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Abstract

Upper limb prostheses are rapidly improving in terms of both control and sensory feedback, giving

rise to lifelike robotic devices that aim to restore function to amputees. Recent progress in forward

control has enabled prosthesis users to make complicated grip patterns with a prosthetic hand and

nerve stimulation has enabled sensations of touch in the missing hand of an amputee. A brief

overview of the motivation behind the work in this thesis is given in Chapter 1, which is followed

by a general overview of the field and state of the art research (Chapter 2). Chapters 3 and 4 look at

the use of closed loop tactile feedback for improving prosthesis grasping functionality. This entails

development of two algorithms for improving object manipulation (Chapter 3) and the first real-time

implementation of neuromorphic tactile signals being used as feedback to a prosthesis controller for

improved grasping (Chapter 4).

The second half of the thesis (Chatpers 5 - 7) details how sensory information can be conveyed

back to an amputee and how the tactile sensations can be utilized for creating a more lifelike prosthe-

sis. Noninvasive electrical nerve stimulation was shown to provide sensations in multiple regions

of the phantom hand of amputees both with and without targeted sensory reinnervation surgery

(Chapter 5). A multilayered electronic dermis (e-dermis) was developed to mimic the behavior of

receptors in the skin to provide, for the first time, sensations of both touch and pain back to an am-
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putee and the prosthesis (Chapter 6). Finally, the first demonstration of sensory feedback as a key

component of phantom hand movement for myoelectric pattern recognition shows that enhanced

perceptions of the phantom hand can lead to improved prosthesis control (Chapter 7). This work

provides the first demonstration of how amputees can perceive multiple tactile sensations through a

neuromorphic stimulation paradigm. Furthermore, it describes the unique role that nerve stimula-

tion and phantom hand activation play in the sensorimotor loop of upper limb amputees.
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1 | Introduction

1.1 Motivation

There have been great efforts in restoring movements as well as the sense of touch to upper limb

amputees through a prosthetic arm. Our sense of touch is a complicated, multi-faceted phenomenon

of our daily lives. Providing realistic and meaningful sensory sensations back to an amputee is

a challenging problem, but one with major implications if done successfully. Decoding intended

movement signals, after many years, continues to be an active area of research; however, more

recent efforts have focused on restoring the sensation of touch. In this thesis, I describe my work

of providing sensory feedback to upper limb amputees in an effort to create a more sophisticated,

lifelike neuroprosthesis.

1.2 Original contributions

The work presented in this thesis utilizes emerging techniques to create flexible tactile sensors for

sensory feedback in prosthetic hands. Furthermore, it combines neuromorphic engineering prin-

ciples to mimic behavior of skin receptors to provide meaningful sensory information to amputees

and the prosthesis itself. Finally, in this work I explore the role sensory feedback plays in improving

1
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phantom hand perceptions and the sensorimotor loop for enhanced prosthesis control.

1. Developed closed-loop feedback algorithms in to improve prosthesis grasping and object ma-

nipulation

2. Demonstrated a real-time implementation of neuromorphic tactile feedback to a prosthesis

for local closed-loop control during object grasping

3. Demonstrated noninvasive electrical stimulation to provide localized sensory feedback in the

phantom hand of multiple amputees and quantified perceptual qualities of the stimulation

4. Conceptualized and developed a multilayered electronic dermis (e-dermis) with neuromor-

phic encoding to convey sensory information of mechanoreceptors and nociceptors to an am-

putee to enable sensations of touch and pain

5. Conceptualized and investigated the hypothesis of using sensory feedback to improve pros-

thesis control as a direct result of enhance phantom limb perception in amputees

1.3 Publications

The following peer-reviewed publications were generated during the course of this research [1, 9,

13–32]. For convenience, the full citations are shown below. See Google Scholar to track my

publications.

Journals

1. L. E. Osborn, M. A. Hays, R. Bose, A. Dragomir, Z. Tayeb, G. M. Lévay, A. Bezerianos, and
N. V. Thakor, “Sensory feedback enhances phantom limb perception and prosthesis control,”
In Preparation, 2019.

2. L. E. Osborn, A. Dragomir, J. L. Betthauser, C. L. Hunt, H. H. Nguyen, R. R. Kaliki,
and N. V. Thakor, “Prosthesis with neuromorphic multilayered e-dermis perceives touch and
pain,” Science Robotics, vol. 3, no. 19, p. eaat3818, 2018. [doi]
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CHAPTER 1. INTRODUCTION

feedback (i.e. to the prosthesis) can be used to improve prosthesis grasping and functionality. I then

present results showing how neuromorphic tactile feedback can also be used to improve prosthesis

grasping in Chapter 4. In Chapter 5, I describe results on providing noninvasive sensory feedback to

amputees, and in Chapter 6 I demonstrate a neuromorphic electronic dermis (e-dermis) that enables

a prosthesis and amputee to perceive both touch and pain. In Chapter 7, I show results suggesting

the role of sensory feedback in improving prosthesis control by enhancing phantom limb perception.

Finally, in Chapter 8, I summarize the thesis and discuss future directions and possibilities.
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2 | Neural Prostheses & Literature Review

Unless specified otherwise, this chapter is made up of content, with permissions and minor modifi-

cations, from the following sources.

c©2019 John Wiley & Sons, Inc. All rights reserved. Adapted from:

L. E. Osborn, J. L. Betthauser, and N. V. Thakor, “Neural prostheses,” in Wiley Encyclopedia
of Electrical and Electronics Engineering. John Wiley & Sons, 2019, ch. in press, pp. 1–15

Adapted from:

L. E. Osborn, M. Iskarous, and N. V. Thakor, “Sensing and control for prosthetic hands in
clinical and research applications,” in Wearable Robotics. Elsevier, 2019, ch. under review

2.1 Overview

Millions of people worldwide are affected by some disability, including but not limited to limb loss,

hearing loss, spinal cord injury, or visual impairment. Neural prostheses are designed to provide

or replace lost functionality to these individuals. In the case of upper limb loss, simplified hook-

like body powered controlled prostheses can be used; however, recent technological developments

have led to anthropomorphic dexterous manipulators that require more advanced control strategies.

Further, direct control of these manipulators via neural motor signals is seen as a more natural and

biomimetic solution. Recent work has utilized direct neural interfacing with the brain to measure
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motor commands for prosthesis control and to deliver sensory percepts to the user, either through the

peripheral nervous system or the cortex. This chapter provides an introductory overview of neural

prostheses and a look at the relevant state of the art in bidirectional neural prostheses, specifically

incorporation of sensory feedback for prosthetic arms.

2.2 Background

It is estimated that there are more than 1.3 million Americans living with some form of limb loss

[33] and more than 5.4 million Americans living with paralysis [34]. Together, these two groups

represent more than 2% of the total US population. These statistics serve to justify the need for

neurotechnologies such as neural prostheses, which are devices that can restore physiological motor

functionality or sensation to users. Most recipients of a neural prosthesis suffer from damage to

at least one motor or sensory pathway that inhibits their natural function (Fig. 2.1). Whether an

individual is suffering from lost limb function or the ability to see, a neural prosthesis combines

physiological processes and engineering concepts to create a functional replacement.

Neural motor prosthesis control is an area of active research devoted to aiding those with lost

limb function to utilize their functioning neural transmission pathways for direct control of robotic

limbs [35–37]. Neural prostheses that provide sensory feedback are also an active area of research

ranging from restoration of hearing [38], vision [39], and touch [2]. Traditional neural prosthesis

examples include implants for replacing functionality in the cochlea or the retina. More recently,

neurotechnology advancements have made restoring both movement and the sense of touch in upper

limb amputees a reality.
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Figure2.1:Thehumannervoussystemcontainsbothmotorandsensorypathways.(A)Voluntarybodymovementintent
originatesatthecorticallevelandthendescendsthroughthespinalcordandperipheralnervestomuscles.Sensory
receptorsthroughoutthebodycaptureexternalinformationandprovidefeedbackthroughascendingpathways.(B)At
thecorticallevel,motorandsensoryinformationisrepresentedindifferentcorticesofthebrain.Forneuralprostheses,the
primarymotorcortex(M1)isofinterestforaccessinganddecodingintendedmovementwhilesomatosensory(S1),visual,
andauditorycortexcontainregionsforaccessingandencodingfeedback.Together,themotorandsensorypathwaysform
acontinuouscycleoffeedbacktoimproveefficiencyandfunctionalityinourdailylives.Reprintedfrom[1].

2.3 Prosthesisfundamentals

Thetypicalcomponentsofaneuralprosthesiscanbeclassifiedbasedonpurposeandfunction.In

thesedevices,thereisalways1)asensororelectrodeinterfacewiththenervoussystemtorecord

oroutputsignaldata,2)aprocessingunittohandledatatransfer,whichalsoincludesanencoding

and/ordecodingalgorithmtotransformthedataintomeaningfuloutputsignals,and3)aninter-

facewithanexternaldevice,suchasaroboticlimborsensor(Fig.2.2.Anadditionalcomponent

commonlyfoundinneuralprosthesesishardwareforwirelessdataandpowertransferbetweenthe

neuralinterface,theprocessingunit,andtheexternaldeviceorsensors.Thesecomponentscanbe

furtherdefinedbasedonthetypeoftargetedneuralfunctionsuchasforwardmotorcontrolforlimb

movementorsensoryfeedbacktorestoreneuralperceptions.Theprimarydifferencebetweenmo-

torandsensoryprosthesesisthatformotorprosthesestheneuralinterfacecapturesauser’sintent

bymeasuringphysiologicalsignals,butinsensoryprosthesesthestimulationoccursattheneural
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Figure2.2:Thefundamentalcomponentsofneuralprosthesesincludeaneuralinterface,aprocessingunittointerpret
thesignal,andanexternaldevicesuchasaprosthetichandwithatouchsensor.Together,thesemakeuptheneural
prosthesis,whichconnectstothenervoussystemandaimstorestoremotor,sensory,andevencognitivefunctionality.
Whetherprovidingsensoryperception(touch,etc)orforwardcontrol(limbmovement),aneuralprosthesiscanhave
asignificantimpactonimprovingfunctionality.Theexternaldevicecanprovidemovement(motorprosthesis)orbea
sensorforcapturingperception(sensoryprosthesis).Abidirectionalneuralprosthesis,suchasaprostheticarm,includes
pathwaysforbothfeedforwardcontrolandsensoryfeedbacktotheuser’snervoussystem.Reprintedfrom[1].

interfacetoprovideperception.Becauseofthisdifference,theinformationflow(i.e.thedirection

ofsignals)isreversedfortheindividualdevices.Inforward(i.e.motor)prostheticdevices,neural

signalscommonlycapturedbyelectrodesandsignalconditioningcircuitsgofromthenervoussys-

temtoanexternaldevice,suchasarobotichand.Infeedback(i.e.sensory)devices,asignalfrom

thesensorsonaprosthesis,suchastactilesensors,relaythesensordatabacktotheuser’snervous

system.Itshouldbenotedthatinsomecasessensoryfeedbackcanbesenttotheprocessingunitfor

someautomatedcontrol,suchasinareflexpathwaytopreventobjectslipduringgraspingoreven

pain.Regardless,thekeycomponentsofthesystemremain(sensor,processor,algorithm,wireless

datatransfer).Forbidirectionalneuralprostheses,specificallyupperlimbdevices,thecombination

offorwardcontrolwithfeedbackpresentsadditionalchallengesforbothhardwareandalgorithms

forprocessingandtransferringsignals.Thischapterprovidesabriefoverviewofsomeofthese

components,butamoredetaileddescriptioncanbefoundin[1].
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2.3.1 Neural interface

In both cases of motor and sensory prostheses, the neural interface can be at either the cortical

level, including cranial nerves, the spinal cord level, or peripheral level of the nervous system, each

bringing their own advantages and problems. At the cortical and peripheral levels, the interface can

either record from or stimulate the nervous system. An important note is that typical neural inter-

faces to the spinal cord aim to stimulate either motor or sensory pathways. Physiological signals for

motor control are usually not recorded from the spinal cord for decoding and moving an external

limb due to limitations on the ability to record signals for more than a few months using piercing

microelectrode arrays (MEA) and the inability to access specific motor tracts using surface elec-

trodes [40]. However, motor pathways in the spinal cord can be stimulated to create limb movement

if the corresponding pathways are still intact, such as in high level spinal cord injury (SCI) [41], or

the pathways can be bypassed altogether and muscle stimulated directly [42].

At the cortical level, electrode arrays can be placed on the surface of the scalp for electroen-

cephalography (EEG), and penetrating MEAs can target neurons in the brain and record action po-

tentials. One commonly used MEA is the High-Density Utah Slanted Electrode Array (HD-USEA),

with up to 90 individual electrodes, that can target neurons below the surface of the cortex [43].

Electrodes can also be placed on the surface of the brain directly for electrocorticography (ECoG).

While EEG arrays are typically used for recording population signals from the brain, ECoG and

penetrating MEAs can be used for stimulating or recording from neurons. Microwires, nerve cuffs,

penetrating microelectrodes, and non-invasive electrodes on the surface of the skin can be used for

interfacing with the peripheral nervous system (PNS). At the peripheral interface, the electrodes can

be used to record muscle activity from electromyography (EMG) for motor control or to stimulate
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peripheral nerves for sensory feedback. In addition to cuff electrodes that wrap around and stim-

ulate an entire peripheral nerve, there are also specialized electrodes for sensory feedback, namely

the longitudinally implanted intrafascicular electrode (LIFE), which penetrates the nerve to target a

single fascicle [44], the transverse intrafascicular multichannel electrode (TIME), which penetrates

the nerve and targets multiple fascicles [45], and the flat interface nerve electrode (FINE), which

increases the surface area of target fascicles and moves central axons within the fascicle closer to

the surface of the nerve [46]. A more detailed discussion of electrodes for neural interfacing, in-

cluding material considerations, can be found in [47, 48] and a review of implantable technology

for stimulation can be found in [49].

Sensory feedback through the neural interfacing can be achieved using either constant voltage or

constant current stimulation strategies [50]; however, it is worth noting that mechanical stimulation

can also be provided to peripheral nerves to elicit sensory feedback as well [51]. An overview of

the type of signals captured by the various neural interfaces discussed in this section can be found

in [52].

2.3.2 External hardware interface

Another fundamental component of a neural prosthesis is the external hardware. For motor prosthe-

ses, the external hardware is typically a robotic limb, a cursor on a screen, or a wheelchair controller.

In the feedforward case (i.e. motor prosthesis), the external hardware is the component that carries

out a user’s intent (i.e. movement). For a sensory prosthesis, the processing unit connects to and

processes signals from external sensors. The sensors in the feedback case (i.e. sensory prosthesis)

capture parts of the environment, such as the sense of touch, which is transmitted back to the user
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Figure 2.3: (A) The JHU/APL Modular Prosthetic Limb has 26 controllable degrees of freedom in 17 articulating joints
and (B) over 100 sensors including position, force, acceleration, contact, and temperature. Images courtesy of Johns
Hopkins University Applied Physics Laboratory. c©2014 Johns Hopkins University / Applied Physics Laboratory LLC.
All Rights Reserved. For permission to use, modify, or reproduce, contact the Office of Technology Transfer at JHU/APL.

(i.e. sensory perception). The external hardware is crucial to a neural prosthesis because it is the

interface between the environment and the user. In both cases, the external hardware also interfaces

with the processing unit and the decoding/encoding algorithms.

For bidirectional neural prostheses, the external hardware contains both motor and sensory el-

ements. One example is the Modular Prosthetic Limb (MPL) by the Johns Hopkins University

Applied Physics Laboratory (JHU/APL) [53] (Fig. 2.3A). The MPL is capable of mimicking al-

most every movement of a human arm. It is a sophisticated robotic limb and has been the external

hardware used in several key developments for motor neural prostheses [54–56]. In addition, the

MPL contains force, acceleration, torque, temperature, and position sensors (Fig. 2.3B). The MPL

has also been used as a sensory prosthesis wherein tactile measurements from sensors in the hand

were used to stimulate the primary somatosensory cortex (S1) in both humans [57] and non-human

primates [58] to provide realistic sensory feedback.

2.4 Motor prosthesis

Cosmetic, body-powered, and myoelectric devices are the most common prosthetic hands, each

making up roughly one third of devices used [59]. The focus here is on electronically powered
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prosthetic hands because they present interesting control challenges. Multi-articulated prosthetic

hands can be controlled by a range of physiological signals, but there are several challenges that

researchers and users face when decoding intended movements, such as effects from limb position

and electrode contact.

2.4.1 Movement signals & decoding

Electrical activity produced within the nervous system initiates movement. This activity is generated

in the cortex and is sent through the spinal cord to the peripheral nerves and finally to the muscles

which then causes muscle contractions and ultimately limb movement. For a prosthetic hand, the

electrical activity that results from volitional movement is captured and sent to a controller that

classifies the intended movement and outputs the correct commands to the prosthesis to drive move-

ment. The common modalities for recording electrical activity due to intended movement from the

brain are EEG, ECoG, and action potentials. Electrical activity from muscle movement can also be

recorded from the peripheral nervous system with EMG, which is the most common technique for

controlling upper limb prostheses, as it is noninvasive and relatively easy to set up.

Cortical and peripheral signals require delicate and usually invasive neural interfaces. For com-

plex and dexterous prostheses in real-world applications, these decoding and control signals are still

difficult to record, decode and manipulate. Surface EMG signals can be obtained noninvasively and

have served very well as a practical alternative for today’s myoelectrically controlled prostheses.

EMG signals are easy to acquire and don’t require a significant setup period. EMG can be recorded

invasively using implanted electrodes to measure intramuscular activity; however, this approach has

not become as common. A thorough discussion of EMG and its use in controlling prosthetic hands
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Figure2.4:Motorneuralprosthesesutilizeneuralsignalsthatconveyuserintent.OneexampleisdecodingEMGsignals
todeterminetheintendedmovementofahandprosthesis.Theprimarymotorcortex(M1)canberecordedtocapture
neuralactivityintheformofEEG,neuronspikes,orECoGsignals.EMGsignalsfromtheperipheralnervoussystem
(PNS)canalsobeusedtocapturemotorintent.Themotorsignalisprocessedtoextractkeyfeaturesbeforepassing
throughanalgorithmtodeterminethedesiredmovement.Reprintedfrom[1].

canbefoundin[60].

Theemergingmethodforcontrollingaprosthetichandismyoelectricpatternrecognition.The

ideabeingthatwhennaturalmovementsaremadebyanamputee,theyelicituniqueandrepro-

ducibleneuralsignalpatterns.Thosesignalsarerecordedanddecodedintodifferentintendedhand

orlimbmovements. Thesignalsarethentransformedintofeatures,whicharethenmappedto

correspondinghandmovementsusingpatternrecognitiontechniques(Fig.2.4).Variousmachine

learningtechniquessuchasKalmanfilters[3,61],linearregression[62],neuralnetworks[63],

maximumlikelihoodestimation[64],andlineardiscriminantanalysis[65]canbeutilizedtoclas-

sifyhandmovementsbasedontheneuralsignals.Thesemethodscanbeusedregardlessofthe

neuralsignalbeingusedtodecodeintendedmovements.

Ingeneral,patternrecognitiontechniqueshavebeencontinuouslyimprovedoverthepastsev-

eralyears[14,60,66]andresultshaveshownthattrainingisamajorfactorinimprovingprosthesis
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control [67]. Recently, linear regression techniques with surface EMG signals have enabled simul-

taneous DOF and proportional prosthesis control, which improves functionality during activities of

daily living [62]. Another emerging trend is the use of high density EMG signals to create im-

ages of EMG activity for predicting hand movements [68]. Additional details on prosthesis control,

including effects that degrade movement classification performance, can be found in [1, 17, 60]

2.4.2 Targeted muscle reinnervation (TMR) & osseointegration

TMR is a surgical technique where the nerves from an amputated limb are placed into healthy

muscles to act as bio-amplifiers, making movement signals stronger and easier to measure [69, 70].

TMR has greatly improved the ability for prosthesis users to achieve a wider range of grips and

patterns while controlling their limb [71].

A relatively new method known as osseointegration has also been shown to address several

common issues such as prosthesis loading and position effects. In osseointegration, the prosthesis

attaches directly to the body through a metal link that is inserted directly into the bone in the residual

limb of an amputee. This intimate human-machine interface alleviates several issues such as loading

effects that cause changes to surface EMG signals while also improving mobility and range of

motion of the prosthesis. [72].

2.4.3 State of the art

Researchers are beginning to take advantage of new surgical techniques like TMR to develop en-

hanced decoding strategies [73] and achieve greater dexterity [71] for further improving prosthesis

control. Another developing area is in designing control strategies that enable both simultaneous

and proportional prosthesis control. Typically, users can only control 1 degree of freedom (DOF)
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of their prosthesis at a time. Recently, researchers have shown promising results with simultaneous

and proportional control in 2 [62] and 5 DOFs [3]. Challenges that will continue to be addressed

include environmental effects such as limb position and loading. Researchers will undoubtedly turn

towards more sophisticated machine learning techniques to resolve these issues.

2.5 Sensory prosthesis

Sensory feedback is also an important part for prosthetic hands. Traditionally, prosthesis users relied

on visual and auditory information to monitor their prosthesis during manipulation. With the recent

advancements in providing sensory feedback to users, researchers have shown that we can now

complete the feedback loop by providing natural sensations back to amputees so they can actually

feel with their prosthesis.

Touch is a complicated, multi-faceted sensation that works in harmony with muscle movements

to enable highly sophisticated manipulation tasks and tactile perceptions. One of the challenges of

providing sensory feedback is not only capturing comprehensive touch information through sensors

but also in providing that information back to a user, effectively closing the loop (Fig. 2.5). Some

of the most significant advancement in upper limb prostheses in the past several years have come

in the form of sensory feedback to amputees. Sensory feedback can be provided by stimulating

the peripheral nerves or even the somatosensory cortex directly. For peripheral nerve stimulation,

relevant sensory feedback can be achieved by using noninvasive approaches, such as transcutaneous

electrical nerve stimulation (TENS), or using electrodes implanted directly into the nerves. The

median, ulnar, and radial nerves are the primary target when providing sensory feedback due to

their coverage of the hand.
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Figure2.5:Insensoryneuralprostheses,someexternalsensormeasurement,suchastouchonaprosthetichand,is
recordedandsenttotheprocessingunit.Thesensorsignalistransformedintouniquestimulationpatternstobesentto
eithertheperipheralnervesorthecortex.Thestimulationpatternisdeterminedbytheneuraltargetforstimulationto
elicitamorenaturalperception.Reprintedfrom[1].

2.5.1 Touchsensinginhumans

Beforegivingdetailsonsensorsusedinhandprostheses,itisusefultotakeabrieflookatthesens-

ingcapabilitiesofintacthands.Prosthetichandsreplacelostormissinghands,soitmakessense

thatthesedevicesshouldaimtomimicthefunctionalityandbehavioroftheirbiologicalcoun-

terparts.Inhealthyskin,wehavereceptorsandcomplexfeedbackloopstoconveyinteroceptive,

suchasproprioception,andexteroceptive,suchaspressure,temperature,andpain,perceptions.

