brain activity was monitored. Specifically, the end-effector of a

robot arm was oscillating between two points while a randomly introduced noise

was diverging the end-effector from its normal route. The results showed an elic-

itation of Error Potential brain signals when the end-effector was diverging its

route approximately 0.5s after the onset of the divergence. This was an indica-

tion that those type of signals could be used as a control input for correcting

the motion of the robot according to the user’s preference.

Semester Project, Spring 2018

Student: Antoine Weber

Title: A fast decode of grasping intention from the muscular activity

Description:

Following the contributions of this thesis, this semester project focused on

the identification of the grasp type from the muscle activity when the object

was placed on different locations but also on the identification of reach-no-grasp

motion. The experimental protocol involved two grasp types; power grasp and

thumb-2-fingers and a reach but no grasp motion, where the user performed a

reaching motion (i.e. arm extension) without grasping the object. In addition, a

systematic comparison was conducted on the performance of four classification

methods; ESN, LDA, SVM with RBF kernel and GMM. All the classification

methods showed high accuracy in the estimation of the grasp type and the no-

grasp condition. However, ESN classifier appeared the best performance while

the LDA classifier appeared the poorest performance among all the methods.

2This project was co-supervised by Dr. Iñaki Iturrate
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Furthermore, the reach-to-grasp motion was separated into three phases, as

in Chapter 4, and one classifier was trained for each phase, as in Chapter 5.

A comparison between the performance of this approach with the one of a

classifier trained on all the phases accumulated showed higher accuracy in the

earlier stages. Specifically, the results showed an accurate prediction after 0.6s

from the motion onset regardless the location of the object and the grasping/no-

grasping condition. This project indicated that this approach could be extended

to other hand postures which are irrelevant to grasp types.

Semester Project, Spring 2018

Student: Sinan Gokce

Title: Activating grasp with a prior from the muscular activity

Description
Besides the accurate identification of the grasping intention, a prosthetic

device should be able to grasp an object securely. A secure grasp involves the

application of the proper force from the fingers to the object for primary com-

pensating for its weight, but also adapt to various perturbations. However, ap-

plying ”blindly” the maximum possible force could result in damaging or even

breaking the object. To avoid these events, the prosthetic hand should close

compliantly around the object while gradually making contact with it. In this

scenario, the integration of the prosthesis with tactile sensors offers a solution

on the identification of the contact points.

This project developed a control method for compliant closure of a robot

hand for three grasp types; power grasp, thumb-2-fingers and lateral grasp.

Specifically, the robot hand was covered with tactile sensors for detecting the

pressure on each of its phalanges while a proportional controller was used to

drive the fingers to each desired configuration. Once a contact was detected on

a phalanx, the corresponding finger joint stopped its motion. Furthermore, the

project proposed an approach for collision avoidance among the fingers when

transitioning from one grasp type to another. This method introduced a small

re-opening stage in the transition for avoiding singular positions and collision

between the fingers.

Semester Project3, Fall 2018
Student: Manu Srinath Halvagal

Title: A Study of User Response to Errors in Robot Motion

Description:
Robotic assistive devices for the patients with motor disabilities require a

smooth interaction with the user. Generally, the system makes use of the biomed-

ical signals of the user to identify her/his intention and translates it to motion
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commands for the robot. In cases where the EMG activity is very limited, the

system employs machines learning methods to decode the relevant information

from the brain activity. One way for the system to learn the desired robot motion

is by using the Error Related Potentials (ErrP) of the brain. In this scenario, the

robot corrects its motion according to the existence or absence of ErrPs follow-

ing a learning-from-error approach. Thus, the machine learning system should

be able to learn the boundaries between the desired and rejected motions in

real-time. This project attempted to develop a learning scheme for successfully

training a classifier to recognize the desired robot motion on-line based on the

user’s input.

Specifically, the experimental protocol involve a robot arm performing an

obstacle avoidance motion following different trajectories. In addition, a user

was set to decide to keep or reject the robot trajectory. Approaches based on

SVMs and logistic regression were evaluated on a simulated on-line learning.

The results showed that the classifiers converge after approximately 10 trials to

the desired robot motion. After the number of trials was reached, the user was

not required to correct the robot motion.

Semester Project, Fall 2018
Student: Valentin Morel

Title: Object localization using gaze tracking

Description:
The gaze could be used as an intuitive control input for robotic assistive

systems. For example, in users with limited motor functionalities for the upper

limb, the gaze could be used to identify the object of interest so that a robot

could bring the object to the user. In those scenarios, the gaze can be an impor-

tant component of the system providing useful information for the coordination

with the user.

The goal of this project was to develop a system that detects the object of

interest based on the gaze and send the coordinates of this object to a robot.

The robot, then, could use this information to generate trajectories for reaching

and grasping the object. Specifically, the user was wearing a headset to track

the pupils to interpolate the gaze focal point of the candidate. Computer vision

methods were used to process the acquired images and Support Vector Regres-

sion was used to calibrate the motion of pupils with the focal point. In addition,

a systematic evaluation was conducted to identify the limitations of the system.

Master Thesis4, Fall 2018
3This project was co-supervised by Prof. Aude Billard
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Student: Shupeng Wei

Title: Learning Robot Optimal Trajectories Online Using Inverse Reinforce-

ment Learning

Description:
There is a growing interest on robotic assistive devices for people with motor

disabilities. In the cases where the patient has limited functionality of the upper

limb, a robotic device could assist the patient on daily pick-and-place tasks. Since

the patient would depend mostly on the robotic system to execute those task,

the robotic system should adapt to the preferences of the user. Let’s examine

a case where a patient with limited functionality in upper and lower extremity

uses a wheelchair with a robot arm mounted on it. The user communicates

with the robot arm through an interface and commands the robot to reach and

grasp an object. However, there is an obstacle between the robot arm’s initial

position and the position of the obstacle. In this case, the robotic system should

generate a trajectory for the end effector of the robot to by-pass the obstacle. A

trajectory that passes very close to the obstacle could create a great uncertainty

on the side to the user, while a trajectory passing very far from the obstacle

could drive the end effector outside its workspace or hit an object undetected

from the robotic system. Both these scenarios constitute an undesired robot

operation from the user’s perspective. The use of learning by demonstration

methods and kinesthetic teaching could be very constraint in this case due to

the limited motor functonality of the patient. Thus, the desired trajectories

should be learned using alternative methods of training.

This project addresses the problem of learning the desired trajectories using

Inverse Reinforcement Learning (IRL) techniques. Specifically, the project in-

volves a user directing a robot arm to perform an obstacle avoidance task while

the trajectories are generated from a modulated dynamical system. However,

this modulation may not be the desired according to the user. In this case, the

user could correct the robot motion from a joystic and decide in the end of the

motion to accept or not the resulted trajectory as demonstration. Using the

selected demonstrations, a reward function is been built using the principle of

Maximum Entropy. After the computation of the desired trajectory, the modu-

lation of the dynamical system is found using the Gradient Descent. The results

show that only a small number of demonstrations are required for the system

to be trained and, thus, require no correction from the user.

4This project was co-supervised by Prof. Aude Billard
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