Mechanoreceptorsaretheprimarymeansofourabilitytoperceivetouch,andtheyareclassified

aseitherslowlyadapting(SA)(Merkelcells(SA1)andRuffiniendings(SA2))orrapidlyadapt-

ing(Meissner(RA1)andPaciniancorpuscles(RA2)).SAmechanoreceptorsrespondtosustained

loads,whereasRAsrespondprimarilytothetransientperiodsoftactileloading[74].

Whilemechanoreceptorsprovideinformationontouch,nociceptors(freenerveendings)inthe

skinareresponsibleforconveyingnoxious(painful)mechanicalsensations[75].Aδ-andC-low
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threshold mechanoreceptors (LTMRs) are primarily responsible for conveying sensations of tem-

perature and it is thought that SA2 receptors, which respond to things like skin stretch, work in con-

junction with muscle spindles to provide sensations of proprioception [74]. Although mechanore-

ceptor and afferent nerve behavior have been researched for several decades to understand their

role in touch [76] and sensory-motor coordination [77], there is still active research on how sensory

information is transmitted and utilized in our bodies [78].

Biological sensory receptors and pathways provide insight into the necessary components re-

quired for making sophisticated prosthetic hands that can provide meaningful, relevant, and natural

sensations back to the user. A closer look at receptor behavior and how this can be modeled will be

discussed in later chapters.

2.5.2 Sensors and advanced materials

More recently, there has been progress in materials science to create more sophisticated sensing

modalities and electronic skins (e-skins). For prosthetic hands, an e-skin is ideal because the sensors

are embodied in flexible or compliant materials. The capture of sensory information, such as touch

and proprioception, is only part of an e-skin, as there are other factors that have been developed

such as flexibility, compliance, self-healing, and other skin-like characteristics. Researchers have

used advanced materials to create stretchable sensors [79], microstructured ferroelectric skins with

pressure and temperature sensing [80], compliant prosthetic fingers that use stretchable waveguides

to detect pressure [81], compliant and wireless e-skins [82], and rehealable and malleable e-skin

[83].

Pressure and flexion sensors have also been developed that can both electrically and mechan-
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ically heal themselves [84]. Entire pneumatic robots have also been shown to self-heal [85]. Ul-

traflexible organic electronics have also been constructed into skin-like material [86], and even

biomimetic temperature sensitive layers [87]. More relevant to prosthetic hands, has been the devel-

opment of e-skins with sensors that behave like actual mechanoreceptors. Spiking like outputs from

a pressure sensor were created by ring oscillators and used to directly stimulate neurons in the so-

matosensory cortex of a mouse [88]. More recently, an artificial afferent was created using flexible

organic electronics to mimic the function of a sensory nerve, which converted pressure into action

potentials, also using ring oscillators, to stimulate motor nerves in a cockroach [89]. For a more

thorough discussion of flexible electronics, advanced materials for sensors, and e-skins, see [90].

2.5.3 Sensory feedback

Tactile

For clarity, we refer to tactile as a sensation that can include perceptions of force, pressure, vibration,

or texture. Groundbreaking results show the ability to provide sensory activation and sensations of

pressure in the thumb, index finger, and pinky of the phantom hand of an amputee using implanted

stimulating electrodes [91]. Through tactile perceptions, prosthesis users with implanted stimulat-

ing electrodes in their median and ulnar nerves have been shown to differentiate between object

stiffness [91], perform fine motor movements such as pulling a stem off a cherry [2], and improve

performance in functional tasks [92] and activities of daily living [72].

Touch sensations have been mapped in the phantom hand in several different studies, and each

case varies in terms of the coverage obtained. Stimulation from multiple microelectrode arrays

implanted in the median and ulnar nerves was shown to provide several percepts in one study [2]
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Figure2.6:Sensorymappingofthephantomhandcanprovideinformationonthetypesofsensationsperceivedbythe
amputee.(A)Tactileperceptionsaregenerallyperceivedinpartsofthephantomhandthatwereonceinnervatedbythe
medianandulnarnerves.Resultsadaptedfrom[2].(B)Ingeneral,sensorymappingvariesineachcase.Forimplanted
stimulatingelectrodes,perceptionsseemtobelocalizedtosmallerareas.Thissensorymapshowsthegeneralcoverageof
sensoryfeedbackprovidedtoamputeesthroughelectrodesimplantedinthemedianandulnarnerves.Individualpercepts
werelocalizedtosmallerregionswithinthelargerareas. Resultsadaptedfrom[3].(C)Noninvasivestimulationof
medianandulnarnervescanalsoprovidetactilesensationsandeachstimulationsitegenerallycoverslargerareasofthe
phantomhand.Resultsadaptedfrom[4].

(Fig.2.6A)andover100perceptsinanotherstudy[3](Fig.2.6B).Implantedstimulatingelectrodes

areabletotargetsmallernervefascicles,asopposedtothelargernervebundleslikelyactivatedusing

noninvasiveapproaches,whichhasthepotentialtoprovidemorelocalizedandagreatervarietyof

tactileperceptsinthephantomhand.

Sensationscanalsobeprovidedbynoninvasivelyelectricallystimulatingtheperipheralnerves

[4,93,94](Fig.2.6C).Despitenothavingdirectcontactwiththeperipheralnerve,electricalstimu-

lationdissipatesthroughtheskinand,ifpositionedcorrectly,canreachandactivatetheunderlying

peripheralnervebundles.Targetingtheunderlyingnervesthroughtheskincanbeadifficultprocess,

buttargetedsensoryreinnervation(TSR),asurgicaltechniquethatintentionallyseparatessensory

nervesduringsurgery,canbeusedtoenablelargerspatialcoverageoftactilefeedbackinthephan-

tomhand[51,95].ItwasshownthatsubjectswhohadundergoneTSRhadacapacitytoperceive

sensationsofgratingthatweresimilartoable-bodiedsubjects;howevertheabilityofTSRsubjects

toidentifyandlocalizepointsofcontactwasslightlylowerthanthecontrols[96].
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Although less common, it is possible to also produce tactile sensations through stimulation at

the cortical level, in the somatosensory cortex [57]. This approach is a valid solution for prosthesis

users who have a spinal cord injury and do not have intact peripheral nerve and spinal cord pathways

for transmitting neural information.

Proprioception

One of the major forms of feedback in closed-loop manipulation with a hand is proprioception. It

helps guide hand movement and complements touch feedback in that it allows an individual to create

a more comprehensive understanding and representation of any movements or object manipulation.

Touch information gives context of an object’s features, such as surface roughness and material

stiffness, while proprioceptive information helps convey object size and shape while also tracking

the position of the hand. By knowing the current position of the hand through proprioception, an

individual can send motor commands to make fine movements without the need for visual feedback.

This type of comprehensive proprioceptive and tactile feedback is lacking in prosthetic hands.

Using implanted microelectrode arrays in the median and ulnar nerves of amputees, researchers

have also identified several instances of propioceptive feedback. Multiple amputees were able to

perceive different proprioceptive sensations (i.e. finger or hand movements in the phantom hand)

[3]. It is unclear which afferent nerve fibers were being stimulated within the median and ulnar

nerves to create these sensations, but the location of the stimulating electrode seemed to play a

major role in eliciting proprioceptive sensations.

Illusory movements, sensations that the phantom hand is moving, can also be caused by vibratory

feedback on the skin of amputees who have undergone TMR [97]. In multiple subjects, vibration of
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the proximal reinnervated muscles elicited an illusion of hand movement, such as finger and wrist

extension and flexion. This kinesthetic illusion was shown to improve movement control of their

myoelectric prosthesis [97]. Although the vibration was applied to muscles, there was a perceived

sensation of limb movement, which indicates the important relationship between muscle activity and

sensory feedback to produce the sense of proprioception. Research has shown that proprioceptive

percepts can be provided by stimulating sites in both sensory nerves and muscles, and it is most

likely a combination of providing feedback to both sensory and motor neurons that will elicit more

natural sensations of proprioception. The combined stimulation of muscles and sensory nerves for

prorpioceptive feedback makes sense considering that SA2 mechanoreceptors provide information

on skin stretch while muscle spindles convey information on limb position, which together make up

our ability to localize our limb position in space without the need for visual feedback.

Now that technology has enabled tactile feedback to prosthesis users, researchers have begun to

explore additional touch perceptions that can be naturally conveyed through nerve stimulation.

2.5.4 Neuromorphic models

The types of sensory feedback conveyed from a prosthetic hand to its user are still limited in that

they do not fully encompass the complex nature of our sensations of touch. There is a continuous

push to make prosthetic hands more life-like, and that requires sensory capabilities that enable

a user to better utilize and embody their device. It is likely that future research will attempt to

provide sensations of temperature, more sophisticated forms of proprioception, and combinations

of other sensations back to prosthesis users. For realistic sensations to be re-created artificially,

we should consider how biology produces those sensations to begin with. This leads to the use of
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neuromorphic systems, which aim to mimic aspects of healthy nervous system architecture, by using

digital spikes, akin to neural action potentials, to convey information. Researchers have already

used a neuromorphic SA mechanoreceptor model for enabling an amputee to discriminate between

textures [98]. The idea is that by using neuromorphic models, essentially modeling healthy receptor

behavior as a way to stimulate peripheral nerves, more natural sensations can be produced because

the stimulation is based on actual biological behavior. The limitation with this approach is that we

are not yet able to stimulate individual sensory nerve fibers due to their small size. Thus, using

a neuromorphic model to provide sensory feedback has not reached its full potential yet. At this

point, the nerve stimulation is representative of the activity of a population of receptors, which can

then by used to stimulate a nerve fascicle or bundle. However, researchers have already developed

extremely sophisticated models that very accurately predict and replicate actual mechanoreceptor

behavior. Using physiological data from afferents in non-human primates, SA1, RA1, and RA2

receptors have been modeled, with millisecond precision [99].

2.5.5 State of the art

A major part of providing sensory information from a prosthetic hand back to the user is understand-

ing how that feedback is perceived by the user. Researchers are using traditional psychophysical

experiments to quantify sensory perceptions and identify how different parameters influence per-

ceptions of intensity [100]. Furthermore, an amputee is able to adapt to sensations in the phantom

hand, such as a repeated tapping, in a similar way as someone adapts to sensations in an intact

limb [101]. Differences in stimulating electrode (invasive vs noninvasive) is also a question worth

considering in terms of how sensations change. Implanted stimulating electrodes to elicit sensory

feedback are more stable than noninvasive approaches since they consistently stimulate the same
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regions after implantation [3, 57]. Combined with understanding user perception of feedback, re-

searchers have looked at how feedback influences the neural signals of an amputee [4], which could

also be used to help better understand the quality of sensory perceptions from nerve stimulation.

The effect of the stimulation on neural signals may offer insight into how information is processed

in the somatosensory cortex after an amputation or spinal cord injury. This effect will help continue

to push knowledge for improving not only prostheses but brain-machine interfaces in general.

TSR surgery has already enhanced the ability of researchers to provide sensory feedback to the

peripheral nerves of amputees. There is often natural regrowth of peripheral nerves in an amputated

limb, but this growth is somewhat arbitrary in that the nerve fibers may end up close to the surface

of the skin, in the soft tissue, or deeper within the arm. With TSR, surgeons intentionally separate

the afferent nerve fascicles and place them so that their growth into the soft tissue will make it easier

for providing sensory feedback.
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3 | Closed-Loop Tactile Feedback in Upper Limb Pros-

theses

This chapter is made up of content, with permissions and minor modifications, from [16].

c©2016 IEEE. Reprinted, with permission, from:

L. Osborn, R. Kaliki, A. Soares, and N. Thakor, “Neuromimetic event-based detection for
closed-loop tactile feedback control of upper limb prostheses,” IEEE Transactions on Haptics,
vol. 9, no. 2, pp. 196–206, 2016. [doi]

3.1 Overview

In this chapter, we utilize tactile information to provide active touch feedback to a prosthetic hand.

First, we developed fingertip tactile sensors for producing biomimetic spiking responses for mon-

itoring contact, release, and slip of an object grasped by a prosthetic hand. We convert the sensor

output into pulses, mimicking the rapid and slowly adapting spiking responses of receptor afferents

found in the human body. Second, we designed and implemented two neuromimetic event-based

algorithms, Compliant Grasping and Slip Prevention, on a prosthesis to create a local closed-loop

tactile feedback control system (i.e. tactile information is sent to the prosthesis). Grasping experi-

ments were designed to assess the benefit of this biologically inspired neuromimetic tactile feedback

to a prosthesis. Results from able-bodied and amputee subjects show the average number of objects
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that broke or slipped during grasping decreased by over 50% and the average time to complete a

grasping task decreased by at least 10% for most trials when comparing neuromimetic tactile feed-

back with no feedback on a prosthesis. Our neuromimetic method of closed-loop tactile sensing is

a novel approach to improving the function of upper limb prostheses.

3.2 Introduction

Prosthetic hands are important tools for improving the lives of upper limb amputees; however, most

of these devices lack the ability to determine and understand the sense of touch. This lack of tactile

feedback can cause issues such as unstable grasping of objects as many amputees are forced to

rely primarily on visual feedback to ensure their prosthetic limb is behaving appropriately. Relying

primarily on visual feedback with no tactile input can be rather burdensome for an amputee when

it comes to picking up, holding, or manipulating objects with their prosthesis. In healthy hands,

numerous mechanoreceptors within the skin allow for our sense of touch and make up the closed-

loop tactile feedback system that provides us with valuable information regarding our environment

[102, 103].

Many of the prosthetic arms today are controlled using myoelectric (EMG) signals [66, 104–

106]. Recent advances in EMG prosthesis control have allowed for functional improvements [107],

and new EMG pattern recognition techniques have shown promise for a more natural control of a

prosthesis [67, 108]. These EMG control methods are useful for creating prosthetic systems with

more intuitive control, but amputees still face the problem of no tactile feedback in their control

strategies. This lack of touch information can give rise to issues such as accidentally breaking or

dropping an object as the prosthesis user is unable to determine the amount of grip force being used
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or when the object comes into contact with the prosthesis.

Knowledge gained through active touch sensing plays an important role in many manipulation

tasks [109–112], and research suggests that using information such as grip force and pressure can

help improve the functionality and grasping control of prosthetic hands [6, 113–117]. Advance-

ments in closed-loop prosthesis control include improving grasp force sensitivity by incorporating

force-derivative feedback in a prosthetic hand to help regulate grasping force [115], a nonlinear

force controller for estimating and reducing the force fluctuations during grasping [118], and even a

hybrid force-velocity sliding mode controller for preventing excessive grasping force [119]. Recent

progress has shown the benefit of providing visual force feedback to prevent slip during grasp-

ing [120] as well as using an adaptive sliding mode prosthesis control to help prevent grasped object

slip and deformation [116].

Current approaches fail to take into account the biological aspects of tactile sensing, specifically

the behavior of mechanoreceptors in identifying onset and offset of object contact. This type of

behavior is vital for stable grasping as we rely heavily on active touch sensing to gain information

of an object [121, 122]. We use the mechanoreceptors for active touch sensing as a means to better

understand a task, whether that is holding an object or discriminating a fine texture [122]. In healthy

skin, the transient behavior of rapidly adapting (RA) receptors is believed to send information to the

peripheral nervous system regarding the onset of object contact and release while the sustained

response of the slowly adapting type 1 (SA1) receptors is thought to convey information regarding

the amount of static grip force (Fig. 3.1) [5, 121]. It has been shown that by using these event-based

responses along with numerous other inputs we are able to manipulate and grab objects with high

precision and reliability [102]. Drawing inspiration from biology, an event-based approach could
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Figure 3.1: Adaptation of results from [5], this schematic shows the amount of skin indentation (top) and typical RA
(middle) and SA1 (bottom) responses. RA receptors respond during the transient periods of indentation to help indicate
contact and release while SA1 receptors exhibit a response during sustained indentation. c©2016 IEEE.

be engineered as a neuromimetic system to enable active touch sensing for a prosthesis that relies

on object contact and release events made evident through spiking behavior.

Neuromimetic systems aim to imitate some aspect of brain function using analogous neural ele-

ments, such as spiking activity [123, 124]. Neurologically inspired approaches have been employed

for visual information processing [125] and object recognition [126] as well as for modeling neural

circuits, eye movements, and other sensory systems [127–130]. Here we model a tactile sensing

system using RA ‘event-based’ responses to determine object contact and slip in conjunction with

SA1 type information of sustained grasping force to create a neuromimetic control method for a

prosthetic system. We hypothesize that this bioinspired approach will create a closed-loop tactile

feedback system that can prevent object damage and slip during grasping with a prosthesis.

One study showed how different feedback modalities can influence a person’s ability to detect

and correct for an object slipping. The response time in healthy humans for preventing object slip by

using EMG signals ranged from 1.51 – 1.75 s, depending on the feedback modality [131]. However,

during grasping, the natural reflex pathway in healthy adults is capable of responding between 50

- 70 ms after the onset of slip occurs [132, 133]. The disconnect between muscle contractions and

prosthesis movements for an upper limb amputee introduces an inherent delay when compared to
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Figure 3.2: System diagram showing the closed-loop nature of the tactile feedback system. The prosthesis control unit
receives both amputee EMG signals and tactile information before sending out a command to the terminal device. c©2016
IEEE.

the automatic skeletal muscle response triggered by efferent nerve fibers in the peripheral nervous

system [103, 132, 134]. Thus, there is a need for a closed-loop tactile feedback system for prostheses

with the ability to make quick, accurate adjustments in real-time during grasping, similar to our very

own reflex pathway.

In this work we 1) present compliant force sensors to monitor grasping forces as active tactile

sensory inputs to a prosthesis control unit, and 2) implement our neuromimetic force based control

algorithms, Compliant Grasping and Slip Prevention, on the prosthesis controller to create an active

closed-loop tactile feedback system for improving grasping functionality of a prosthetic hand, as

outlined by Fig. 3.2. In this work, tactile feedback is sent directly to the prosthesis controller and

not the user.
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Figure3.3:(A)Textilesensorcuffdesign,whichincludesflexibleandstretchablematerialsthatallowthesensortobe
placedonaprosthesisphalanx.Conductivetracesactasthesensingelementsandareprotectedbyanouterfabriclayer
alongwitharubbercoating.(B)Sensorcuffsareplacedonthetipsofthethumb,index,andmiddlefingersofthe
prosthesis.c2016IEEE.

3.3 Materialsandethods

3.3.1 Textileforcesensor

Wehavedesignedandbuiltacustomizedtextileforcesensitiveresistor(FSR)tomeasureapplied

loadsduringgraspingwithaprosthetichand. Thesensorsarebasedonpreviousdesignswith

stretchabletextiles[135]anddesignedspecificallyforthefingertipsofaprosthetichand.Sensor

cuffs,asseeninFig.3.3B,aremadeupofstretchableconductivetextiletraces(LessEMF,Latham,

USA)placedonatextilebackingandcoveredbyastretchableouterlayer.A3mmrubberlayer

(DragonSkin10,Smooth-On,USA)isusedtoaddcompliancetothegraspingsurfaceofthepros-

thesis.Thesensorswerepreviouslycharacterizedandverifiedforuseinprostheticapplications,

particularlyduringgraspingtasks[136].

ThetextileFSRsaredesignedtoeasilyfitonthephalanxofanexistingprosthesis,removingany

needforspecialdisassemblyormechanicalmanipulationofthedevice.Forthiswork,thesensor

cuffisplacedonthethumb,index,andmiddledistalphalangesofthebebionic3prosthetichand,

asshowninFig.3.3B.Therelationshipbetweentheappliedsurfaceloadandthesensoroutputis

describedin[136].
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Figure 3.4: A grasp-hold-release event with tactile feedback. The top plot shows the onset, hold, and release of an object
grasped by a prosthetic hand. The RA-like tactile response (middle) produces a small cluster of positive spikes during
the onset of object contact and negative spikes during object release. The SA1-like response (bottom) simultaneously
measures sustained grip force. c©2016 IEEE.

3.3.2 Neuromimetic algorithms

The normal force measured by the sensors is used as an analog to skin indentations that produce RA

and SA1 responses. Rapid changes in the applied force, as measured by the sensors, are translated

to an RA-like spiking response to indicate object contact and release, as seen in Fig. 3.4. This is

achieved by measuring the rate of change of the force signal and characterizing positive changes as

the onset of object contact and negative changes as object release. In addition, the absolute value of

a sustained applied load is simultaneously measured by the sensor to capture SA1-like information

of a steady-state force or indention (Fig. 3.4). In our approach, these signals serve as the active

tactile inputs for the neuromimetic prosthesis grasping algorithms.

Compliant Grasping control

This control strategy determines when the prosthetic hand contacts an object and modulates the

hand’s response to the user’s EMG signal during a grasping task based on the applied force from the
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fingertip sensors to promote a stable prosthesis grip without overexerting forces on an object. Our

approach to compliant grasping is to create a device to implement a feed-forward EMG gain control

model that uses an RA-like sensor response, R(t), to determine object contact and the static SA1-

like sensor response, S(t), to determine the absolute grip force. The RA-like sensor response, R(t),

is modeled as a high pass filtered signal of the SA1-like sensor response, S(t), and approximated

using Newton’s quotient

R(t) =
S(t+ ∆t)− S(t)

∆t

where ∆t is the time between measurements. This creates the spiking response that can be used for

determining the onset of object contact and release. Object contact is defined as a threshold crossing

by the RA or SA1-like sensor response

R(t) ≥ β or S(t) ≥ η

with β = 0.08 N/ms and η = 0.1 N, which were found experimentally to be outside of the normal

force rate fluctuations of the sensor and the minimum force needed for sensor activation, respec-

tively [136]. After object contact during a grasping task, the prosthesis control unit actively modu-

lates the user’s EMG signals by applying a gain reduction, α, which is dependent on the SA1-like

sensor response, S(t). This is outlined in Fig. 3.5 and is given by the piecewise function

α =


e−γS(t) S(t) < 8 N

γ S(t) ≥ 8 N
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Figure 3.5: (A) The neuromimetic touch feedback algorithm uses the RA-like sensor response, R(t), which is found by
passing the force signal (S(t)) through a high pass filter and comparing it to the threshold β, to determine the onset of
object contact, release, and slip. (B) The Compliant Grasping strategy uses object contact to dynamically modulating the
user’s EMG gain, α, to help prevent grasping objects with excessive force, and (C) uses the same neuromimetic RA-like
response to monitor and correct for object slip. c©2016 IEEE.

where γ is the EMG gain threshold of 20%. To find γ we took the average EMG amplitude of several

maximum effort contractions and found the percentage of the signal needed to maintain prosthesis

control. The 8 N threshold was chosen to ensure continuity of the gain reduction function, α,

as it is the intersection of the two parts of the piecewise function. Because the prosthetic hand

operates using proportional control, a reduced EMG signal will result in an appropriately reduced

hand reaction. The exponential decrease of the EMG gain was found heuristically to allow for finer

manipulation with smaller grasping forces, which makes it ideal when handling delicate objects that

are easily crushed, compared to an inversely proportional or inverse sigmoidal decaying function.

Fig. 3.6 shows the actual EMG gain output from the prosthesis controller based on the measured

force signal during active Compliant Grasping feedback control. The goal of this algorithm is to

allow the user to make fine force adjustments, due to the decreasing EMG gain, after contacting an

object without the worry of over grasping and breaking the object.
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Figure 3.6: The true EMG gain measured from the prosthesis controller during a prosthesis grasping task with increasing
grip force and Compliant Grasping. To prevent the EMG signal from shrinking to zero, a lower threshold of 20% is
placed on the gain. c©2016 IEEE.

Slip Prevention control

During prosthesis grasping it is useful to have a stable grip on the target object. For this case, we

introduce a neuromimetic Slip Prevention algorithm that uses the RA-like sensor response, R(t), to

determine the offset (i.e. slip) of object contact. While object contact is determined by a positive

increase in R(t), as described in the previous section, object release is determined by a negative

change in R(t).

R(t) ≥ β ⇒ Object Contact

R(t) ≤ −β ⇒ Object Release

A negative change in the grip force, less than −β, indicates movement or release between the

prosthesis and grasped object interface and triggers the prosthesis to close for time τ . The value of

τ is chosen as 45 ms, which is similar to actual grip force adjustment times found in humans [132].

This time was also verified experimentally as enough time for the prosthesis motors to respond to

the hand close signal. The algorithm is continuously monitoring S(t), so the total time of hand
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Figure 3.7: The Slip Prevention control strategy uses the biomimetic RA-like sensor response, R(t), spikes to monitor
for object slip. Instances of slip are identified using this neuromimetic approach by measuring the rate of change of the
grip force. An instance of slip triggers the prosthesis to close to prevent an object from slipping from its grasp. c©2016
IEEE.

closure, T , is increased by τ for every instance of slip, n, and can be modeled using the update

equation

T i = T i−1 −∆t+
n∑
j=1

τ ij

where ∆t is the elapsed time between iterations, i, and is dependent on the prosthesis control unit

sampling rate. The prosthesis receives a close signal for time T i, which will increase with increasing

instances of slip, n. This algorithm is outlined in Fig. 3.5, and its output is shown in Fig. 3.7, which

portrays the RA-like sensor response, R(t) and the corresponding signal to close the prosthesis.

In the event that the user intends to release a grasped object from the prosthesis an intentional

EMG “open” signal will override the automatic hand closure reflex signal from the Slip Prevention

algorithm.

3.4 Experimental methods

To evaluate the use of active tactile feedback during prosthesis operation, we developed a series of

grasping experiments that require a human subject to pick up and handle objects with a bebionic3
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Figure 3.8: (A) A custom brace is used for operation of a prosthetic hand by able-bodied subjects. A pair of Ottobock
electrodes (Myobock, Ottobock, Austin, USA) are placed on the forearm of the subject to collect the EMG signals. (B)
The amputee participants used their personal prosthetic socket with embedded Ottobock EMG electrodes. c©2016 IEEE.

prosthetic hand. To evaluate the algorithms with an adequate sample size, 10 able-bodied subjects

participated in the experiments. To evaluate the touch feedback system with actual prosthesis users,

2 transradial amputees, one of whom is a bilateral amputee and the other a unilateral amputee,

participated in experiments. All subjects consented to participate in the experiments, which were

approved by the Johns Hopkins Medicine Institutional Review Board.

3.4.1 Hardware and data collection

To operate the prosthesis, able-bodied subjects wore a customized brace, Fig. 3.8A, while the

amputee participants used their personal prosthetic sockets, Fig. 3.8B. A tripod grip (Fig. 3.9) was

used by all subjects during the grasping tasks and the EMG signals used to control the prosthesis

were collected using a pair of Ottobock electrodes (Myobock, Ottobock, Austin, USA) placed on

the forearm of the subject. The same pair of electrodes was used for all able-bodied subjects and

the amputee subjects used personal Ottobock EMG electrodes that were already embedded within

their socket.

Fingertip sensors were placed on the thumb, index, and middle fingers of the prosthesis, as
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Figure 3.9: A tripod grip is used by the prosthesis for all grasping tasks. For this grip, the thumb as well as the index and
middle fingers are used to grasp an object. c©2016 IEEE.

seen in Fig. 3.3B. Each sensor contains a sensing element at the distal end and tip of the finger,

and they communicate directly with the prosthesis controller (Infinite Biomedical Technologies,

USA) at 260 Hz. To test the individual touch feedback strategies, an external switch was placed

on the prosthesis controller to change between the Compliant Grasping and the Slip Prevention

algorithms. This allows each algorithm to be evaluated independently of the other. Data were sent

via serial communication between the prosthesis controller and a PC and analyzed using LabVIEW

(National Instruments, USA). Every experiment was recorded using a Sony Nex-5R digital camera

for monitoring time and object movement during the experiments. A paired t-test with confidence

interval (COI) of 95% was used for analyzing whether the data reject the null hypothesis when

compared to each other.

3.4.2 Able-bodied experiments

Two different tasks were designed to test the functionality of the Compliant Grasping and Slip Pre-

vention algorithms. Each able-bodied subject performed the tasks using 1) an unmodified bebionic3

prosthetic hand, 2) the prosthesis with the neuromimetic feedback for compliant grasping and slip

control, and finally 3) the prosthesis with the finger sensors deactivated. There is no cosmesis, a

skin-like glove, on the unmodified prosthesis. The reason for the final case with deactivated sensors

is to investigate the effect of the sensors’ material on the system’s performance during grasping.
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Figure 3.10: The items used for the Compliant Grasping task. From left to right: packing foam, cracker, hollow egg, and
a polystyrene cup. These common objects, most of which have been used in previous grasping studies, were chosen due
to their delicate nature [6–8]. c©2016 IEEE.

Each subject was allowed to train with the prosthesis, both unmodified and with sensors attached,

for up to a total of 15 minutes to learn basic operation and control of the device before starting the

experiments.

Compliant Grasping

Common objects that are relatively easy to break were chosen for this task and are shown in Fig.

3.10. Most of these items have been used in previous prosthesis and robotic grasping tasks [6–8].

To ensure repeatability, we quantified the mass of the items as well as the amount of force required

to break each item, as seen in Table 3.1. For this experiment, an object is considered broken when it

exceeds its yield strength and undergoes plastic deformation [137]. Each trial consists of picking up

and moving 5 items of the same type approximately 25 cm. Every able-bodied subject completed

a single trial of five movements for each object type. The trials were repeated for the unmodified

prosthesis, the prosthesis with the neuromimetic touch feedback algorithms, and the prosthesis with

deactivated sensors. The order of trials was randomized and the number of broken objects as well

as the time to complete a trial were measured.
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Table 3.1: Items used in the grasping tasks. c©2016 IEEE.

Item Mass (g) Force to Break (N)

Foam 0.19± 0.01 >1

Cracker 3.1± 0.1 >2

Cup 3.2± 0.1 >2

Egg 5.7± 0.7 >8

Slip Prevention

To induce slip, weight is added to an empty polypropylene cylinder, held by the subject, in either 1

N increments (up to 5 N) or a single increment of 3.8 N. The two methods of weight addition allow

for measuring the effect of small (1 N) and large (3.8 N) changes in the grasped object’s weight.

The weights are dropped from the top of the cylinder every time and fall approximately 12 cm to

the bottom of the cylinder. The vertical distance moved by the grasped cylinder and the number

of times it slipped completely from the prosthesis’ grasp were measured using the high definition

digital video camera at 30 fps. Each able-bodied subject performed each weight addition trial 3

times.

3.4.3 Amputee experiments

To evaluate the neuromimetic tactile feedback system with actual prosthesis users, 2 transradial

amputees participated in the experiments. Both amputee subjects used their own prosthetic system,

which included the socket, electrodes, a prosthesis control unit, and a bebionic3 prosthetic hand.

Both subjects regularly use their bebionic3 hand without a cosmesis during daily activities and have

been using a prosthesis for 3 years or more.

The amputee subjects performed the same Compliant Grasping and Slip Prevention tasks as

described in 3.4.2 and 3.4.2, respectively, and did so using 1) their unmodified bebionic3 prosthesis,
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2) the prosthesis with the neuromimetic feedback for compliant grasping and slip control, and finally

3) the prosthesis with the finger sensors deactivated.

For the Compliant Grasping task, both amputee subjects performed 4 trials of every object move-

ment with the unmodified prosthesis, the prosthesis with the neuromimetic tactile feedback, and the

prosthesis with deactivated sensors. For the Slip Prevention task, one amputee subject performed

each weight addition trial 4 times. The bilateral amputee subject did not participate in this grasping

task.

3.5 Results

The results from the grasping tasks are separated by able-bodied and amputee subjects. The data col-

lected from the two different grasping tasks are separated in order to evaluate the two neuromimetic

algorithms independently. All error bars in the following plots represent the standard error of the

mean and a paired t-test is used for analyzing the statistical significance of the able-bodied subject

results. A statistical analysis was not performed for the amputee subjects’ results because of the

small sample size, which was also the case in [107].

3.5.1 Compliant Grasping

For both subject types, the average number of broken items, as a percentage of the total number of

items moved, is shown in Fig. 3.11. An object is considered broken if its elastic limit is exceeded

and it undergoes plastic deformation during the grasp [137]. In general, the unmodified prosthesis

broke the most number of items, and the number of broken objects decreases significantly with

the use of compliant fingertip sensors and feedback. Fig. 3.12 shows the normalized time for
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completing a trial based on the target object. To allow comparison across the subjects of a group,

the time to complete a trial for an object was normalized against the completion time of using the

unmodified prosthesis for that same object.

Able-bodied subjects

The number of broken objects (Fig. 3.11A) dropped from 44%, 32%, 2%, and 4% while using the

unmodified prosthesis to 16%, 10%, 0%, and 2% while using the prosthesis with deactivated sensors

for the foam pieces, crackers, cups, and eggs, respectively, for able-bodied subjects. The failure rate

for the foam and crackers decreased further to 10% and 8% while there was no change for the cups

and eggs with the Compliant Grasping algorithm. There is a statistical significance (p < 0.05)

between the results from the unmodified prosthesis and those from the neuromimetic closed-loop

tactile feedback. There is a statistical significance observed between results from the deactivated

sensors and those with the tactile feedback for the foam (p = 0.01) and crackers (p = 0.04) but not

for the other two items.

Using the unmodified prosthesis resulted in the longest trial completion times for the able-bodied

subjects. The normalized completion time changed from 0.89, 0.82, 0.85, and 0.73 with the deac-

tivated sensors to 0.78, 0.67, 0.82, and 0.72 while using the neuromimetic touch feedback for the

foam, crackers, cups, and eggs, respectively (Fig. 3.12A). There is a statistically significant differ-

ence (p < 0.05) between results from using the prosthesis and the Compliant Grasping algorithm.

This is also true for the results from the deactivated sensors and the tactile feedback for the foam

and crackers but not for the cups (p = 0.19) or the eggs (p = 0.72).
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Figure 3.11: The average number of broken objects during the Compliant Grasping tests for the (A) able-bodied and (B)
amputee subjects. c©2016 IEEE.

Amputee subjects

The number of broken objects decreased from 40%, 36%, and 4% while using a prosthesis to 10%,

10%, and 0% while using a prosthesis with deactivated sensors to grab the foam, crackers, and eggs,

respectively, for the amputee subjects (Fig. 3.11B). Utilizing the tactile feedback with the Compliant

Grasping algorithm further decreased the broken foam to 7% while the number of broken crackers

and eggs stayed the same. No cups were broken by the amputees on any trial.

The normalized completion times while using the prosthesis with the deactivated sensors are

0.95, 0.82, 1.09, and 1.34 for the foam, crackers, cups, and eggs, respectively. These times are

reduced to 0.90, 0.84, 0.94, and 1.06 while using active touch feedback control, as seen in Fig.

3.12B.

3.5.2 Slip prevention

The average distance slipped by the cylinder during the small (1 N) or large (3.8 N) weight addition

for the Slip Prevention grasping task was measured and is shown in Fig. 3.13. All instances of slip

were less than 1 s in duration. Fig. 3.14 shows the failed trials, which are defined as the cylinder

slipping entirely from the grasp of the prosthesis during weight addition.
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Figure 3.12: The normalized time to complete a Compliant Grasping tests for the (A) able-bodied and (B) amputee
subjects. Trial completion times are normalized using the average time to complete a task for a particular item using the
unmodified prosthesis. Both plots show a decrease in the time required to complete item movements while using tactile
feedback as an input for the control algorithm, with the exception of the eggs for the amputee subjects. c©2016 IEEE.

Able-bodied subjects

The average distance slipped while using a prosthesis is 8.3 mm and 25.5 mm for the small (1 N)

and large (3.8 N) weight additions, respectively. These values are reduced to 1.2 mm and 6.1 mm

while using deactivated sensors on the prosthesis and further reduced to 0.8 mm and 3.8 mm while

using the Slip Prevention algorithm (Fig. 3.13A). 9% of the trials resulted in complete slip (i.e.

failure) while using the prosthesis during small weight increments and 38% for the large weight

increment. Both of these failure rates reduced to 3% with the presence of the deactivated sensors

and were reduced even further to 0% with the neuromimetic algorithm to prevent slip (Fig. 3.14).

There is a statistically significant result (p < 0.05) between all trials with the unmodified prosthesis

and those utilizing the Slip Prevention algorithm; however, this is not the case when comparing the

results from the prosthesis with deactivated sensors and Slip Prevention. The resulting p values for

this comparison (deactivated sensors vs Slip Prevention) from the slip distance data for the small

and large weight increments are 0.24 and 0.19, respectively.
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Figure 3.13: The average distance the grasped cylinder slipped during the Slip Prevention tests for the (A) able-bodied
and (B) amputee subjects. c©2016 IEEE.
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Figure 3.14: The number of times, as a percentage of the total number of trials, the grasped cylinder fell from the
prosthesis during the Slip Prevention tests for the able-bodied subjects. There were no failed trials during experiments
with the amputee subject.

Amputee subject

While using the unmodified prosthesis, small and large weight additions resulted in an average

slip distance of 1.5 mm and 1.8 mm, respectively, for the amputee subject. The presence of the

deactivated sensors reduced the slip distance to 1.0 mm and 0.9 mm for the small and large weight

additions, respectively, while using the neuromimetic Slip Prevention resulted in distances of 0.3

mm and 0.5 mm for the same weight increments (Fig. 3.13B). There were no instances of failed

trials during this task.
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3.6 Discussion

This system is the first to incorporate active neuromimetic touch feedback algorithms on a prosthetic

hand. Using event-based spiking activity from force sensors on the fingertips of the prosthesis,

results from the Compliant Grasping and Slip Prevention algorithms suggest the benefit of using

such an event-based approach for closed-loop control of a prosthetic hand.

3.6.1 Compliant Grasping

In general, the Compliant Grasping control strategy appears to benefit the user by reducing the

number of broken objects during grasping. From Fig. 3.11, it is clear that the lack of tactile feedback

makes it difficult to grab delicate objects without breaking them, which has been seen in other

studies as well [112, 115, 120], while the presence of the neuromimetic tactile feedback system

reduces the likelihood of objects breaking. Interestingly, the deactivated sensors also reduced the

number of broken items compared to the unmodified prosthesis, but to a lesser degree. This is likely

caused by the compliant nature of the sensor surface, thus helping distribute any grasping loads over

a larger surface area and in turn reducing the pressure applied to an object during grasping.

Able-bodied subjects

The reduction of broken objects when using the deactivated fingertip sensors (Fig. 3.11A) high-

lights the effect of the compliant sensor surfaces on the grasping performance of the prosthesis;

however, the presence of the active neuromimetic tactile feedback showed even better performance,

specifically for the more delicate objects. Similarly with the normalized completion time, the Com-

pliant Grasping algorithm has the best performance (Fig. 3.12A). This enhanced performance can
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be attributed to the RA-like event-based responses for determining the onset of object contact. The

knowledge of initial contact allows the tactile feedback system to effectively reduce the prosthesis

grasping force through EMG modulation, which is a function of the SA1-like sensor response as

described in 3.3.2.

The likelihood of breaking delicate objects during prosthesis grasping was reduced by using a

force derivative feedback in [115] as well as visual force feedback in [120]; however, this neu-

romimetic tactile feedback approach results in higher success rates for grasping delicate objects.

Amputee subjects

Similarly, there is a reduction in failure rates when handling the objects with the deactivated sensors

on the prosthesis and a further reduction with the neuromimetic algorithm (Fig. 3.11B). It is inter-

esting to note that the cup was never broken by an amputee subject nor were there any failures with

the closed-loop tactile feedback for the eggs. One possible reason for this is that the amputee sub-

jects are much more experienced using their devices and are able to control it with more precision

than a naive user, thus they are more capable of handling objects that require slightly higher force

to break (F > 8 N); however, the presence of the neuromimetic tactile feedback was still beneficial

to improve grasping of objects, specifically those that are very delicate (i.e F ≤ 2 N to break).

There are slight decreases in completion time for all manipulation tasks, except for with the

egg, while using the Compliant Grasping feedback strategy (Fig. 3.12B). One amputee subject

claimed that he was so comfortable operating his prosthesis in an unmodified state, without any

cosmesis or covering, on a daily basis that adding the fingertip sensors caused observable changes

in how he used the device, particularly in how quickly he would pick up objects. As a result,
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the active neuromimetic tactile feedback still provides the added benefit of reducing the likelihood

of breaking objects but may not have a profound effect on the time to complete a grasp as many

experienced prosthesis users are already proficient regarding the time required to grab and move an

object. While this may be the case in general, we still observe reduced completion times for the

three most delicate objects with the presence of the active tactile feedback.

3.6.2 Slip prevention

During the Slip Prevention task, the spiking neuromimetic feedback allowed the system to notice-

ably reduce the amount of slip during weight addition to the grasped object (Fig. 3.13). Although

the sensors do not isolate the changes in tangential loading during slip, a negative spike in R(t)

indicates an instance of object slip and leads to a hand reaction to stop the object from falling (Fig.

3.7), not unlike the healthy reflex pathway. This Slip Prevention method relies solely on the RA-like

sensor signal to monitor and correct for rapid changes in the grip force caused by a slipping object.

This is similar to actual human behavior where adjustments in grip forced are caused by changes

in the vertical load of the grasped object [132]. Interestingly, it has been shown that the grip force

adjustment is proportional to the magnitude of the vertical load perturbation but is not related to the

preexisting grip force [132]. By drawing parallels with biology, our neuromimetic Slip Prevention

tactile feedback algorithm has demonstrated ability to reduce object slip during grasping with a

prosthesis.

Previous studies have shown the ability to prevent object slip [7, 131]. A series of experiments

that tested ability of a user to produce EMG signals to stop a simulated slip showed mean user

response times greater than 1.5 s with a success rate not exceeding 30% [131]. Although the ex-
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perimental conditions differ, the neuromimetic feedback system showed greater ability in reducing

slip failure rates suggesting the importance of prompt reaction times. One prosthesis experiment

of 20 slip trials resulted in only 1 failure [7]. It should be noted that these experiments were per-

formed without human subjects and with a limited range of detectable forces. Although the Slip

Prevention algorithm didn’t result in any slip failures, one possible area of investigation would be

the performance of the system over a much larger range of slip conditions, such as slip speed.

Able-bodied subjects

There is a significant reduction in the distance slipped by the grasped object while using a prosthesis

with the deactivated sensors; however, there is a further reduction with the Slip Prevention feedback

control (Fig. 3.5.2). The compliant nature of the sensors appears to have the a major impact on

preventing slip. This is likely due to the increased surface area and friction introduced by the

compliant material of the sensor itself; however, the closed-loop Slip Prevention algorithm is still

beneficial, although not significantly so (p > 0.05), in that it is able to further reduce the amount

of object slip by monitoring the R(t) sensor signal for instances of grip force perturbations. More

importantly, the active touch feedback successfully prevented any instant of major or complete

object slip (Fig. 3.14).

Amputee subject

There is an obvious decrease in the slip distance when the deactivated sensors or on the prosthetic

hand, again likely due to their larger coefficient of friction than the plastic prosthesis phalanges, and

a further decrease when using the Slip Prevention feedback (Fig. 3.13B). Because of the relatively

small sample size, any statistical backing of these results is unclear; however, these results follow a
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similar trend to those seen with the able-bodied subjects. The overall small magnitude of the slipped

distance as well as the lack of any slip failures can be attributed to the amputee’s natural desire

to ”over grasp” the cylinder. When asked about his grasping tendencies, the unilateral amputee

indicated that it is common for him to naturally use a larger grip force than necessary, especially

with a sturdy object such as the cylinder used in this experiment, to overcompensate for the lack

of feedback that is used to prevent object slip. This being the case, small amounts of slip were

still observed and were reduced when using the event-based neuromimetic algorithm for tactile

feedback. This suggests that despite an amputee’s best efforts to properly grasp an object there are

still instances of accidental object slip, which could be mitigated with the addition of a biologically

inspired neuromimetic Slip Prevention system.

3.6.3 Active touch sensing

The tactile feedback sent to the prosthesis controller directly influences the behavior of the limb in

order to better complete the current task. Whether handling delicate objects (Compliant Grasping)

or trying to keep grasped objects steady (Slip Prevention), the sensory information from the finger-

tips plays a key role in the decisions made by the controller. The primary goal being that the control

of the prosthesis is updated to whatever manner best suits the current task. This aspect of the system

is analogous to the natural behavior in healthy grasping in which rapid and reliable cues are used to

control our behavior during such a task [122].

This neuromimetic tactile feedback system attempts to use active touch sensing to further im-

prove how a prosthetic limb operates by drawing parallels to healthy biological systems, specifically

our ability to reliably and comfortably manipulate and grab objects.
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3.6.4 General considerations

Careful consideration must be made before making any comparisons between able-bodied and am-

putee subjects as the two groups are inherently different, but there are a few interesting aspects to

note. One is the reduction in time to complete the Compliant Grasping task. Able-bodied subjects

show larger improvements with the addition of the automatic event-based tactile feedback algo-

rithm; however this can likely be attributed to the fact that they are naive prosthesis users and have

a larger room for improvement compared to experienced prosthesis users. Experienced prosthesis

users are more likely to be efficient in terms of their ability to use the unmodified prosthesis, as dis-

cussed in 3.6.1. Amputee subjects are typically more comfortable with operating a prosthesis and so

any changes to the device they are already comfortable using could result in reduced performance

as the modifications are unfamiliar. Despite this possibility, the active touch feedback was still able

to improve prosthesis grasping.

Another aspect between the two groups is the large difference in the object slip distance. The

distance slipped during able-bodied trials tends to be an order of magnitude higher than for the

amputee subject. This is likely due to the higher grasping force of the amputee, as mentioned in

3.6.2. This could also be attributed to the able-bodied subjects being naive users who are unfamiliar

with efficient prosthesis grasping techniques. In fact, data from the SA1-like sensor response, S(t),

shows that the grasping force for these trials was indeed higher for the amputee subject than it was

for the able-bodied subjects. In addition, this could potentially be attributed to the different torques

produced at the distal end of the prosthesis with the addition of weight. Because the brace worn by

the able-bodied subjects extends further than the user’s arm, a torque is produced by the terminal

device, the prosthesis, and any added weight, which creates an upward force on the arm of the
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subject. This could potentially cause the user to quickly stabilize his or her arm with an opposing

force, which would effectively move the prosthesis upward and could allow for additional slip of

the grasped object.

The physical presence of the fingertip sensors improves the prosthesis grasping functionality.

The compliant nature of the sensors’ surface provides increased surface area during grasping while

also increasing the friction between the prosthesis and the target object. A similar effect was found

in [6] where a majority of prosthesis grasping improvements were found to be linked with the

compliant nature of the sensors used in the tactile feedback control. This fact is not surprising

as it has been shown that the compliant nature and mechanical deformation of human finger pads

work in tandem with the mechanoreceptors in the human skin and are used to enhance human

grasping [138–140].

Studies have shown the benefit of vibrotactile feedback to a user for preventing object slip [112,

131]. However, there is a delay with this type of feedback before a user’s reaction. Given the short

time scale of this particular application (< 1s), it is necessary for direct, closed-loop feedback to the

prosthesis controller in order for reaction quick enough to prevent object slip or damage. There is a

possible benefit of combining our neuromimetic feedback to the prosthesis controller with feedback

to the user; however, it will likely require that the feedback to the prosthesis controller trigger the

primary response due to the time delay of feedback to the user before a reaction.

Grasping and the sense of touch is an extremely complicated biological system that is only a

portion of the even more complicated neuromuscular system. Our active neuromimetic tactile feed-

back system by no means attempts to model all the neurological aspects of tactile feedback during

grasping, instead our method focuses on using two key elements to convey grasping information –
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RA and SA1 mechanoreceptor responses. Using this as a model, we can extract meaningful infor-

mation regarding the onset of object contact and release to create an event-based detection system

for improving prosthesis grasping.

Subjective evaluation

Both amputee subjects were interviewed after the experiments to provide feedback on the proposed

method. One subject noted that there was no significant perceived difference in their ability to pick

up or move objects between the various experiments. This subject did indicate that the physical

presence of the sensors felt awkward in the sense that it changed the thickness of the fingertips

and was different than what this subject is used to. This subject indicated that a feedback system

like this could be useful if it was seamlessly integrated with the prosthetic system without affecting

the user’s normal operation of the device. The biggest drawback for this subject was the added

thickness of the fingertips due to the presence of the sensors. The subject did agree though that the

presence of the compliant tactile sensors offered a benefit for reducing broken objects. Likewise,

the other subject describe a sensation of being able to “feel” the presence of the compliant sensors

and their ability to reduce the number of broken objects during grasping. This subject indicated that

although no feedback was given to the user, the compliant nature of the sensors and the feedback to

the prosthesis appeared to make it easier while grabbing delicate objects.

3.7 Conclusion

Our novel approach uses RA and SA1-like sensor responses to create a neuromimetic event-based

tactile feedback system, which is shown to offer improvements in grasping over a traditional open

52



CHAPTER 3. CLOSED-LOOP TACTILE FEEDBACK

loop prosthesis system. The primary goal of this investigation is to provide tactile feedback to a

prosthetic hand by drawing inspiration from nature. In doing so, we have successfully shown the

added benefit of implementing neuromimetic tactile feedback algorithms, Compliant Grasping and

Slip Prevention, for not only enhancing ability of prosthesis users to pick up and manipulate delicate

objects but to also reduce accidental slip in objects that are being perturbed by changes in weight.

This neuromimetic approach offers a new insight into the improvements that can be made towards

prosthesis functionality by using natural human neurological function as a platform.
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4 | Grip Force Modulation Using Neuromorphic Tactile

Sensing

This chapter is made up of content, with permissions and minor modifications, from [25].

Reprinted, with permission, from the Myoelectric Controls Symposium and the Institute of Biomed-

ical Engineering at the University of New Brunswick:

L. Osborn, H. Nguyen, R. Kaliki, and N. Thakor, “Prosthesis grip force modulation using
neuromorphic tactile sensing,” in Myoelectric Controls Symposium (MEC), 2017, pp. 188–
191

This article can be found at https://tinyurl.com/y9274qs7 or at http://www.unb.ca/research/institutes/

biomedical/mec/_resources/docs/Past%20MEC%20Proceeding/MEC17FullProceedings.pdf

4.1 Overview

In this chapter, we use tactile signals to improve prosthesis grasping. The difference from the last

chapter is that here we look at how using a neuromorphic representation of touch can be incorpo-

rated into a prosthesis. This is the first time a neuromorphic tactile signal is used used for real-time

control. The lack of tactile feedback is not a new problem for prosthesis users, but how tactile

information is handled can have a significant impact on the performance of the system. As pros-
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thetic limbs become more advanced, there has been a push towards developing systems that are

biologically inspired to more closely mimic how the healthy human system operates. Tactile infor-

mation is represented by slowly adapting (SA) and rapidly adapting (RA) mechanoreceptors in the

skin. In this work we utilize a leaky integrate and fire neuron model with spike rate adaption for

representing tactile information in a prosthetic hand. The model is tuned to exhibit realistic firing

rates corresponding to the grip force measured by sensors on the fingertips of the prosthesis. We

investigate the use of the simulated neuron spike rate in an EMG gain modulating function to limit

the amount of grip force applied by a prosthetic hand during grasping of a delicate object. We com-

pare this method with the use of the grip force as an input to the EMG gain modulating function as

well as to grasping with no tactile feedback. Results show a reduction in the percentage of broken

objects during grasping from 27.5% with no feedback to 14% with grip force feedback and 14.5%

when using the neuromorphic spiking of the LIF neuron. This demonstrates the feasibility of us-

ing a neuromorphic representation of tactile information for improving prosthesis functionality in

real-time.

4.2 Introduction

The sense of touch offers a multitude of functionality such as exploring intricate objects, performing

complex finger movements, or even providing comfort to loved ones. The seemingly unparalleled

performance of tactile sensation gives rise to our instinctive behavior to reach out and explore new

objects or surroundings with our hands. Our sense of touch helps provide information on texture,

shape, weight, and temperature, which we rely on for understanding objects [141, 142]. Together

with the visual system, the tactile information we process through our peripheral nervous system
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helps us paint a more complete picture of our surroundings [77].

One problem faced by people with upper limb loss is the lack of tactile information in most

commercial prosthetic limbs available today [143]. Although recent developments in myoelectric

(EMG) prosthesis control have shown improvements in pattern recognition control strategies [31,

67, 107], a major component of creating fully functioning upper limb prostheses is tactile feedback.

This has led to progress in novel closed-loop tactile feedback control algorithms [16, 116, 144],

sensory feedback via peripheral nerve stimulation [2, 91, 92, 98], and even the social aspect of

touch for prostheses [145].

As technology moves towards more human-like prosthetic arms it is necessary to develop faster,

more efficient, and more natural ways of processing tactile information to be used for sensory stim-

ulation. Early work with sensory feedback of tactile information used force sensor information to

drive peripheral nerve stimulation where increased grip force translated to increased stimulation fre-

quency, which was used for object discrimination [91] and grip force modulation [2]. More recently,

an Izhikevich neuron stimulation model was implemented using signals from a tactile sensing pros-

thetic finger for texture discrimination [98, 146]. In an effort to provide more biologically inspired

responses to tactile information during prosthesis grasping, recent work has also shown functional-

ity improvements using event-based triggers to respond to contact and slip during grasping [16].

There is a trend towards developing neuromorphic devices and models to mimic the natural

behavior of biological systems to improve efficiency and performance over traditional methods.

Recent examples include the vestibular system [130], eye saccades [128], cortical neurons [123],

visual information processing [125], touch [147], and other sensory systems [148]. For the pur-

pose of tactile feedback in upper limb prostheses a neuromorphic approach includes modeling of
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the slowly adapting (SA) and rapidly adapting (RA) mechanoreceptors found in our skin. The goal

being that this approach will offer more efficient transmission of relevant tactile information, sim-

ilar to a healthy peripheral nervous system, to the prosthesis controller as well as for driving nerve

stimulation for sensory feedback. Recent efforts towards improving tactile feedback systems specif-

ically for prostheses using a more biologically inspired approach include novel synthetic skin de-

signs [30], the previously mentioned neuron modeling [98], and event-based signal processing [16].

Previous work using models to simulate tactile afferent patterns have investigated implementation

of the models with little emphasis on real-time functionality [149–152]. In this work we investigate

the ability of a prosthesis controller to functionally interpret a neuromorphic model of tactile infor-

mation using a leaky integrate-and-fire neuron with spike rate adaption to estimate grip force and

prevent breaking a delicate object during a prosthesis grasping task.

4.3 Model & Methods

One particular model that is commonly used to simulate the behavior of SA and RA mechanore-

ceptors is the leaky integrate and fire (LIF) neuron model [149–153]. In its basic form, a neuron is

modeled as a leaky integrator of the input current I(t)

τm
dv

dt
= vr − v(t) +RI(t) (4.1)

where v(t) represents the membrane potential at time t, and τm is the membrane time constant. R is

the membrane resistance. This is a simple RC circuit where the leakage is due to the resistor and the

integration of I(t) is from the capacitor in parallel. When the membrane potential reaches a spiking

threshold, vth, it is reset instantaneously to a lower value, vr.
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For this work we implemented an LIF neuron model with spike rate adaption, which introduces

a hyperpolarizing current that makes the neuron less likely to fire once it has previously fired. This

adapted model is used to create the neuromorphic response and represent a more realistic neuron

spiking behavior. The model can be written as

τm
dv

dt
= vr − v(t) +RI(t)− g(t) (v(t)− Ek) (4.2)

where the refractory conductance of the neuron is given by g(t) and Ek is the reversal potential for

the spike rate adaption. The change of the conductance is given as

τg
dg

dt
= −g(t) (4.3)

where τg is the conductance refractory period. The conductance is incremented by ∆g after each

spike. A more detailed and complete discussion of this model and its extensions can be found

in [153].

To create a neuromorphic tactile feedback system, we use the output of force sensors as the input

stimulus, I(t), to the model. The model is tuned so that the maximum firing rate is 100 Hz, which

occurs when the grip force of the prosthesis is 20 N. This model represents a SA type neuron due to

its sustained response to a given input. The neuromorphic tactile feedback method presented here

differs from our previous work in that it uses more realistic, continuous neuron model dynamics

to simulation spiking behavior. The neuron firing rate of the mechanoreceptor model is used to

determine grip force, which is then used to prevent accidental damage to delicate objects during

grasping. Our previous work utilized event-based spikes to trigger the onset, offset, and changes in
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force but used the raw sensor signal for determining grip force [16].

The sensors are placed on the thumb, index, and middle fingertips of a bebionic3 prosthetic hand

(Steeper, Leeds, UK) (Fig. 4.1A). The sensors are force sensitive resistors made up of stretchable

textiles. The sensors are cuffs designed to fit over the phalanges of a prosthetic hand. The cuff

contains conductive textiles (LessEMF, Latham, USA), which are used to sandwich a piezoresistive

layer (Eeonyx, Pinole, USA). A 3mm silicone rubber layer (Dragon Skin 10, Smooth-On, Ma-

cungie, USA) is on the outer surface of the cuff to provide realistic fingertip compliance to the cuff

(Fig. 4.1B. These sensors have been previously developed and used for measuring grip force on a

prosthetic hand [16, 136]. Each fingertip cuff has 3 sensing elements. A custom control board, with

an ARM Cortex-M processor, developed by Infinite Biomedical Technologies (Baltimore, USA) is

used to interface with the prosthesis and read in the fingertip force sensor signals. The grip force

is found by summing the output of the sensing elements. Electromyography (EMG) electrodes (In-

finite Biomedical Technologies, Baltimore, USA) are used to record motor neuron activity in the

forearm from the prosthesis user to control the hand. The neuromorphic model is implemented using

MATLAB (MathWorks, Natick, USA). The sensor signals are relayed via bluetooth communication

to MATLAB from the prosthesis controller. The sensor signals are sampled and sent to MATLAB

at 200 Hz while the EMG electrodes are sampled at 1 kHz. The system diagram is shown in Fig.

4.2.

An EMG gain modulating function that uses tactile information is implemented on the prosthesis

controller to limit the amount of grip force applied during grasping. This exponential decaying

function, the Compliant Grasping algorithm, was presented and described in detail in [16]. We

adapted the algorithm for this work to limit the maximum grip force to 10 N before forcing the
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Figure 4.1: (A) The fingertip cuff sensors are placed on the thumb, index, and middle fingers of the bebionic3 prosthesis.
Each sensor cuff contains three sensing elements, whose values are recorded by the prosthesis controller. (B) The cuff is
made up of conductive and piezoresistive textiles as well as silicone rubber.
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Figure 4.2: The system diagram shows the flow of information and tactile signal processing for an upper limb prosthesis.
The prosthesis grip force serves as the input to the neuromorphic model. The prosthesis controller processes both EMG
and tactile signals, which allows for efficient modulation of the information being sent to the prosthesis as feedback. In
this work, the feedback to the prosthesis is a modulated EMG gain that is dependent on the spike rate of the neuromorphic
model.
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EMG signal to zero. EMG modulation was only applied to the electrode signal that closed the

prosthesis. Two algorithm conditions were investigated in this work. The first uses the measured

grip force as the input to the EMG modulating function, which is similar to the approach in [16].

The second method uses the output of the neuromorphic model and the neuron firing rate as the

input to the EMG modulating function. The goal here is to investigate the ability of a prosthesis

to utilize neuromorphic input as a way to successfully modulate a user’s EMG signal to improve

grasping of delicate objects.

4.4 Experiments & Results

To evaluate the neuromorphic tactile feedback system the prosthetic hand was mounted on a stand

and controlled by the user’s forearm EMG signals. Three male subjects participated in this experi-

ment, a bi-lateral upper limb amputee and two able-bodied individuals. The participants controlled

the prosthesis to grab, hold, and release a delicate object presented by the experimenter. The exper-

iment was approved by the Johns Hopkins Medicine Institutional Review Board. The goal was to

not break the object, a cracker (m = 1.8 ± 0.11 g, force to break > 8 N), during grasping. Each

user was allowed to practice with the system for up to 10 minutes before starting the experiment.

Three different conditions were tested: 1) no tactile feedback, 2) grip force (GF) tactile feedback

and 3) neuromorphic spike rate (SR) tactile feedback. Each trial consisted of 10 presentations of the

delicate object, and the number of broken objects was recorded. Up to 10 trials of each condition

were performed in a random order. Results from all participants are similar and were combined to

provide a larger data set. As described in the previous section, both of the tactile feedback con-

ditions reduced the amplitude of the EMG signal to close the prosthesis, effectively limiting the
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hand’s ability to exert a large grip force, similar to what has been described in [16] and [6].

The neuromorphic response to the tactile signal during grasping is shown in Fig. 4.3. This figure

shows a representative grasp, hold, and release for a single trial from the experiment. The spike rate

of the neuron is found using a 60 ms sliding window and is used in the EMG gain modulation

algorithm for limiting the amount of grip force applied by the prosthesis. The results from the

prosthesis grasping task are shown in Fig. 4.4. The number of broken objects are recorded and

the average percentage of broken objects for each testing condition are shown in Fig. 4.4. With

no tactile feedback, 27.5% of the objects broke during grasping. Using the total grip force as an

input to the EMG gain modulation function, 14% of the grasped objects broke whereas 14.5% of the

objects broke when using the neuromorphic spiking behavior from the neuron model as the input

for EMG gain modulation. The error bars in Fig. 4.4 represent the standard error of the mean.

4.5 Discussion

The LIF neuron model with spike rate adaption performs as expected by producing biologically

relevant signals with realistic dynamics as shown by Fig. 4.3. The ability to represent tactile in-

formation using a neuromorphic approach will help further prosthesis technology by allowing for

transmission of larger amounts of data in a more efficient manner, similar to how the human body

acquires and processes information. The spike rate adaption component of the traditional LIF model

provides more realistic neuron behavior by adjusting the neuron conductance with sustained stim-

ulation. This adaption is seen in the prosthesis implementation by the decreasing firing rate during

the sustained grip force in Fig. 4.3.

The neuromorphic approach to processing tactile information shows improved performance over
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Figure 4.3: The grip force and corresponding neuromorphic spiking response during an actual prosthesis grasping task are
shown by the top two curves, respectively. Spikes are counted when the neuron potential crosses the threshold, vth. The
neuron spike rate and the modulate EMG gain are shown by the bottom two curves, respectively. For the neuromorphic
tactile feedback, the spike rate is used as the input to the EMG gain modulation algorithm. This data is taken from a
single grasping task and is representative of the data set.
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Figure 4.4: Results from the prosthesis grasping task show improvements while using tactile feedback. The use of grip
force or neuromorphic spike rate show improvements over the case of no tactile feedback. The neuromorphic approach
shows similar improvements as the more traditional method of using grip force as a feedback input.
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no tactile feedback. With no form of tactile feedback, the prosthesis grasping task resulted in 27.5%

of the objects being broken during the experiment. Including grip force information as part of an

EMG modulating strategy drastically improves this number by reducing it to 14%, which is similar

to results seen in [16] and [6]. The average percentage of broken objects is 14.5% while using only

the firing rate of the LIF neuron with spike rate adaption for modulating the EMG gain. This is a

significant finding in that it demonstrates the ability of the prosthesis hardware to efficiently process

the spiking response and transform it into EMG gain modulation. Additional user testing under

more scenarios is necessary to better understand the system’s performance. The results presented

here have major implications for future prosthetic limbs incorporating sensory feedback to the user.

Providing realistic neuron activity to the prosthesis will help streamline the information flow from

sensors back into the nervous system of the user.

4.6 Conclusion

The goal of this work is to demonstrate the feasibility of a neuromorphic tactile feedback system

for use in a prosthetic arm. The results from the prosthesis grasping task suggest the ability to use a

purely neuromorphic representations of a tactile signal for improving grasping of delicate objects.

This is one of the first implementations of a neuron model to represent tactile information for real-

time processing by a prosthetic limb. The highlight of this work is the use of a neuromorphic tactile

feedback system based on a LIF neuron model with spike rate adaption for real-time functional im-

provements in a prosthesis. This will play an important role for future prosthetic technology as limbs

become more sophisticated and attempt to mimic the human body in both utility and performance.
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This chapter is made up of content, with permissions and minor modifications, from [26].

c©2017 IEEE. Reprinted, with permission, from:

L. Osborn, M. Fifer, C. Moran, J. Betthauser, R. Armiger, R. Kaliki, and N. Thakor, “Tar-
geted transcutaneous electrical nerve stimulation for phantom limb sensory feedback,” in
IEEE Biomedical Circuits and Systems (BioCAS), 2017, pp. 1–4. [doi]

5.1 Overview

In this chapter, we investigate the use of noninvasive, targeted transcutaneous electrical nerve stimu-

lation (TENS) of peripheral nerves to provide sensory feedback to two amputees, one with targeted

sensory reinnervation (TSR) and one without TSR. In the previous chapters we discussed the role

of local tactile feedback (i.e. to the prosthesis) in improving grasping function. A major step in

developing a closed-loop prosthesis is providing the sense of touch back to the amputee user. We

investigated the effect of targeted nerve stimulation amplitude, pulse width, and frequency on stimu-

lation perception. We discovered that both subjects were able to reliably detect stimulation patterns

with pulses less than 1 ms. We utilized the psychophysical results to produce a subject specific stim-

ulation pattern using a leaky integrate and fire (LIF) neuron model from force sensors on a prosthetic

hand during a grasping task. For the first time, we show that TENS is able to provide graded sensory
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Figure 5.1: Schematic of targeted transcutaneous electrical nerve stimulation on the residual limb of an amputee for sen-
sory feedback to the phantom limb. Multiple peripheral nerve sites can be stimulated on an amputee to elicit activation of
specific regions of the phantom hand. Sensor outputs from a prosthetic hand can be mapped to specific nerve stimulation
sites and a neuromorphic tactile signal used to drive stimulation for closed-loop sensory feedback for amputees. c©2017
IEEE.

feedback at multiple sites in both TSR and non-TSR amputees while using behavioral results to tune

a neuromorphic stimulation pattern driven by a force sensor output from a prosthetic hand.

5.2 Introduction

An overarching goal for upper limb prosthetic technology is a system with both forward motor con-

trol and sensory feedback through the use of nerve stimulation to elicit sensations in the missing

hand of the user (Fig. 5.1). Touch sensation plays a vital role in our ability to explore texture,

manipulate objects, or even use tools. The sensations we perceive from cutaneous afferents allow

us to understand and infer seemingly complex details of an object such as shape, weight, or tem-

perature [142]. Two major issues resulting from upper limb amputation are the loss of both motor

control signals and sensory information. Significant developments with myoelectric (EMG) pros-

thesis control, specifically pattern recognition strategies, have shown promise in restoring intuitive

hand movements to amputees [27, 67, 73]. There has been a great deal of recent progress in sensor

development [30, 136] and local closed-loop tactile feedback strategies for improving prosthesis

grasping [16, 25, 116], and even sensory feedback through direct nerve stimulation [92, 98, 100].

66



CHAPTER 5. SENSORY FEEDBACK

In addition to advances in prosthesis hardware and control methods, novel surgical methods have

emerged, including targeted motor and sensory reinnervation [51, 69, 95]. In targeted reinnervation

surgery, amputated efferent or afferent peripheral nerves that once innervated muscles or skin in the

missing limb are rerouted to muscle or skin in the residual limb [51]. The muscle with the rein-

nervated peripheral nerves produces EMG signals that correspond to the original motor commands

of the missing limb [51]. Targeted muscle reinnervation allows for more intuitive and higher di-

mensional motor control [51]; targeted sensory reinnervation can enable more intuitive noninvasive

sensory feedback as cutaneous interactions with the reinnervated sites are perceived to localize to

the missing limb [69]. In a previously reported case study, transcutaneous electrical nerve stimula-

tion (TENS) of a targeted reinnervation site was used to activate regions of an amputee’s phantom

hand [69]. In a recent advancement of the targeted sensory reinnervation (TSR) surgery, individ-

ual nerve fascicles of the median and ulnar nerves were routed to regions of an amputee’s residual

limb away from motor regions to create more distinction and separation between activated sensory

regions of the phantom hand [95]. In this work we attempt to understand the sensory perception

created by using noninvasive TENS of the median and ulnar nerves in the residual limb of two

transhumeral amputees. We investigate the use of TENS as a viable method for sensory feedback

in 1) an amputee with TSR surgery and 2) an amputee with no TSR surgery through sensory map-

ping and psychophysics to determine stimulation thresholds. Finally, we build upon our previous

work [25] to create a subject specific neuromorphic stimulation pattern, driven by the output from

force sensors on a prosthetic hand, using a leaky and integrate fire (LIF) neuron model.
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Table 5.1: Subject characteristics. c©2017 IEEE.

Subject A1 A2
Gender Female Male
Age 43 29
Amputation Side Right Left
Amputation Level Transhumeral Transhumeral
Amputation Type TSR No TSR
Time Since Amputation 1.5 yr 5 yr

5.3 Methods & Experiments

Two transhumeral amputee subjects participated in this study. One subject (A1) had undergone

targeted sensory and muscle reinnervation surgery 1.5 years prior to the study and the other subject

(A2) was amputated (5 years prior) without any targeted reinnervation. In both cases, amputation

was a result of severe sepsis. Both users have operated myoelectric prostheses but neither had

undergone electrical stimulation for sensory feedback. Characteristics of each subject are shown in

Table 5.1. To understand the mapping between peripheral nerves in the residual limb and activation

in the phantom hand of each subject, we used an Ag-AgCl probe with a 2 mm tip to electrically

stimulate regions of the residual limb. The anterior region, which was the target of the TSR surgery,

of the residual limb was scanned with the stimulating probe for subject A1 and both anterior and

posterior sides of subject A2’s residual limb were scanned. An outline of a hand was used for each

subject to indicate which regions were activated during electrical stimulation. Figure 5.2 shows the

stimulation sites and activation regions in the phantom hand for subject A1 and Fig. 5.3 shows

the mapping for subject A2. For both subjects, the median and ulnar nerves were targeted for

stimulation. In general, the subjects reported sensations of tingling and occasional pressure in the

activated regions on the phantom hand.
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Residual Limb

Figure 5.2: Phantom hand activation mapping for stimulation of the median and ulnar nerve areas for subject A1. Targeted
reinnervation of median and ulnar nerves to the anterior part of the residual limb provides distinct mapping to various
parts of the phantom hand. c©2017 IEEE.
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Figure 5.3: Phantom hand activation mapping for stimulation of identified median and ulnar nerve areas for subject
A2. Although targeted reinnervation was not performed on this subject at the time of amputation, natural reinnervation
occurred in the residual limb but with less order than in the case of subject A1. c©2017 IEEE.
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5.3.1 Perception Experiments

To better understand how noninvasive peripheral nerve stimulation can be utilized for sensory feed-

back in prosthetic limbs we performed psychophysical experiments to determine detection thresh-

olds by varying pulse width and frequency of the stimulation pattern. In this study, a monophasic,

single channel, isolated constant current stimulator (DS3, Digitimer, England) was used. A 5 mm

disposable Ag-AgCl electrode was placed on the skin over a region corresponding to a specific ac-

tivation area of the phantom hand. For subject A1 the middle finger (median nerve) of the phantom

hand was stimulated and the pinky finger (ulnar nerve) was stimulated for subject A2. These regions

were chosen because they caused very distinct and comfortable activation of the phantom hand for

the subjects. Unless otherwise noted, an electrical stimulation amplitude of 1.0 mA was used for all

experiments.

To understand the sensory perception of the nerve stimulation we performed two experiments. 1)

Stimulation detection to determine the minimum levels of detectable stimulation for the targeted ac-

tivation sites and 2) discrete vs continuous frequency detection to determine the levels of stimulation

that result in the sensation of a continuous perception in the targeted activation sites. The subject

was seated in front of a computer monitor that displayed a visual cue when stimulation was on. For

each experiment, the targeted nerve site was stimulated for 2 s. For the first experiment the subject

verbally indicated if he/she felt the stimulation. The stimulation frequency and amplitude were held

constant while the pulse width was modulated. For the second experiment the subject verbally indi-

cated if he/she perceived the stimulation as being discrete or continuous. The stimulation amplitude

and pulse width were held constant while the frequency was modulated. Every stimulation pattern

was randomized and presented at least 5 times for each experiment. Psychometric functions were
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fit to the data using a sigmoid link function:

1

1 + e−(x−α)/β
(5.1)

where α is the detection threshold and β is the discrimination sensitivity. Both parameters were

found using the curve fitting toolbox in MATLAB (MathWorks, USA).

5.3.2 Neuromorphic Sensor Model

As a demonstration, we implemented a leaky integrate and fire neuron model on customized pros-

thesis hardware (Infinite Biomedical Technologies, USA) to create a subject specific neuromorphic

spiking output from previously developed force sensors on a bebionic3 prosthetic hand (Steeper,

UK) [136]. Subject A2 performed a grasping task with the prosthetic hand where he picked up, held,

and released an object. The prosthesis was controlled using subject A2’s EMG signals. The pulse

width and frequency of the neuromorphic output was based on the stimulation detection thresholds

for subject A2. In this demonstration, the neuromorphic tactile signal was used as feedback to the

prosthesis controller but not the subject to demonstrate feasibility. The neuromorphic model is given

by

τm
dv

dt
= vr − v(t) +RI(t)− g(t) (v(t)− Ek) (5.2)

where I(t) is the model input current from the prosthesis grip force, v(t) represents the neuron’s

membrane potential at time t, and τm is the membrane time constant. R is the membrane resistance.

When the neuron potential reaches a spiking threshold, vth, it is reset instantaneously to a lower

value, vr. The refractory conductance of the neuron is given by g(t) and Ek is the reversal potential

for the model’s spike rate adaption. The use of this model is discussed in more detail in our previous
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work [25]. The pulse width and maximum frequency of the neuromorphic tactile signal is tuned to

subject A2’s stimulation perceptions. The prosthesis grip force is mapped to frequency because

subject A2 reported that he perceived increase in stimulation intensity with increasing frequency.

For more details on this model and its parameters see [25]. All experiments were approved by the

Johns Hopkins Medicine Institutional Review Boards and the subjects provided informed consent

before participating, and all data was collected and analyzed using MATLAB.

5.4 Results

The results from the stimulation detection experiment for both subjects are shown in Fig. 5.4. The

detection threshold is defined as the pulse width where the probability of feeling the stimulation is

0.5. Subject A1 has a detection threshold of 2.1 ms and 4.6 ms for stimulation with an amplitude

of 1.0 mA and frequency of 20 Hz and 2 Hz, respectively. Subject A2 has a detection threshold of

0.78 ms and 0.94 ms for a stimulation frequency of 20 Hz and 2 Hz, respectively. Figure 5.5 shows

the shift in detection threshold for subject A1 when the stimulation amplitude is increased from

1.0 mA to 1.2 mA. The increased stimulation amplitude causes a decrease (leftward shift) in the

detection threshold. The results from the second experiment, with a corresponding neuromorphic

tactile response, are shown in Fig. 5.6. The frequency of the stimulation is modulated while the

pulse width is held constant at 5 ms, which is well above the stimulation detection threshold for

both subjects. Subject A1 has a threshold for perceiving a stimulation as continuous at 9.7 Hz while

the threshold for subject A2 is 21 Hz. The neuromorphic tactile signal from the prosthesis grasping

task is shown in Fig. 5.7. Based on the psychophysical results for subject A2, each spike from the

neuromorphic tactile sensing output has a pulse width of 1 ms and the maximum spiking frequency
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Figure 5.4: Stimulation detection for subjects A1 (left) and A2 (right). Multiple stimulation pulse widths (pw) and
frequencies were used for each subject. From the fitted psychometric functions, the detection threshold for subject A1 is
2.1 ms and 4.6 ms for a stimulation frequency of 2 Hz and 20 Hz, respectively. The detection threshold for subject A2 is
0.78 ms and 0.94 ms for a stimulation frequency of 2 Hz and 20 Hz, respectively. The coefficient of determination, R2,
is > 0.91 for every psychometric function fit. c©2017 IEEE.

is mapped to 20 Hz, which corresponds to a grip force of 20 N.

5.5 Discussion

This work presents a unique look at how noninvasive TENS can be used to provide sensory feed-

back to both TSR and non-TSR transhumeral amputees. Targeted TENS provides distinct sensory

activation in the phantom limb (Figs. 5.2 and 5.3) for both subjects. The TSR subject (A1) seemed

to have more localized regions of phantom hand activation compared to the non-TSR subject (A2).

This is likely due to the intentional placement of peripheral nerve fascicles in the anterior portion

of subject A1’s residual limb. For subject A2, median and ulnar nerve sites naturally reinnervated

the skin but without any external guidance, causing less structure or ordering of the nerve sites.

However, this does not mean that a non-TSR amputee is not a good candidate for targeted TENS

for sensory feedback.

The minimum level of stimulation needed for reliable detection shown in Fig. 5.4 offers valu-

able insight to designing a fully closed-loop system. The frequency of the stimulation seems to

73



CHAPTER 5. SENSORY FEEDBACK

0 2.5 5

Pulse Width (ms)

0

0.5

1

P
ro

b
a

b
il

it
y

 o
f 

D
e

te
c

ti
o

n

Frequency = 2 Hz

Stimulation Detection

0 2.5 5

Pulse Width (ms)

0

0.5

1

P
ro

b
a

b
il

it
y

 o
f 

D
e

te
c

ti
o

n

Frequency = 20 Hz

Subject A1:

Detection 

threshold shift

Detection 

threshold shift

1 mA

1.2 mA

Stim Amplitude

Figure 5.5: Detection threshold shift due to varying stimulation amplitude for subject A1 at a frequency of 2 Hz (left) and
20 Hz (right). Slight increase in stimulation amplitude from 1 mA to 1.2 mA for subject A1 causes a leftward shift in the
detection threshold. The higher amplitude lowers the detection threshold to 0.56 ms for both 2 Hz and 20 Hz stimulation.
Every psychometric function has an R2 > 0.91. c©2017 IEEE.

Frequency: Discrete vs Continuous

0 25 50

Frequency (Hz)

0

0.5

1

P
ro

b
a

b
il

it
y

 "
C

o
n

ti
n

u
o

u
s

"

A1

A2

Subject

-0.05

0

N
e

u
ro

n
 P

o
te

n
ti

a
l 

(m
V

)

-0.05

0

Time (s)

0 0.5 1

40 Hz

5 Hz

20 Hz
Continuous detection

threshold

f = [9.7, 21] Hz

-0.05

0
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influence the detection threshold if the stimulation amplitude is low enough. Results in Fig. 5.5

show that both psychometric functions shift leftward (reduces the detection threshold) to 0.56 ms

with slightly increased amplitude. For subject A2 (Fig. 5.4) it appears that the amplitude used

was high enough for the detection thresholds to converge, a phenomenon seen for subject A1 after

the stimulation amplitude was increased. Another important value is the threshold for perceiving a

stimulation pattern as a discrete or continuous activation (Fig. 5.6). This is crucial for noninvasive
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Figure 5.7: Neuromorphic tactile signal during the prosthesis grasping task. The LIF neuron model produces spikes,
using stimulation and frequency detection thresholds for subject A2 to determine the pulse width (1 ms) and frequency
range (0 - 20 Hz). This spiking output form the prosthesis sensors can then be used as feedback on the residual limb to
create the closed-loop prosthesis. c©2017 IEEE.

electrical stimulation due to the low-pass filtering effects of skin and soft tissue on the residual limb.

This threshold is 9.7 Hz and 21 Hz for subjects A1 (TSR) and A2, respectively. This threshold can

be influenced by a variety of factors such as electrode placement, depth of nerve site in the skin,

or skin conductance. The neuromorphic tactile response that would correspond to the psychome-

tric function is also shown in Fig. 5.6. The psychometric function shows how the neuromorphic

response from the prosthesis would be perceived by the user. The neurmorphic sensor model com-

bined with prosthesis hardware gives subject specific stimulation patterns during object grasping to

enable more advanced feedback (Fig. 5.7).

5.6 Conclusion

We showed how results from TENS on amputees can be utilized to tune a real-time neuromorphic

output based on the grip force of a prosthetic hand. By understanding the detection thresholds for

subject A2, we successfully implemented the LIF neuron model on prosthesis hardware to create a

spiking output that is specific for the user (Fig. 5.7), which in this case is defined by the minimum
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stimulation pulse width (1 ms) and frequency range needed for discrete stimulation pulse detection

(0 - 20 Hz). Our goal is to further understand how noninvasive methods can be used for providing

sensory feedback and how we can combine this with existing prosthesis sensors and hardware to

create a fully closed-loop prosthetic system, as shown in Fig. 5.1.

76



6 | Multilayered e-Dermis for Perceiving Touch and Pain

This chapter is made up of content from [9].

c©2018 AAAS. Reprinted with permission from AAAS:

L. E. Osborn, A. Dragomir, J. L. Betthauser, C. L. Hunt, H. H. Nguyen, R. R. Kaliki, and N. V.
Thakor, “Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain,” Sci-
ence Robotics, vol. 3, no. 19, p. eaat3818, 2018. [doi]

Supplementary material for this article can be found at http://robotics.sciencemag.org/content/suppl/

2018/06/18/3.19.eaat3818.DC1

6.1 Overview

In this chapter, we utilize our findings from previous chapters for providing sensory feedback and

expand it to include sensations of touch and pain. The human body is a template for many state-of-

the-art prosthetic devices and sensors. Perceptions of touch and pain are fundamental components

of our daily lives that convey valuable information about our environment while also providing

an element of protection from damage to our bodies. Advances in prosthesis designs and control

mechanisms can aid an amputee’s ability to regain lost function but often lack meaningful tactile

feedback or perception. Through transcutaneous electrical nerve stimulation (TENS) with an am-

putee, we discovered and quantified stimulation parameters to elicit innocuous (non-painful) and
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noxious (painful) tactile perceptions in the phantom hand. Electroencephalography (EEG) activ-

ity in somatosensory regions confirms phantom hand activation during stimulation. We invented a

multilayered electronic dermis (e-dermis) with properties based on the behavior of mechanorecep-

tors and nociceptors to provide neuromorphic tactile information to an amputee. Our biologically

inspired e-dermis enables a prosthesis and its user to perceive a continuous spectrum from innocu-

ous to noxious touch through a neuromorphic interface that produces receptor-like spiking neural

activity. In a Pain Detection Task (PDT), we show the ability of the prosthesis and amputee to dif-

ferentiate non-painful or painful tactile stimuli using sensory feedback and a pain reflex feedback

control system. In this work, an amputee can use perceptions of touch and pain to discriminate ob-

ject curvature, including sharpness. This work demonstrates possibilities for creating a more natural

sensation spanning a range of tactile stimuli for prosthetic hands.

Special thanks to Andrei Dragomir for his assistance in analyzing the EEG data in this chap-

ter. There are several supplementary videos for this chapter. Each reference to a video contains a

hyperlink to the actual clip.

6.2 Introduction

One of the primary functions of the somatosensory system is to provide exteroceptive sensations

to help us perceive and react to stimuli from outside of our body [74]. Our sense of touch is a

crucial aspect of the somatosensory system and provides valuable information that enables us to

interact with our surrounding environment. Tactile feedback, in conjunction with proprioception,

allows us to perform many of our daily tasks that rely on the dexterous manipulation of our hands

[154]. Mechanoreceptors and free nerve endings in our skin give us the means to perceive tactile
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sensation [154]. The primary mechanoreceptors in the glabrous skin that convey tactile information

are Meissner corpuscles, Merkel cells, Ruffini endings, and Pacinian corpuscles. The Merkel cells

and Ruffini endings are classified as slowly adapting (SA) and respond to sustained tactile loads.

Meissner and Pacinian corpuscles are rapidly adapting (RA) and respond to the onset and offset of

tactile stimulation [74, 76]. More recently, research has shown the role of fingertips in coding tactile

information [155] and extracting tactile features [78].

A vital component of our tactile perception is the sense of pain. Although often undesired, pain

provides a protection mechanism when we experience a potentially damaging stimulus. In the event

of an injury, increased sensitivity can even render innocuous stimuli as painful [156]. Nociceptors

are dedicated sensory afferents in both glabrous and non-glabrous skin responsible for conducting

tactile stimuli that we perceive as painful [156]. Nociceptors, free nerve endings in the epidermal

layer of the skin act as high threshold mechanoreceptors (HTMRs) and respond to noxious stimuli

through Aβ, Aδ, and C nerve fibers [74], which enables our perception of tactile pain. It was

discovered that Aδ fiber HTMRs respond to both innocuous and noxious mechanical stimuli with

an increase in impulse frequency while experiencing the noxious stimuli [157]. It is also known

that mechanoreceptor activation along with nociceptor activation helps inhibit our perception of

pain, and our discomfort increases when only nociceptors are active [75], which helps explain our

ability to perceive a range of innocuous and noxious sensations. Although novel approaches have

improved prosthesis motor control [73], comprehensive sensory perceptions are not available in

today’s prosthetic hands.

The undoubted importance of our sense of touch, and lack of sensory capabilities in today’s

prostheses, has spurred research on artificial tactile sensors and restoring sensory feedback to those
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with upper limb loss. Novel sensor developments utilize flexible electronics [79, 158, 159], self-

healing [84, 160] and recyclable materials [83], mechanoreceptor-inspired elements [88, 161], and

even optoelectronic strain sensors [81], which will likely impact the future of prosthetic limbs. Local

force feedback to a prosthesis is known to improve grasping [16], but in recent years there has been

a major push towards providing sensory feedback to the prosthesis and the amputee. Groundbreak-

ing results show that implanted peripheral nerve electrodes [2, 3, 91, 100] as well as noninvasive

electrical nerve stimulation methods [26] can successfully elicit sensations of touch in the phantom

hand of amputees.

Recent approaches aim to mimic biological behavior of tactile receptors using advanced skin

dynamics [99] and what are known as neuromorphic [98] models of tactile receptors for sensory

feedback. A neuromorphic system aims to implement components of a neural system, for exam-

ple the representation of touch through spiking activity based on biologically driven models. One

reason for utilizing a neuromorphic approach is to create a biologically relevant representation of

tactile information using actual mechanoreceptor characteristics. Neuromorphic techniques have

been used to convey tactile sensations for differentiating textures using SA-like dynamics for the

stimulation paradigm to an amputee through nerve stimulation [98] and for feedback to a prosthesis

to enhance grip functionality [25]. While important, methods of sensory feedback have been limited

to sensations of pressure [91], proprioception [3], and texture [98] even though our perception of

tactile information culminates in a sophisticated, multifaceted sensation that also includes stretch,

temperature, and pain.

Current forms of tactile feedback fail to address the potentially harmful mechanical stimula-

tions that could result in damage to cutaneous tissue, or, in this context, the prosthesis itself. We
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investigate the idea that a sensation of pain could benefit a prosthesis by introducing a sense of self-

preservation and the ability to automatically release an object when pain is detected. Specifically,

we implement a pain reflex in prosthesis hardware that mimics the functionality of the polysynaptic

pain reflex found in biology [10, 162, 163]. Pain serves multiple purposes in that it allows us to con-

vey useful information about the environment to the amputee user while also preventing damage to

the fingertips or cosmesis, a skin-like covering, of a prosthetic hand. It is worth noting that an ideal

prosthesis would allow the user to maintain complete control and overrule pain reflexes if desired.

However, in this paper we focus on the ability to detect pain through a neuromorphic interface and

initiate an automated pain reflex in the prosthesis.

We postulate that the presence of both innocuous and noxious tactile signals will help in creating

more advanced and realistic prosthetic limbs by providing a more complete representation of tactile

information. We developed a multilayered electronic dermis (e-dermis) and neuromorphic interface

to provide tactile information to enable the perception of touch and pain in an upper limb amputee

and prosthesis. We show closed-loop feedback to a transhumeral amputee through transcutaneous

electrical nerve stimulation (TENS) to elicit either innocuous or painful sensations in the phantom

hand based on the area of activation on a prosthesis (Fig. 6.1). Furthermore, we identify unique

features of peripheral nerve stimulation, specifically pulse width and frequency, that play key roles

in providing both innocuous and noxious tactile feedback. Quantifying the differences in percep-

tion of sensory feedback, specifically innocuous and noxious sensations, adds dimensionality and

breadth to the type and amount of information that can be transmitted to an upper limb amputee,

which aids in object discrimination. Finally, we demonstrate the ability of the prosthesis and the

user to differentiate between safe (innocuous) and painful (noxious) tactile sensations during grasp-
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Figure6.1:Prosthesissystemdiagram.Tactileinformationfromobjectgraspingistransformedintoaneuromorphic
signalthroughtheprosthesiscontroller.Theneuromorphicsignalisusedtotranscutaneouslystimulateperipheralnerves
ofanamputeetoelicitsensoryperceptionsoftouchandpain.ReprintedwithpermissionfromAAAS[9].

ingandappropriatelyreactusingaprosthesisreflex,modeledasapolysynapticwithdrawalreflex,

topreventdamageandfurtherpain.

6.3 Results

6.3.1 Biologicallyinspirede-dermis

Mechanoreceptorsinthehumanbodyareuniquelystructuredwithinthedermisand,inthecase

ofMeissnercorpuscles(RA1)andMerkelcells(SA1),lieclosetotheepidermisboundary[74].

RA1receptorsareoftenfoundinthedermalpapillae,whichlendtotheirabilitytodetectmove-

mentacrosstheskin,andSA1receptorstendtoorganizeatthebaseoftheepidermis.However,

inglabrousskintheHTMRfreenerveendingsextendintotheepidermis(i.e.theoutermostlayer

ofskin)[74]. Weusedthisnaturallayeringoftactilereceptorstoguidethemultilayeredapproach

ofoure-dermis(Fig.6.2A)tocreatesensingelementstocapturesignalsanalogoustothosede-

tectedbymechanoreceptors(dermal)andnociceptors(epidermal)inhealthyglabrousskin(Fig.

6.2B).Thesensorwasdesignedusingapiezoresistive(Eeonyx,Pinole,USA)andconductivefab-
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rics (LessEMF, Latham, USA) to measure applied pressure on the surface of the e-dermis. A 1

mm rubber layer (Dragon Skin 10, Smooth-On, Easton, USA) between the artificial epidermal (top)

and dermal (bottom) sensing elements provides skin-like compliance and distributes loads during

grasping. There are 3 tactile pixels, or taxels, with a combined sensing area of approximately 1.5

cm2 on each fingertip. The sensor layering resulted in variation of the e-dermis output during load-

ing (Fig. 6.2C). The change in resistance in the tactile sensor was greater for the epidermal layer,

enabling higher sensitivity. During grasping of an object, the e-dermis sensing layers, which were

calibrated for a range of 0 – 300 kPa, exhibited differences in behavior. These differences can be

used for extracting additional tactile information such as pressure distribution and object curvature

(Fig. 6.2D-E).

6.3.2 Touch and pain perception

To provide sensory feedback, we used targeted TENS to extensively map and understand the percep-

tion of a transhumeral amputee’s phantom limb during sensory feedback, a method we previously

demonstrated in multiple amputees [26]. Although the participant did not undergo any targeted

muscle or sensory reinnervation during surgery, there was a natural regrowth of peripheral nerves

into the remaining muscles, soft tissue, and skin around the amputation. The median and ulnar

nerves were identified on the amputee’s left residual limb and targeted for noninvasive electrical

stimulation because these nerves innervated relevant areas of the phantom hand. The participant

received more than 25 hours of sensory mapping in addition to over 150 trials of sensory stimula-

tion experiments to quantify the perceptual qualities of the stimulation. Extensive mapping of the

residual limb showed localized activation of the amputee’s phantom hand (Fig. 6.3A).
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Figure6.2:Multilayerede-dermisdesignandcharacterization.(A)Themultilayerede-dermisismadeupofconductive
andpiezoresistivetextilesencasedinrubber.Adermallayeroftwopiezoresistivesensingelementsareseparatedfromthe
epidermallayer,whichhasonepiezoresistivesensingelement,witha1mmlayerofsiliconerubber.Thee-dermiswas
fabricatedtofitoverthefingertipsofaprosthetichand.(B)Thenaturallayeringofmechanorecptorsinhealthyglabrous
skinmakesuseofbothrapidly(RA)andslowlyadapting(SA)receptorstoencodethecomplexpropertiesoftouch.Also
presentintheskinarefreenerveendings(nociceptors)thatareprimarilyresponsibleforconveyingthesensationofpain
inthefingertips.(C)Theprosthesiswithe-dermisfingertipsensorsgraspsanobject.(D)Theepidermallayerofthe
multilayerede-dermisdesignismoresensitiveandhasalargerchangeinresistancecomparedtothedermallayer.(E)
Differencesinsensinglayeroutputsarecapturedduringobjectgraspingandcanbeusedforaddingdimensionalitytothe
tactilesignal.ReprintedwithpermissionfromAAAS[9].
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The amputee identified multiple unique regions of activation in his phantom hand from the elec-

trical stimulation. The participant did not report any sensory activation, other than the physical

presence of the probe, of his residual limb at the stimulation sites. He indicated that the domi-

nating perceived sensation during stimulation occurred in his phantom hand, which is supported

by our previous work [26]. Cutaneous receptors on the residual limb respond to physical stimuli

whereas the electrical stimulation activates the underlying peripheral nerves to activate the phantom

hand. Psychophysical experiments showed the amputee’s perception of changes in stimulation pulse

width and frequency on his median and ulnar nerves (Fig. 6.3B-C). In general, the stimulation was

perceived primarily as pressure with some sensations of electrical tingling (paresthesia) (Fig. 6.3D).

Sensory feedback of noxious tactile stimuli was delivered using TENS to an amputee and the

perception quantified. The results show that changes in both stimulation frequency and pulse width

influence the perception of painful tactile sensations in the phantom hand (Fig. 6.3E). The relative

discomfort of the tactile sensation was reported by the user on a modified comfort scale ranging

from -1 (pleasant) to 10 (very intense, disabling pain that dominates the senses) (Table 6.1). In this

experiment, the highest perceived pain was rated as a 3, which corresponded to uncomfortable but

tolerable pain. The most painful sensations were perceived at relatively low frequencies between

10 and 20 Hz. Higher frequency stimulation tends towards more pleasant tactile sensation, which

is contrary to what might be expected when increasing stimulation frequency [164]. In addition,

very low frequencies generally resulted in innocuous activation of the phantom hand whereas fre-

quency that are closer to the discrete detection boundary (15 – 30 Hz) resulted in the most noxious

sensations in the activated region. We used electroencephalography (EEG) signals to localize and

obtain an affirmation of the stimulus associated pain perception. The stimulation caused activation
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Figure6.3:Sensoryfeedbackandperception.(A)Medianandulnarnervesitesontheamputee’sresiduallimbandthe
correspondingregionsofactivationinthephantomhandduetoTENS.(B)Psychophysicalexperimentsquantifythe
perceptionofthenervestimulationincludingdetectionand(C)discretefrequencydiscriminationthresholds.Inboth
casesthestimulationamplitudewasheldat1.4mA.(D)Theperceptionofthenervestimulationwaslargelyatactile
pressureontheactivatedsitesofthephantomhandalthoughsensationsofelectricaltinglingalsooccured.(E)The
quantificationofpainfromnervestimulationshowsthatthemostnoxioussensationisperceivedathigherstimulation
pulsewidthswithfrequenciesinthe10-20Hzrange.(F)Contralateralsomatosensorycortexactivationduringnerve
stimulationshowsrelevantcorticalrepresentationofsensoryperceptionintheamputeeparticipant(movieS1).Reprinted
withpermissionfromAAAS[9].

incontralateralsomatosensoryregionsoftheamputee’sbrain,whichcorrespondedtohislefthand

(Fig.6.3F)[165].EEGactivationduringstimulationissignificantlyhigher(p<0.05)thanbaseline

activity,confirmingtheperceivedphantomhandactivationexperiencedbytheuser(Fig.6.4,movie

S1).

6.3.3 Neuromorphictransduction

Asmentionedpreviously,aneuromorphicsystemattemptstomimicthebehaviorfoundinthener-

voussystem.Basedontheresultsfromthesensorymappingoftheparticipant,theneuromorphic

representationofthetactilesignalwasdevelopedtoenablethesensationofbothtouchandpain.

Toenabledirectsensoryfeedbacktoanamputeethroughperipheralnervestimulation,thee-dermis

signalwastransformedfromapressuresignalintoabiologicallyrelevantsignalusinganeuromor-
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Table6.1:Scaledcomfortresponse.ThetableshowsthescaleusedbytheamputeesubjectduringTENStoquantify
theamountofpainordiscomfortassociatedwithstimulationpatterns.Anoptionforpleasantorenjoyablesensation(-1)
wasincludedbecausesomestimulationpatternsevokethisperception.Theresponsesincludenopain(0)allthewayup
toveryintensepain(10).Thehighestresponsefromtheamputeesubjectwas4,whichwasrecordedonlyforthemost
intensestimulationthatelicitedapainfulperception.Thescaleisamodifiedversionofastandardpainscaleusedin
clinicalenvironmentstoquantifychronicoracutepaininpatients.

Group Rating Description

Pleasant -1 Pleasantorenjoyable

Neutral 0 Nopain

Minor
1 Verylightbarelynoticeablepain,likeabiteoritch
2 Minorpain,likelightlypinchingskin
3 Uncomfortablebuttolerablepain

Moderate

4 Verynoticeablepain,likeanaccidentalcut
5 Slightlystrong,uncomfortablepain.Youcanadapttoitovertime
6 Strong,deeppain,likeatoothacheorthestingfromabee.It’ssostrongyoucan’tadapttoit
7 Strong,deep,piercingpain,suchasasprainedanklewhenyoustandonitwrong

Severe
8 Strong,deeppiercingpainthatisalmostdominatingyoursenses
9 Strong,deep,piercingpainsostrongitdominatesyoursense
10 Sameas9butpaincompletelydominatesyoursenses,effectivelydisablingyou
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phic model. The aim for the neuromorphic model was to capture elements of our actual neural

system, in this case to represent the neural equivalent of a tactile signal for feedback to an amputee.

To implement the biological activity from tactile receptors, namely the spiking response in the pe-

ripheral nerves due to a tactile event, we utilized the Izhikevich model of spiking neurons [146],

which provides a neuron modeling framework based on known neural dynamics while maintaining

computational efficiency and easily allowing for different neuron behaviors from parameter adjust-

ments. The Izhikevich model has been used in previous work for providing tactile feedback to

an amputee through nerve stimulation [98]. In our work, mechanoreceptor and nociceptor models

produced receptor-specific outputs, in terms of neuron voltage, based on the measured pressure sig-

nal on the prosthesis fingertips. The mechanoreceptor model combined characteristics of SA and

RA receptors through the regular and fast spiking Izhikevich neurons, respectively, to convey more

pleasant tactile feedback to the amputee. The nociceptor model utilized fast spiking Izhikevich

neuron dynamics to mimic behavior of the free nerve endings.

When an object was grasped by the prosthesis, a higher number of active taxels indicated a larger

distribution of the pressure on the fingertip, which was conveyed in the neuromorphic transduction

as an innocuous (i.e. non-painful) tactile sensation. Changes in the tactile signal were captured in

the neuromorphic transduction by changes in stimulation frequency and pulse width to correspond

to the appropriate perceived levels of touch or pain during sensory feedback. Based on the results

from the psychophysical experiments and the quantification of pain, the perception of noxious tactile

feedback was achieved through the nociceptor model (see Materials and Methods, Section 6.5.7).

To demonstrate the neuromorphic representation of a tactile signal, three different objects were

used, each of equal width but varying curvature, to elicit different types of tactile perception in the
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prosthesis during grasping (Fig. 6.5A). The objects follow a power law shape where the radius of

curvature (Rc) was modified using the power law exponent n, which ranges between 0 and 1 and

effectively defines the sharpness of the objects (see Materials and Methods, Section 6.5.9). The

power law exponents used were 1/4, 1/2, and 1 and correspond to Object 1, Object 2, and Object

3, respectively. The response of the fingertip taxels during object loading captured differences in

object curvature based on the relative activation of all sensing elements (Fig. 6.5B-C, movie S2).

As expected, the epidermal layer was the most activated taxel during loading and absorbed the

largest pressure. The sharp edge of Object 3 produced a highly localized pressure source on the

epidermal layer of the e-dermis, which triggered the neuromorphic nociceptor model (see Materials

and Methods, Section 6.5.7) (Fig. 6.5D).

6.3.4 Prosthesis tactile perception and pain reflex

As an extension of the body, a prosthetic hand should exhibit similar behavior and functionality

of a healthy hand. The perception of both innocuous touch and pain are valuable at both the local

(i.e. the prosthetic hand) and the global (i.e. the user) levels. At the local level, a reflex behavior

from the prosthesis to open when pain is detected can help prevent unintended damage to the hand

or cosmesis. It should be noted that in an ideal prosthesis this reflex would be modulated by the

user based on the perceived pain. To demonstrate a local closed-loop pain reflex, a prosthetic hand,

with a multilayered e-dermis on the thumb and index finger, grasped, held, and released one of

the previously described objects (Fig. 6.6A-C). The sensor signals were used as feedback to the

embedded prosthesis controller to enable differentiation of the various objects and determine pain.

We used pressure distribution (Fig. 6.7A), contact rate (Fig. 6.7B), and the number of activated

sensing elements per finger (Fig. 6.7C) as input features in a linear discriminant analysis (LDA)
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Figure6.5:E-dermisandneuromorphictactileresponsefromdifferentobjects.(A)Threedifferentobjects,withequal
widthbutvaryingcurvature,areusedtoelicittactileresponsesfromthemultilayerede-dermis.(B)Thepressureheatmap
fromthefingertipsensoronaprosthetichandduringgraspingofeachobjectand(C)thecorrespondingpressureprofile
foreachofthesensinglayers.(D)Thepressureprofilesareconvertedtotheinputcurrent,I,fortheIzhikevichneuron
modelforsensoryfeedbacktotheamputeeuser(movieS2). Notethehighlylocalizedpressureduringthegrasping
ofObject3andtheresultingnociceptorneuromorphicstimulationpattern,whichisrealizedthroughchangesinboth
stimulationpulsewidthandtheneuromorphicmodelparameters.ReprintedwithpermissionfromAAAS[9].
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Figure 6.6: To demonstrate the ability of the prosthesis to determine safe (innocuous) or unsafe (painful) objects, we
performed the pain detection task (PDT). The objects are (A) Object 1, (B) Object 2, and (C) Object 3, each of which are
defined by their curvature. In the case of a painful object (Object 3), the prosthesis detects the sharp pressure and releases
its grip through its pain reflex (movie S3). Reprinted with permission from AAAS [9].

algorithm for object detection.

In the online Pain Detection Task (PDT), the prosthesis grabs, holds, and releases an object

(movie S3). In this work, the curvature of Object 3 was assumed to be considered painful during

grasping. When pain was detected, a prosthesis pain reflex caused the hand to open, releasing

the object. Results showed the prosthesis’ ability to reliably detect which object is being grasped

(Fig. 6.8A). The prosthesis had a high likelihood of perceiving pain while grasping Object 3 and

a significantly less likelihood of perceiving pain for Objects 2 and 1 (p<0.001) (Fig 6.8B). The

reaction time for the prosthesis to complete a reflex after perceiving pain was recorded and was

similar to reaction times in healthy humans from previously published data [10] (Fig. 6.8C).
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Figure 6.7: Tactile features for prosthesis perception. To determine which object is being touched during grasping, we
implemented LDA to discriminate between the independent classes. As input features into the algorithm, we used (A)
sensor pressure values, (B) the rate of change of the pressure signal, and (C) the number of active sensing elements during
loading. Reprinted with permission from AAAS [9].
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Figure 6.8: Real-time prosthesis pain perception. (A) The LDA classifier’s accuracy across the various conditions and (B)
the percentage of trials where the prosthesis perceived pain during the online PDT. Note the high percentage of detected
pain during the PDT for Object 3. (C) Pain reflex time of the prosthesis, using the rate of change of the pressure signal
to determine object contact and release, compared to previously published data of pain reflex time in healthy adults [10].
Reprinted with permission from AAAS [9].

6.3.5 User tactile perception

With the added ability to perceive both innocuous and noxious tactile sensations in a single stimula-

tion modality, an amputee user can utilize more realistic tactile sensations to discriminate between

objects with a large or small (sharp) radius of curvature. The participant demonstrated his ability to

perceive both innocuous and noxious tactile sensations by performing several discrimination tasks

with a prosthetic hand. The neuromorphic tactile signal was passed from the prosthesis controller

directly to the stimulator to provide sensory feedback to the amputee. The participant could reliably

detect, with perfect accuracy, which of the fingers of the prosthesis were being loaded (Fig. 6.9A).

To demonstrate the ability of the prosthesis and user to perceive differences in object shape through

variation in the comfort levels of sensory feedback, each of the three objects were presented to the
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prosthesis. Sensory feedback to the thumb and index finger regions of the phantom hand enabled

the participant to perceive variations in the object curvatures, which was realized through changes

in perceived comfort of the sensation. The results show an inversely proportional relationship be-

tween the radius of curvature of an object and the perceived discomfort of the tactile feedback (Fig.

6.9B). In addition to being able to perceive variation in sharpness of the objects as conveyed by the

discomfort in the neuromorphic tactile feedback, the participant could reliably differentiate between

the three objects with high accuracy (Fig. 6.9C). Finally, the participant performed the PDT with

his prosthesis (movie S4). The prosthesis pain reflex control was implemented during the grasping

task, which resulted in the prosthesis automatically releasing an object when pain was detected (see

Materials and Methods). During actual amputee use, the prosthesis pain reflex registered over half

of the Object 3 movements as painful, significantly more than for the other objects (p<0.05) (Fig.

6.9D).

Responses from a subjective survey of the perception of the sensory stimulation show that the

amputee felt as if the tactile sensations were coming directly from his phantom hand. In addition,

the participant stated that he could clearly feel the touch of objects on the prosthetic hand and that it

seemed that the objects themselves were the cause of the touch sensations that he was experiencing

during the experiments.

6.4 Discussion

6.4.1 Perceiving touch and pain

Being able to quantify the perception of innocuous and noxious stimuli for tactile feedback in am-

putees is valuable in that it enables the replacement of an extremely valuable piece of sensory in-

93

https://youtu.be/evmwN967UHM


CHAPTER 6. PERCEIVING TOUCH AND PAIN

Object Discrimination

0.93

0.07

0.00

0.07

0.87

0.13

0.00

0.07

0.87

Object 1
Object 2

Object 3

Object 1

Object 2

Object 3

0

1

Object 1
Object 2

Object 3
0

50

100

D
et

ec
te

d 
Pa

in
 (%

)

Prosthesis Pain Re�ex

*p<0.05
*

*

Finger Discrimination

1.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

1.00

None Thumb Pinky Both

None

Thumb

Pinky

Both
0

1

Object 1 Object 2 Object 3
0

2

4

D
is

co
m

fo
rt

Perceived PainA B

C D

***p<0.001

***
***

***

Figure 6.9: Innocuous (mechanoreception) and noxious (nociception) prosthesis sensing and discrimination in an am-
putee. (A) The amputee could discriminate which region of his phantom hand was activated, if at all. (B) Perception of
pain increases with decreasing radius of curvature (i.e. increase in sharpness) for the objects presented to the prosthetic
hand. (C) Discrimination accuracy shows the participant’s ability to reliably identify each object presented to the pros-
thesis based purely on the sensory feedback from the neuromorphic stimulation. (D) Results from the PDT during user
controlled movements, with pain reflex enabled. Reprinted with permission from AAAS [9].

formation: pain. Not only does pain play a role in providing tactile context about the type of object

being manipulated, but it also acts as a mechanism for protecting the body. One could argue that this

protective mechanism is not necessary in a prosthesis because it is merely an external tool or piece

of hardware to an amputee user. We postulate that being able to capture noxious stimuli is actually

more valuable to a prosthesis because it does not possess the same self-healing characteristics found

in healthy human skin, although recent research has shown self-healing materials that could be used

for future prosthetic limbs [85, 160]. To enable an artificial sense of self-preservation, a noxious

tactile signal is useful for the prosthesis to ensure it does not exceed the limits of a cosmetic covering

or the hand itself. As prosthetic limbs become more sophisticated and sensory feedback becomes

more ubiquitous, there will be a need to increase not just the resolution of tactile information but

also the amount of useful information being passed to the user. We have identified how changing
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stimulation pulse width and frequencies enables a spectrum of tactile sensation that captures both

innocuous and noxious perceptions in a single stimulation modality.

Our extensive phantom hand mapping, psychophysics, and EEG results support the use of TENS

as providing relevant sensory information to an amputee. The EEG results are limited in that they

do not provide detailed information on how changes in stimulation patterns are perceived, but they

do show activation in sensory regions of the brain indicating relevant sensations in the amputee.

Furthermore, the results from the user survey showed that sensory feedback helped the amputee

better perceive his phantom hand and that objects being grabbed by the prosthesis were perceived

as being the source of the sensation, which helps support the neuromorphic stimulation as a valid

approach for providing relevant sensory feedback. The results from the PDT showed the ability of

the prosthesis to detect pain and reflex to release the object. Object 3 was overwhelmingly detected

as painful, due to its sharp edge (Fig. 6.8B). The high success rate for detecting and preventing pain

for the benchtop PDT is likely due to the controlled nature of the prosthesis grip. The likelihood of

detecting Object 3 as painful decreased and the chances of pain being detected for the other objects

increased during the PDT with a user controlled prosthesis (Fig. 6.9D); however, pain detection

and reflex were still significantly more likely for Object 3 (p<0.05). This shift in pain detection is

likely due to the amputee’s freedom to pick up the objects with his prosthesis in any way he chose.

The variability in grasping orientation and approach for each trial resulted in more instances where

Object 3 was not perceived as painful by the prosthesis. The ability to handle objects in different

positions and orientations raises an interesting point in that the amount of pain produced is not an

inherent property of an object, rather it is dependent on the way in which it is grasped. A sharp

edge may still be safely manipulated without pain if the pressure on the skin does not exceed the
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threshold for pain. To reliably encode both touch and pain for prostheses, tactile signals should be

analyzed in terms of pressure as opposed to grip force.

The prosthesis pain reflex presented here is autonomous, but one possibility is to use the am-

putee’s electromyography (EMG) signal as an additional input to the reflex model to enable mod-

ulation of the pain sensitivity perceived by the prosthesis. In this work, the pain sensation was not

severe enough to generate a significant EMG reflex signal, so the reflex decision was made by the

prosthesis instead of the user. The time for a user to process sensory feedback and produce a vol-

untary contraction is over 1 s [131], which is why we implemented an autonomous prosthesis pain

reflex to achieve a response time closer to what is found in biology (Fig. 6.8C). Biologically, this

autonomous response is equivalent to a fast spinal reflex compared to the slower cortical response

for producing a voluntary EMG signal for controlling limb movement.

Another major implication of this work is in the quantification of the perceived noxious and in-

nocuous tactile sensations during transcutaneous electrical nerve stimulation of peripheral afferents.

One might assume that an increase in discomfort would be associated with an increase in delivered

charge; however, we found that the most painful sensations during tactile feedback to an amputee

delivered through TENS were primarily dictated by an increase in stimulation pulse width as well

as stimulation frequency. Specifically, frequencies that were near the discrete detection boundary

(15 – 30 Hz) were perceived as more painful than higher frequencies. Changes in stimulation fre-

quency seemed to have the largest influence on the perceptions of touch and pain while pulse width

affected intensity of the sensation (Fig. 6.3E). Furthermore, we demonstrated real-time discrimina-

tion between object curvature based purely on perceived discomfort in tactile feedback, which was

associated with sharpness of the objects by the participant.
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6.4.2 Neuromorphic touch

The ability of the participant to discriminate objects, specifically those that cause pain, is rooted

in the neuromorphic tactile transduction and corresponding nerve stimulation. The psychophys-

ical results illuminate the unique stimulation paradigms necessary to elicit tactile sensations that

correspond to both mechanoreceptors and nociceptors in the phantom hand of an amputee.

More sophisticated neuron models exist and could be used to capture behavior of individual

receptors and transduction [99]; however, the limitation of hardware prevents the stimulation of in-

dividual afferent nerve fibers. The Izhikevich model is simplistic in its dynamics but still follows

basic qualities of integrate-and-fire models with voltage non-linearity for spike generation and ex-

tremely low computational requirements, which allow for the creation of a wide variety of neuron

behaviors [146]. The advantage of the neuromorphic representation of touch in our work is that

we can transform signals from the multilayered e-dermis directly into the appropriate stimulation

paradigm needed to elicit the desired sensory percepts in the amputee participant. Specifically, the

combination of mechanoreceptor and nociceptor outputs enables additional touch dimensionality

while maintaining a single modality of feedback, both in physical location and stimulation type.

This combination allows the user to better differentiate between the objects based on their unique

evoked perceptions for each object (Fig. 6.9B-C).

The limitation of this work is the small study sample. Although this work is a case study with

a single amputee, the extensive psychophysical experiments and stability (Fig. S1 and S2) of the

results over several months show promise that other amputees would experience a similar type of

perception from TENS, a technique we have previously validated for activating relevant phantom
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hand regions in multiple amputees [26]. However, the psychophysics will likely have slight differ-

ences based on age and condition of the amputation. The results are promising in that the stimulation

parameters used to elicit pain or touch followed the same trend in both median and ulnar nerve sites

of the amputee (Fig. 6.3E). A major implication of this work is the idea that both innocuous and

noxious touch can be conveyed using the same stimulation modality. In addition, we showed that it

is not necessarily a large amount of injected charge into the peripheral nerves that elicits a painful

sensation. Rather, a unique combination of stimulation pulse width and frequency at the discrete

detection boundary appears to create the most noxious sensations. Additional amputee participants

who are willing to undergo nerve stimulation, sensory mapping, and psychophysical experiments

to the quantify their perceived pain would be needed to allow us to generalize the clinical signif-

icance to a wider amputee population. Our findings have applications not only in prosthetic limb

technology but for robotic devices in general, especially devices that rely on tactile information or

interactions with external objects. The overarching idea of capturing meaningful tactile information

continues to become a reality as we can now incorporate both innocuous and noxious information

in a single channel of stimulation. Whether it is used for sensory feedback or internal processing in

a robot, the sense of touch and pain together enable a more complete perception of the workspace.

This study illustrates, through demonstration in a prosthesis and amputee participant, the ability

to quantify and utilize tactile information that is represented by a neuromorphic interface as both

mechanoreceptor and nociceptor signals. Through our demonstration of capturing and conveying a

range of tactile signals, prostheses and robots can incorporate more complex components of touch,

namely differentiating innocuous and noxious stimuli, to behave in a more realistic fashion. The

sense of touch provides added benefit during manipulation in prostheses and robots, but the sense
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of pain enhances their capabilities by introducing a novel sense of self preservation and protection.

6.5 Materials and methods

6.5.1 Objectives and study design

Our objectives were to show that 1) a prosthetic hand was capable of perceiving both touch and

pain through a multilayered e-dermis and 2) an amputee was capable of perceiving the sense of

both touch and pain through targeted peripheral nerve stimulation using a neuromorphic stimulation

model.

6.5.2 Participant recruitment

All experiments were approved by the Johns Hopkins Medicine Institutional Review Board. The

amputee participant was recruited from a previous study at Johns Hopkins University in Baltimore,

MD. At the time of the experiments, the participant was a 29-year-old male with a bilateral am-

putation 5 years prior, due to tissue necrosis from septicemia. The participant has a transradial

amputation of the right arm and a transhumeral amputation of the left arm. The left arm was used

for all sensory feedback and controlling the prosthesis in this work. The participant consented to

participate in all the experiments and to have images and recordings taken during the experiments

used for publication and presentations. After 2 months of sensory mapping, the experiments were

performed on average once every 2 weeks over a period of 3 months with follow up sessions after

2, 5, and 8 months. EEG data was collected in one session over a period of 2 hours.
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6.5.3 Sensory feedback

The sensory feedback experiments consisted of TENS of the median and ulnar nerves using monopha-

sic square wave pulses. We performed mapping of the phantom hand using a 1 mm beryllium copper

(BeCu) probe connected to an isolated current stimulator (DS3, Digitimer Ltd., UK). An amplitude

of 0.8 mA and frequency of 2 – 4 Hz were used while mapping the phantom hand. Anatomical and

ink markers were used, along with photographs of the amputee’s limb, to map the areas of the resid-

ual limb to the phantom hand. For all other stimulation experiments, we used a 5 mm disposable

Ag-Ag/Cl electrode. A 64-channel EEG cap with Ag-Ag/Cl electrodes (impedance < 10 kΩ) was

used for the EEG experiment. The participant was seated and stimulation electrodes were placed on

his median and ulnar nerves. Each site was stimulated individually for a period of 2 s followed by a

4 s delay with 25% jitter before the next stimulation. There was a total of 60 stimulation presenta-

tions with varying pulse width (1-20 ms) and frequencies (4 – 45 Hz) with an amplitude of 1.6 mA.

A time window of 450 ms starting at 400 ms after stimulation was used to average EEG activity

across trials and compared to baseline activity using methods similar to those in [166].

6.5.4 Psychophysical experiments

Psychophysical experiments were performed to quantify the perception of TENS on the median,

radial, and ulnar nerves of the amputee. Experiments included sensitivity detection (varying pulse

width at 20 Hz), detection of discrete versus continuous stimulation (varying frequency with pulse

width of 5 ms), and scaled pain discrimination. For the pain discrimination experiment the par-

ticipant used a discomfort scale that ranged from pleasant or enjoyable (-1) to no pain (0) to very

intense pain (10) (Table 6.1). Stimulation current amplitude was held at 2 mA while frequency and
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pulse width were modulated to quantify the effect of signal modulation on perception in the partic-

ipant’s phantom hand. Every electrical stimulation was presented as a 2 s burst with at least 5 s rest

before the next stimulation. Experiments were conducted in blocks up to 5 min with a break up to

10 min between each block. Every stimulation condition was presented up to 10 times and at least

4 times. Psychometric functions were fit using a sigmoid link [26].

6.5.5 E-dermis fabrication

The multilayered e-dermis was constructed from piezoresistive transducing fabric (Eeonyx, USA)

placed between crossing conductive traces (stretch conductive fabric, LessEMF, USA), similar to

the procedure described in previous work [136]. The piezoresistive material is pressure sensitive and

decreases in resistance with increased loading. The intersection of the conductive traces created a

sensing taxel, a tactile element. Human anatomy expresses a lower density of nociceptors, compared

to mechanoreceptors, in the fingertip [167]. So, we designed the epidermal layer as a 1 x 1 sensing

array while the dermal layer was a 2 x 1 array (Fig. 6.2A). The size of the prosthesis fingertip

and the available inputs to the prosthesis controller limited the number of sensing elements to 3 per

finger. The piezoresistive and conductive fabrics were held in place by a fusible tricot fabric with

heat activated adhesive. A 1 mm layer of silicone rubber (Dragon Skin 10, Smooth-On, USA) was

poured between two sensing layers. After the intermediate rubber layer cured, the textile sensors

were wrapped into the fingertip shape and a 2 mm layer of silicone rubber (Dragon Skin 10, Smooth-

On, USA) was poured as an outer protection and compliance layer, which is known to benefit

prosthesis grasping [16]. The e-dermis was placed over the thumb, index, and pinky phalanges of a

prosthetic hand.
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6.5.6 Prosthesis control

A bebionic prosthetic hand (Ottobock, Duderstadt, Germany) was used for the experiments. Pros-

thesis movement was controlled using a custom control board, with an ARM Cortex-M processor,

developed by Infinite Biomedical Technologies (IBT) (Baltimore, USA). The board was used for

interfacing with the prosthesis, reading in the sensor signals, controlling the stimulator, and im-

plementing the neuromorphic model. During the user controlled PDT, the amputee used his own

prosthesis , a bebionic hand with Motion Control wrist and a UtahArm 3+ arm with elbow (Motion

Control Inc, Salt Lake City, USA). The amputee controlled his prosthesis using a linear discrimi-

nant analysis (LDA) algorithm on an IBT control board for EMG pattern recognition. The electrodes

within his socket were bipolar Ag-Ag/Cl EMG electrodes from IBT.

6.5.7 Neuromorphic models

We implemented artificial mechanoreceptor and nociceptor models to emulate natural tactile coding

in the peripheral nerve. We tuned the model to match the known characterization of TENS in the

amputee to elicit the appropriate sensation. Constant current was applied during stimulation and

both pulse width and spiking frequency were modulated by the model. Higher grip force was linked

to increased stimulation pulse width and frequency, which was perceived as increased intensity in

the phantom hand. Innocuous tactile stimuli resulted in shorter pulse widths (1 ms or 5 ms) whereas

the noxious stimuli produced a longer pulse width (20 ms), a major contributor to the perception of

pain through TENS as shown by the results. To create the sensation of pain, we varied the parameters

of the model in real-time based on the output of the e-dermis. We converted the e-dermis output to

neural spikes in real-time by implementing the Izhikevich neuron framework [146] in the embedded
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C++ software on the prosthesis control board. The output of the embedded neuromorphic model

on the control board was used to control the stimulator for sensory feedback. The neuromorphic

mechanoreceptor model was a combination of SA and RA receptors modelled as regular and fast

spiking neurons. The nociceptor model was made up of Aδ neurons, which were modeled as fast

spiking neurons to elicit a painful sensation in the phantom hand. It should be noted that the fast

spiking neuron model was perceived as noxious with an increase in pulse width, which allows us to

use the same Izhikevich neuron for both mechanoreceptors and nociceptors. The e-dermis output

was used as the input current, I , to the artificial neuron model. The evolution of the membrane

potential v and the refractory variable u are described by Eq. 6.1 and 6.2. When the membrane

potential reaches the threshold vth the artificial neuron spikes. The membrane potential was reset to

c and the membrane recovery variable u was increased by a predetermined amount d (Eq. 6.3). The

spiking output was used to directly control the TENS unit for sensory feedback.

dv

dt
= Av2 +Bv + C − u+

I

RCm
(6.1)

du

dt
= a (bv − u) (6.2)

if (v ≥ vth) , then


v ← c

u← u+ d

(6.3)

Because we are not directly stimulating individual afferents in the peripheral nerves we tuned

the model to represent behavior of a population of neurons. The parameters used for the different

103



CHAPTER 6. PERCEIVING TOUCH AND PAIN

receptor types were: A = 0.04/Vs; B = 5/s; C = 140 V/s; Cm = 1 F; R = 1; b = 0.2/s;

c = −65 mV; d = 8 mV/s; vth = 30 mV; and

a =


0.02/s, Regular spiking (RS)

0.01/s, Fast spiking (FS)

R is dimensionless in this model. The fast spiking neurons fire with high frequency with little

adaptation, similar to responses from nociceptors during intense, noxious stimuli [157]. In the

model, fast spiking is represented by a very fast recovery (a). Values for the parameters were taken

from [98] and [146].

We limited the spiking frequency of the neuromorphic model to 40 Hz and 20 Hz for the

mechanoreceptor and nociceptor models, respectively. The transition of the neuromorphic model

from mechanoreceptors to nociceptors relies on the pressure measured at the fingertips of the pros-

thesis, the number of active sensing elements, and the standard deviation of the pressure signal

across the active taxels. The prosthesis fingertip pressure (P ) is used to determine the neuromor-

phic stimulation model for sensory feedback. Highly localized pressure above a threshold β triggers

the FS model whereas the RS model is used in cases of more distributed fingertip pressure. The fol-

lowing pseudocode explains how the stimulation model is chosen, where β = 150 kPa, n is the

number of active taxels, and pw is the stimulation pulse width:
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if (P ≥ β & n < 2) , then
(
nociceptor (Aδ) (FS : pw = 20 ms)

)
else if (P ≥ β & n = 2) , then

(
mechanoreceptor (SA/RA) (FS : pw = 5 ms)

)
else
(
mechanoreceptor (SA/RA) (RS : pw = 1 ms)

)

6.5.8 Prosthesis pain reflex

To mimic biology, we modeled the prosthesis pain withdrawal as a polysynaptic reflex [162, 163]

in the prosthesis hardware. In our model, the prosthesis controller was treated as the spinal cord for

the polysynaptic reflex. The nociceptor signal was the input, I(t), to an integrating interneuron Γ

whose output IΓ(t) was the input to an alpha motor neuron, which triggered the withdrawal reflex

through a prosthesis hand open command after 100 ms of pain. Both neurons can be modelled as

leaky-integrate-and-fire with a synapse from the alpha motor neuron causing the reflex movement

(Eq. 6.4 and 6.5, Fig. 6.10), similar to the EMG signals generated during a nociceptive reflex [168].

Interneuron (Γ) : τm
dvΓ

dt
= E +RI(t)− vΓ(t) (6.4)

Alpha motor neuron (α) : τm
dvα
dt

= E +RIΓ(t)− vα(t) (6.5)

Both neurons had time constant τm = 10 ms, resting potential E = −60 mV, membrane re-

sistance R = 20Ω, and a spiking threshold of vth = −40 mV. The time step was 5 ms and the

nociceptor signal was normalized, enveloped, and scaled by β = 0.2 mV. The prosthesis reflex
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Figure6.10:Prosthesispainreflex.(A)Theprosthesispainreflexarcismodeledasapolysynapticpathwaywithsignal
fromanociceptorsynapsingonaninterneuroninthespinalcord(i.e.theprosthesiscontroller).Theinterneuronsynapses
onanalphamotorneuron,whichcausesthepainwithdrawalreflex.(B)DuringthePainDetectionTask,thenociceptor
signalfromthee-dermisontheprosthesiswasusedastheinputtotheintegratinginterneuronontheprosthesishardware.
Thealphamotorneuron’sinputsignalistheoutputsignalfromtheinterneuron,whichfiresafter∼100msofcontinuous
paindetection.Theprosthesisopensafterthealphamotorneuronfires.

parameterswerechosentotriggerhandwithdrawalafter100msofpaintomimicthepainreflexin

healthyhumans[10].Fingertippressure,therateofcontact,andthenumberofactivesensingele-

mentsoneachfingertipwereusedasfeaturesforanLDAalgorithmtodetectthedifferentobjects.

Object3waslabeledasapainfulobject.Ataxelwasconsideredactiveifitmeasuredapressure

greaterthan10kPa.Thepatternrecognitionalgorithmwastrainedusingsensordatafrom5trials

ofprosthesisgraspingforeachobjectandvalidatedon10differenttrials.

6.5.9 Objectsdesignandfabrication

Wecreated3objectsofequalsizewithvaryingedgecurvatures,definedbytheedgeblendradius,

usingaDimension1200es3Dprinter(Stratasys,USA).Eachobjecthasawidthof5cmbutdiffered

incurvature.Eachobject’scurvaturefollowedapowerlawwheretheleadingedgeoftheprotrusions

varyinblendradiiandrangefromflattosharp.Theradiusofcurvature,Rc,oftheleadingedgecan

bemodifiedbythebodypowerlawexponent,nwhere
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Figure 6.11: Power law object edge radius of curvature. Illustration showing the power law objects and their leading
edge. For the three objects used in the pain detection tasks, the width, W , of the entire object was held constant and the
length of the leading edge, L, was the same for all objects. The height, H, of each object was different to keep W and L
constant across all objects. See [11, 12] for more details.

Rc =
1

|nA(n− 1)|

[
x

2(2−n)
3 + (nA)2 x

2(2n−1)
3

] 2
3

(6.6)

A is the power law constant, which is a function of n, and x is the position along the Cartesian

axis in physical space. The objects for this study were designed to maintain a constant width, w

(Fig. 6.11) to prevent the ability to discriminate between the objects based on overall width. The

three objects used had a power law exponent, n, of 1/4, 1/2, and 1 and were referred to as Object 1,

Object 2, and Object 3, respectively. More details and explanation of power law shaped edges can

be found in [11, 12].

6.5.10 Experimental design

Finger discrimination: The multilayered e-dermis was placed over the thumb and pinky finger of

the prosthesis. Activation of each fingertip sensor corresponded directly to nerve stimulation of

the amputee in the corresponding sites of his phantom hand. The participant was seated, and his

vision was occluded. The experimenter pressed either the prosthetic thumb, pinky, both, or neither

in a random order. Each condition was presented 8 times. The stimulation amplitude was 1.5 mA
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Figure 6.12: Amputee pressure discrimination. Pressure discrimination on the (A) thumb and (B) pinky finger of the
amputee subject’s phantom hand. The subject could detect appropriate levels of pressure, but with lower accuracy in the
case of light touch (<100 kPa) in the thumb.
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Figure 6.13: Average fingertip pressure. The average pressure on the fingertips of a prosthesis, as recorded from the
multilayered e-dermis, during the pressure discrimination experiments with the amputee participant on the (A) thumb
and (B) pinky.

and 1.45 mA for the thumb and pinky sites on the amputee’s residual limb, respectively. Next, the

experimenter pressed the prosthetic thumb or pinky with either a light (< 100 kPa), medium (< 200

kPa), or hard (> 200 kPa) pressure (Fig. 6.12 and 6.13). Each force condition was presented 10

times in a random order for each finger.

Object discrimination: Fingertip sensors were placed on the thumb and index finger of a sta-

tionary bebionic prosthetic hand. The participant was seated, and his vision of the prosthesis was

occluded. A stimulating electrode was placed over the region of his residual limb that corresponded

to his thumb and index fingers on his phantom hand. The experimenter presented one of the 3 ob-

jects on the index finger of the prosthetic hand for several seconds. The participant responded with
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the perceived object as well as the perceived discomfort based on the tactile sensation. Each block

consisted of up to 15 object presentations. The participant performed 3 blocks of this experiment.

Each object was presented randomly within each block, and each object was presented the same

number of times as the other objects. The participant visually inspected the individual objects be-

fore the experiment took place, but he was not given any sample stimulation of what each object

would feel like. This was done to allow the participant to create his own expectation of perception

of what each object should feel like if he were to receive sensory feedback on his phantom hand.

Pain Detection Task: In the benchtop PDT, the prosthesis was mounted on a stand with the

multilayered sensors on the thumb and index finger. The object was placed on a stand and the

prosthesis grabbed the object using a closed precision pinch grip. Each object was presented to the

prosthesis at least 15 times in a random order. For the user controlled PDT, the participant used

his prosthesis to pick up and move one of the three objects. Each object was presented at least 10

times. The instances of prosthesis reflex were recorded. The participant took a survey at the end of

the experiments.

6.5.11 Data collection

Each taxel of the multilayered e-dermis was connected to a voltage divider. Sensor data was col-

lected by the customized prosthesis controller and sent through serial communication with a baud

rate of 115,200 bps to MATLAB (MathWorks, USA) on a PC for further post-processing and plot-

ting. Each sensing element in the e-dermis was sampled at 200 Hz. Responses from the psy-

chophysical experiments were recorded using MATLAB and stored for processing and plotting.

The prosthesis controller communicated with MATLAB through Bluetooth communication with
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a baud rate of 468,000 bps. 64 channel EEG data was recorded at 500 Hz by a SynAmp2 sys-

tem (Neuroscan, UK) and processed in MATLAB using the EEGLab Toolbox (Swartz Center for

Computational Neuroscience, UC San Diego, USA). EEG data was downsampled to 256 Hz and

band-pass filtered between 0.5 to 40 Hz using a 6th order Chebyshev filter. Muscle artifacts were

rejected by the Automatic Artifact Rejection (AAR) blind source separation algorithm using canon-

ical correlation approach. Independent Component Analysis (ICA) was performed for removal of

the eye and remnant muscle artifacts to obtain noise-free EEG data. Results from data collected over

multiple trials of the same experiment were averaged together. Statistical p-values were calculated

using a one-tailed, two-sample t-test. Error bars represent the standard error of the mean, unless

otherwise specified
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7 | Enhancing Phantom Limb Perception and Control

with Sensory Feedback

This chapter is made up of content that is being prepared for submission to a journal.

L. E. Osborn, M. A. Hays, R. Bose, A. Dragomir, Z. Tayeb, C. Hunt, J. Betthauser, G. M. Lé-
vay, A. Bezerianos, and N. V. Thakor, “Sensory feedback enhances phantom limb perception
and prosthesis control,” In Preparation, 2019

7.1 Overview

In the previous chapters we explored the use of tactile feedback to improve prosthesis grasping and

object manipulation. We gave sensations of touch and pain back to a prosthesis user. With the

quantity and quality of sensory feedback rapidly improving, we begin looking at what other benefits

sensory feedback can provide, namely prosthesis control and embodiment due to enhanced percep-

tion of the phantom limb. A major challenge for controlling a prosthetic arm is the disconnection

between the device and the user’s phantom limb. The lack of sensory feedback to the phantom hand

weakens the internal sensorimotor model that drives motion. Here, we show the ability to enhance

an amputee’s phantom limb perception through targeted transcutaneous electrical nerve stimulation

(T2ENS) to improve prosthesis control from myoelectric signals. Transcutaneous nerve stimula-

tion experiments were performed with three amputee subjects to map and understand their phantom
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limb perception. Results show improvements in the amputees’ ability to both perceive and move the

phantom hand. We discovered that enhanced phantom limb perception leads to improved hand and

finger movement decoding performance from myoelectric signals used for control of a prosthetic

hand. In an extended study with one amputee, we also found that long-term sensory mapping and

prosthesis control success rate remains steady over a period of 2 years and 1 year, respectively, but

temporary sensory feedback provides significant improvement in performance. Electroencephalog-

raphy (EEG) shows increased motor-related neural activity in sensiromotor regions as a result of

enhancing phantom limb perception. This work demonstrates the benefit of introducing targeted

nerve stimulation in amputees for strengthening the internal sensorimotor control loop to not only

improve amputee’s perception of the phantom limb but also functional control of a dexterous pros-

thesis.

7.2 Introduction

Sensory information, specifically touch and proprioception, are essential for palpating and explor-

ing objects in our surroundings. Tactile sensation plays a major role in our ability to manipulate

objects [154]. The sensory feedback we receive during object manipulation influences our ability to

control [169] and anticipate [170] grasping forces. In fact, we develop sophisticated internal models

of sensorimotor integration to enable our bodies to move as intended with volitional control [171].

It is through sensory feedback and errors in our sensory predictions that we continue to update and

strengthen our internal sensorimotor models for controlling limb movement [172], indicating the

reliance on sensory information for our ability to control limb movements with precision and re-

peatability. Supplementing or substituting the tactile and proprioceptive senses may also be helpful.
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Recently, researchers showed that auditory feedback can help improve internal models and perfor-

mance in myoelectric control of a virtual prosthesis by able-bodied subjects [173], further indicating

the role of feedback in sensorimotor control loops.

In the case of upper limb amputees, the sensorimotor loop is broken or severely disrupted as

a result of limb loss; however, perception of the phantom limb persists [174]. Researchers have

made profound breakthroughs in recent years by providing naturalistic tactile sensations back to

amputees by stimulating peripheral nerves, both invasively [2, 3, 91, 98, 100] and noninvasively

[4, 9], in the residual limb. Sensory feedback can provide perceptions of pressure [2, 91], enable

discrimination of textures [98], provide proprioceptive perceptions of movement across the surface

of the phantom hand [3], improve object manipulation tasks [92], and improve prosthesis use at

home [175]. Biomimetic stimulation models can enhance sensation naturalness [176] or be used to

provide receptor specific information to enable sensations of pressure or pain [9]. Researchers have

also produced a kinesthetic illusion of phantom hand movement through the use of skin vibration in

several amputees who had undergone targeted muscle reinnervation (TMR) surgery [97].

While significant efforts have enabled sensory feedback in amputees [2–4, 9, 91, 92, 97, 98, 100,

175, 176], there is an unanswered question of the effect of enhancing phantom limb perception on

the internal sensorimotor models for controlling phantom hand movements. More specifically, the

question is how perception of the phantom hand affects motor function and the myoelectric signals

from the residual limb used for prosthesis control. Pattern recognition techniques aim to create a

natural and intuitive control strategy for upper limb amputees through movement decoding from

myoelectric signals in the residual limb [60]. The algorithms behind pattern recognition utilize the

deterministic structure of myoelectric activity during muscle contractions [177] and have shown the
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ability to provide real-time decoding of hand [66] and individual finger movement [37]. Pattern

recognition can be utilized for achieving several complicated grip patterns and performance can

increase with user training due to better separability of the muscle contractions in the residual limb

[67]. More recently, simultaneous and proportional control of multiple degrees of freedom (DOF)

has been achieved through other machine learning methods using electrodes implanted on motor

nerves [3] and direct control using surface electromyography (EMG) electrodes [62]. Similarly,

more advanced decoding algorithms provide enhanced robustness for prosthesis control [14] and

even the ability to derive motor unit action potentials from TMR subjects for proportional control

of a multiple DOFs of a prosthetic hand [73].

Despite improvements in robust and reliable prosthesis control algorithms, we postulate that an

important component of prosthesis control is the ability to perceive and move the phantom hand. A

significant amount of research has gone into understanding phantom limb pain (PLP) and emerging

research showed that this pain can be reduced through sensory feedback in a prosthesis [178], sen-

sory feedback combined with motor control training [179, 180], and even through augmented and

virtual reality prosthesis training [181]. In fact, users with more severe PLP have been shown to

have worse motor control over their phantom hand as measured by cortical activity [182], indicating

the relationship of phantom hand perception and motor control. Neural signals after TMR suggest

that more natural cortical representations of the missing limb can occur in motor cortex as a result

of the surgery [183]; however, more recent results show stable somatosensory neural representation

of the phantom limb even decades after amputation [184]. It is also known that some movement

representations persist in the motor cortex even when an amputee can’t voluntarily produce those

movements with the phantom hand [185]. Interestingly, sensory feedback through electrical stimu-
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lation elicits neural activation of both somatosensory and premotor regions during evoked phantom

limb sensations [186].

In this work, we hypothesize that providing sensory feedback to amputees can enhance phan-

tom limb perception, which in turn improves the ability to move the phantom hand and control a

prosthesis through EMG pattern recognition. The sensorimotor loop is modulated by strengthening

the phantom hand perception through sensory feedback to enable better control of a myoelectric

prosthesis. We demonstrate that 1) sensory feedback improves perception of the phantom hand, 2)

the ability to perceive the phantom hand affects the ability to control phantom hand and prosthesis

movements through myoelectric signals in the residual limb, and 3) electroencephalography (EEG)

neural signals show activation of sensorimotor regions during sensory feedback and phantom limb

activation.

7.3 Results

7.3.1 Sensory feedback enhances phantom hand perception.

Three amputee participants (male, age: 39 ± 10 years) were recruited for this study. The char-

acteristics of each participant are shown in Table 7.1. Two amputee participants (A01 and A02)

underwent elective amputations as a result of nerve injury, and two of the participants (A01 and

A03) have transhumeral amputations. Participant A02 has a transradial amputation. A03 also has a

right arm transradial amputation but only uses a prosthesis on his left arm, which was the side used

for the experiments in this study. Each participant underwent sensory mapping to identify regions of

phantom hand activation on their residual limb. Targeted transcutaneous electrical nerve stimulation

(T2ENS) was used to activate underlying peripheral nerves in the residual limb, a method which has
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Table7.1:Participantcharacteristics.Detailsontheamputeevolunteersandtheirexperience.

Participant Amputation Cause TimeofAmputation Prosthesis Experience

A01 left,transhumeral
brachialplexusinjury
resultinginparalysis
ofthearm

nerveinjuryJan.2018,
electiveamputation
March2018

noprosthesis
nomyoelectriccontrolex-
perience

A02 right,transradial
compartment
syndromeresultingin
paralysisofthearm

nerveinjury2002,
electiveamputationNov.
2017

prosthesis,direct
myoelectriccontrol

1monthofEMGpattern
recognitionexperience

A03
left,transhumeral
right,transradial

septicemiaresulting
frommeningitis

amputationOct.2012
leftarmprosthesis,
patternrecognition
control

A01 A02 A03a b c

Pressure

Buzzing/Vibration

Cold

Electrical/Tingling

Ulnar

Median

Radial

Coverage Region

Sensation Type

d

Sensations Sensations Sensations

Stimulation SitesStimulation SitesStimulation Sites

1yearofEMGpattern
recognitionexperience

Figure7.1:Sensorymappingofamputeesubjects.a,ParticipantA01reportedsensationsofgeneraltactileactivation,
primarilybuzzingorvibration,alongwithsensationsoftemperaturechangesonthepalmarsideofthemiddleandring
fingers.b,ParticipantA02,atransradialamputee,reportedsensationsofpressureintheactivatedregions.Thethumband
indexfinger,alongwithafewspotsontheulnarsideandpalmarsideofthehand,weretheprimaryregionsofactivation.
c,ParticipantA03perceivedsensationsofpressureandoccasionaltinglinginthethumb,pinky,andwristregionsofhis
phantomhand.d,Colormapsforregionsofactivation(top)andsensationtype(bottom).Forallphantomhandsensory
maps,regionsofstrongesttofaintestactivationareindicatedbyagradientofsolidtofadedcolor.

beenusedinpreviousstudies[4,9,26].Tactilesensationswerereportedinthephantomhanddue

tostimulationovervariousregionsoftheresiduallimb.Stimulationoftheidentifiedregionsonthe

residuallimbresultedinperceivedsensationprimarilyinthephantomhand.Eachamputee’sper-

ceptionoftheirphantomlimbisdifferentandelectricalstimulationprovidedactivationofdifferent

regionsoftheirphantomhand(Fig.7.1).Sensationswerereportedprimarilyastactileandincluded

pressure,buzzing,vibration,andinthecaseofsubjectA01,asensationofcoldtemperatureonthe

palmarsideofthemiddleandringfingers(Fig.7.1a).
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7.3.2 Sensory feedback improves EMG.

To understand the effect of sensory feedback on myoelectric activity and phantom hand movements,

EMG signals were recorded before and after sensory nerve stimulation. Because sensory feedback

provides a heightened sense of the phantom hand, we investigated the effect of this enhanced per-

ception on the ability to make dexterous grasps with the phantom hand. A total of nine movements

were presented to the amputee participants (5 hand and 4 wrist movements, Fig. 7.2a). Each move-

ment cue was presented visually to the amputee, who then attempted to mimic the movement with

his phantom hand. Each cue was presented 3 times and in a randomized order. Each amputee per-

formed the hand and wrist movements before receiving any sensory feedback. After the first round

of EMG collection, regions of the phantom hand were activated via T2ENS to provide sensory feed-

back. The sites that provided the most significant coverage of the phantom hand were targeted for

the sensory feedback. The stimulation sites activated regions that covered the thumb, index, palm,

and ulnar sides of the phantom hand for all subjects (Fig. 7.1). The sensory feedback session lasted

between 15 - 30 min and was followed by another round of EMG data collection. The accuracy

of the EMG movement classification is shown in Fig. 7.2b-c. Linear discriminant analysis (LDA),

a standard EMG pattern recognition algorithm [60], was used to classify the movements. Results

indicate at least a 20% relative increase in baseline EMG pattern recognition performance for all

subjects (Fig. 7.2d).

7.3.3 Long term sensory feedback.

To better understand the influence of enhanced sensory perception on EMG pattern recognition

performance, participant A03 took part in an extended study over 1 year. Stimulation sites on
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Figure 7.2: EMG performance of amputee subjects. a, Five hand movements (rest, open, close, tripod, index point) and
four wrist movements (pronation, supination, flexion, extension) were presented, one at a time, to the amputee participant,
who attempted to match the movement with his phantom hand. b, EMG data from the 9 movements classes before and
after sensory feedback. All participants show slight improvements as a result of the sensory feedback. c, Absolute and d,
percent change in performance accuracy for all participants. EMG pattern recognition relative performance increased by
at least 20% from baseline as a result of enhanced phantom limb perception.

his residual limb that resulted in activation of the median, ulnar, and radial nerves were targeted

for sensory feedback. Anatomical markers and pictures after every session were used to maintain

consistency with the sites of stimulation. Perceived activation of the phantom hand remained fairly

consistent over the course of the study (Fig. 7.3). The primary regions of activation were the thumb

and index finger, the pinky and ulnar side of the hand, and the wrist. With every stimulation session,

the participant reported enhanced perception of his phantom hand during sensory feedback.

7.3.4 Long term EMG performance.

In the extended study, we also investigated the effects of sensory feedback on EMG signals due

to pattern matching in real-time. The participant identified different regions of activation that best

corresponded to particular movements of his phantom hand (Fig. 7.4). For instance, activation of the

thumb, index, and pinky were associated with opening, closing, and lateral key grip of his phantom
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Figure7.3:Longtermsensorymapping.a,SensorymappingfromT2ENSoftheulnar,median,andradialnerveswas
performedonparticipantA03overa2yearperiod.Activationmapsofhisphantomhandremainedrelativelystableover
thedurationofthestudywiththeprimaryregionsofsensationbeingonhisthumbandindexfinger,pinky,andwrist.b,
Structuralsimilarity(SSIM)indexofsensorymapsforeachregion(median,ulnar,andradial)comparedacrossdaysand
c,normalizedcoverageareaforeachregionacrossdays.

hand.AsisthecaseforEMGpatternrecognitionexperiments,theparticipantfocusedonmoving

specificfingersofhisphantomhandduringthedifferentmovementclasses.Thecombinationof

sensoryfeedbackintargetedregionsofthephantomhandwithmovementclassesweremadebased

onwhattheamputeeparticipantsawasmostrelevantforhim.Forexample,theindexpointand

precisionclosedhandmovements,theparticipantsaidhefocusedonmovingthethumbandindex

fingersbuthismainfocuswasonclosinghispinkyandringfingers.

Acustomprostheticsocketwithembeddedbipolarelectrodeswasmadefortheparticipantto

ensurestableandconsistentelectrodeplacementduringeachEMGsignalrecordingsession(Fig.

7.5a).ThelongtermexperimentwasbrokenupintothreephasesofbaselineEMGsignalrecording

forpatternrecognitiondecoding.PhaseIwas6weekslongtoestablishabaselineinperformance

beforeadditionalsensoryfeedbackwasprovided.PhaseIIwasa2weekperiodofsensoryfeedback

119



Rest

Open

Close

Key

Radial
Deviation

Tripod

Precision
Open

Index Supinate

Pronate

Extension

Flexion

Precision
Closed

Ulnar
Deviation

ed
a

b

c f

CHAPTER7.PERCEPTIONANDCONTROL

Figure7.4:Sensoryfeedbackwithphantomhandmovements.a,Digitalscanoftheresiduallimbsofparticipant
A03.Theparticipantisabilateralamputeebutonlyhisleftresiduallimb(transhumeral)wasusedforthisexperiment.
Thesubjectassociatedactivationofcertainregionsofhisphantomhandtodifferentgrasppatterns. b,Ahandrest
correspondedtonosensoryfeedbackwhereasactivationinthec,medianandulnarregionsofhisphantomhandwere
mostcloselyassociatedwithopening,closing,andthelateralkeygrasp.d,Activationofthethumbandindexfingerwas
linkedtoprecisionopen,tripod,andradialdeviationofthephantomhand.e,Ulnaractivationwasusedforindexpoint,
ulnardeviation,andprecisionclosedmovementswhilef,sensoryactivationofthewristwasassociatedwithwristflexion,
extension,pronation,andsupination.Therewasatotalof14movementclasses.
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Figure7.5:LongtermEMGperformance.a,Theamputeeparticipantusedacustomprostheticsocketwithembedded
bipolarelectrodestoensureconsistentelectrodeplacementandsecurefitfortheextendedstudy.b,EMGpatternrecogni-
tionperformancewasmeasuredovernearly1year.AninitialsetofbaselinedatawascollectedinPhaseI,followedbya
2weekperiodofsensoryfeedbackthroughT2ENS(PhaseII).PhaseIIIconsistedof4EMGpatternrecognitionsessions
overa36weekperiod.Thesubjectwasexperiencedwithpatternrecognitionandresultsshowafairlyconsistentlevel
ofperformanceovertime,suggestingnoadditionalimprovementsasaresultofcontinuedtraining.c,Thestimulation
phaseshowsimprovementsinEMGmovementdecodingofthe14classesasaresultofenhancedphantomlimbpercep-
tion.EMGsignalrecordingsweretakenforeachmovementclassbefore,during,andaftersensoryfeedback.Movement
decodingaccuracyduringtrialswithsensoryfeedbackwerealwaysgreaterthanbeforestimulationwasapplied,and
persistedafterstimulationinmostcases.

withEMGrecordings.PhaseIIIwasa36weekfollowupsetofsessionstoevaluateanylasting

effectsofthesensoryfeedbackontheinternalsensorimotorloopusedbytheamputeeformoving

hisphantomhand.Therewereatotalof14movementclasses(8handmovementsand6wrist

movements)thattheamputeewastryingtomimicwithhisphantomhand. ThebaselineEMG

patternrecognitiondecodingperformancewas∼39%,whichisnotunexpectedgiventherelatively

highnumberofmovementclasses(Fig.7.5b).TheEMGpatternrecognitionaccuracyremained

fairlystableforthe6weekperiodofPhaseIaswellasthe36weekperiodduringPhaseIII.

Thesensoryfeedbackprovidedtothephantomhandresultedinimprovedmovementdecodingin

everycaseduringthestimulationphase(PhaseII)oftheexperiment(Fig.7.5c).EMGsignals

wererecordedduringeachmovementclassbeforestimulation,duringstimulationofregionsofthe

phantomhand,andagainafterthesensoryfeedback.Thereareclearimprovementsinmovement

predictionsasadirectresultofthesensoryfeedback.
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7.3.5 Sensory feedback increases EEG activity in sensorimotor regions.

EEG signals were recorded to capture the neural activity in sensorimotor regions during sensory

feedback and phantom hand movement (Fig. 7.6a). The alpha band (8 to 12 Hz) is known to be

relevant for motor-related activity [187, 188] and was used to evaluate the influence of sensory feed-

back in phantom hand movements of participant A03. Stimulation of the thumb, pinky, and wrist

regions of the phantom hand were performed during EEG recording and classified (Fig. 7.6b). The

relative alpha power from the EEG was analyzed for phantom hand movement before any sensory

feedback, sensory feedback with no movement, sensory feedback with movement, and phantom

hand movement after sensory feedback (Fig. 7.6c-f). Visual movement cues of either tripod, index

point, or wrist flexion were shown to the participant. These grips were chosen by the participant

based on mapping results from the long term study (Fig. 7.4. Nerve stimulation was targeted to the

median, ulnar, and radial regions of the phantom hand to correspond with the appropriate phantom

hand movement (see Methods). There is higher activation in the central and centro-parietal region

during phantom hand movement in presence of the sensory feedback compared to movement with

no feedback (Fig. 7.6c,e). In the post stimulus condition, the effect of the sensory feedback persists

and similar high activation is observed in the central and the centro-parietal region (Fig. 7.6f). We

also compared the alpha power for different condition in individual electrodes in the central (C3,

C1, Cz, C2 and C4 electrodes) and centro-parietal (CP3, CP1, CPz, CP2, CP4) region as shown in

Fig. 7.6g-h. One-way ANOVA followed by post-hoc analysis was performed for each of the elec-

trodes. Significant increase in the relative alpha power was observed for phantom hand movement

in absence of sensory feedback stimulus (Pre-Stim) compared to the presence of sensory feedback

(Stim-Mov). This difference was also observed in the post stimulus movement (Post-Stim).
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Figure7.6:Neuralactivityinsensorimotorregions.a,Theamputeeparticipantreceivedvisualcuesandperformed
thecorrespondinghandmovements.Insometrials,T2ENSgavesensoryfeedback. b,Classificationofstimulation
sitesbasedonthemeasuredEEGsignal.c-f,Relativealphapowerneuralactivationmapsformovementsbeforeany
sensoryfeedback(Pre-Stim),sensoryfeedbackwithnophantomhandmovements(Stim:NoMovement),movements
withsensoryfeedback(Stim:Movement),andphantomhandmovements(Post-Stim)shortlyafter(<10min)aftertrials
withsensoryfeedback,respectively.g-hRelativealphapowerinthecentralandcentro-parietalelectrodes,respectively.

7.3.6 Sensoryfeedbackimprovesperceivedcontrolofphantomhand.

AusersurveywasgiventoeachparticipantafterthefinalEMGrecordingsession.Thesurvey

wasmeanttogaugeuserperceptionofthephantomhandandsensoryfeedback.Thequestions

weremodeledaftersurveysfromapreviousstudy[92].Resultsfromquestionstargetedspecifically

atquantifyingtheenhancedperceptionandcontrolofthephantomlimbasaresultofsensory

feedbackareshowninFig.7.7a.Ingeneral,participantsfeltthenervestimulationasifsomething

wastouchingthephantomhand.Furthermore,allparticipantsfeltasiftheycouldbetterperceive

andbettercontroltheirphantomhandasaresultofthenervestimulation.Thesurveywasscored

usingaLikertScalewithanswerstoquestionsrangingfrom“Stronglyagree”(+3)to“Strongly

disagree”(-3).IndividualresponsesforallsurveyquestionsareshownforeachparticipantinFig.

7.7c.Resultsvaryacrossparticipantsinseveralquestions,butallparticipantsagreeinbeingableto
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Figure7.7:Sensoryfeedbackimprovesphantomperceptionandcontrolasreportedbyusersurveys.a,Usersurvey
aimedatunderstandingsubjectiveperceptionofsensoryfeedback.Mixedresultsforseveralquestionsacrossparticipants
suggestthevaryingnatureofperceptionduetosensoryfeedback. However,allparticipantsagreedthatheightened
perceptionaswellasimprovedownership(i.e.control)ofthephantomhandwerearesultofsensoryfeedbackthrough
electricalnervestimulation.ParticipantsA02andA03bothtookthesurveytwice,ondifferentdaysaftersensoryfeedback
andprosthesiscontrolexperiments.Theresultswereaveraged.A01tookthesurveyonce.bAverageduserresultsfrom
surveyquestionsspecificallyonphantomhandperceptionasaresultofsensoryfeedback.Forallparticipants,sensory
feedbackenhancedperceptionofthephantomhandwhilealsogivingtheperceptionofbettercontroloverphantomhand
movements.c,Questionsfromtheusersurvey.d,ALikertScalewasusedforallquestionsontheusersurveys.

betterperceiveandcontroltheirphantomhand(Q10andQ12)aswellasdisagreeingwithunnatural

sensationsoccurring(Q5andQ7)asaresultofnervestimulation.Theusersurveyresultssuggest

thatparticipantswereundertheimpressionthattheyhadbettercontroloftheirhandsbecauseof

sensoryfeedback,despitetheirbeingnophysiologicalchanges.
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7.4 Discussion

7.4.1 Sensory feedback improves perception.

Our results showing enhanced perception of the phantom limb from T2ENS supports findings from

various other studies [4, 9, 26]. Typically this enhancement is used to provide tactile sensations, such

as touch, back to the phantom hand. What is interesting in our study here is how this heightened

sense of the phantom limb plays into muscle activity during intended movements. Major regions of

the phantom hand, such as the thumb and index finger, as well as the pinky and ulnar side of the

hand, are activated for every amputee in this study (Fig. 7.1). Various coverage of the palmar and

dorsal sides of the metacarpals (i.e. the palm and back of the hand) was also achieved. Because the

sensations were reported primarily as being pressure or tactile buzzing, each amputee felt as if the

sensations were more or less natural and originating from their phantom hand.

Even over a period of almost 1 year, the sensory perceptions in the phantom hand remained

stable for subject A03 (Fig. 7.3). Despite having had an amputation over 5 years prior to the study,

the sensory nerves in the residual limb still provided meaningful sensations of touch back to the

user indicating both cortical representation of the phantom hand as well as intact neural pathways.

The fact that the sensory maps did not significantly change over time suggests that representation of

the phantom limb remains even many years after injury and without constant sensory feedback.

7.4.2 Phantom limb perception improves prosthesis control.

Researchers have used sensory feedback as a means to provide realistic tactile information back to

amputees [2, 3, 91] and to improve object manipulation tasks with a prosthesis [92, 175]; however,
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based on our results it is apparent that the internal sensorimotor pathway is affected by enhanced

phantom limb perception as well (Fig. 7.2). It makes sense that a crucial aspect of controlling the

phantom hand, and in turn a prosthesis, is the internal perception of the phantom limb. Because

there are no physiological changes in the amputee due to the sensory feedback and because the

electrodes are placed in approximately the same location, it is reasonable to attribute some of the

changes in pattern recognition performance to changes in the internal perception of the ability to

physically control the phantom hand.

The long term experiment addresses several interesting questions. One is how does sensory

feedback influence real-time myoelectric pattern recognition, and another question is if short term

enhancements of the phantom hand improve myoelectric pattern recognition performance several

weeks after the stimulation. By working closely with participant A03, we identified the most rele-

vant regions of the phantom hand to enhance perception during certain movements (Fig. 7.4). We

also expanded the number of movement classes to 14, an unrealistically high number of classes to

achieve reliable control for a prosthesis user, to stretch the limits and see how much improvement

was possible due to strengthening the internal sensorimotor control loop of the amputee.

Participant A03 had previous experience with myoelectric pattern recognition and did not show

significant signs of improvement as a result of additional training over Phase I of the long term

study (Fig. 7.5b); however, there were significant improvements during the sessions with sensory

feedback to the phantom hand (Phase II, Fig. 7.5c). Interestingly, these improvements appear to be

short-lived in that the ability to perform the 14 movement patterns was the same during Phase III,

after the phase with sensory feedback, as it was for Phase I (Fig. 7.5b). These results indicate that

the heightened sense of the phantom hand has an immediate ability to strengthen the sensorimotor
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loop of the amputee, but that this improvement is lost within a day if the sensory feedback does

not persist. This subsiding effect of enhanced phantom perception and control makes sense because

our bodies constantly adapt the forward control model based on the sensory inputs we are receiving

[172]. Without the sensory feedback and after sensations of the stimulation subside, which can

sometimes be several hours after nerve stimulation has ended according to participant A03, the

perception of the phantom hand returns to the baseline state. Regardless, the results strongly suggest

that enhancing phantom limb perception may be key in improving the control of the phantom hand,

which is translated to improved performance during myoelectric pattern recognition.

7.4.3 Sensory feedback activates sensorimotor regions.

The central and the centro-parietal electrodes cover the primary motor cortex and the primary so-

matosensory cortex. These areas are known to be activated during motor-related tasks [189, 190].

Based on the findings, it can be inferred that the T2ENS stimulation does not act as a simple sensory

stimulus but also improves the perceived control of the phantom hand by the amputee. This infer-

ence is also supported by the improvement of the decoding accuracy from the EMG signals (Fig.

7.2 and 7.5). Further, we observed that the sensory feedback effect persists during the Post-Stim

phase. Recent studies have shown that the primary sensory cortex (both contralateral and ipsilateral)

not only acts as a center for online sensory processing but also as a transient storage site for tactile

information [191, 192]. We believe, during the PostStim-Mov condition, the bilateral activation of

the primary somatosensory cortex shows the tactile working memory aiding the amputee for better

perception of the phantom hand movements even without the feedback stimulus. It should be noted

that the above observations were made for all the stimulation sites (median, ulnar and radial). We

did not observe significant differences between them owing to the lower spatial resolution of EEG.
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We did not observe contralateral activation. Recent literature challenges the idea of functional

cortical reorganization of the somatosensory cortex post amputation [193, 194]. There are evidence

of disruption of sensorimotor pathways after the amputation of the limbs [195], which showed

bilateral activation on presence of electrical sensory stimulus [196] and during phantom movements

[197]. Such cortical plasticity mechanisms are not completely understood and vary among different

amputees. Deeper insight can be obtained from studying the causal interactions between the two

hemispheres focusing on the sensorimotor loop. It will also be interesting to study the effect of the

long term T2ENS stimulation (similar to the long term EMG study with A03) on the sensorimotor

pathways and thereby its contribution to improve the prosthesis control by the amputee as observed

from the EMG decoding accuracy results.

7.4.4 Subjective perception of enhanced control.

Both the single day and the long term experiments of this study suggest the importance on phantom

limb perception on the ability to produce relevant signals for pattern recognition control of a pros-

thetic hand. We have shown that despite there being no physiological changes, providing sensory

feedback to activate the phantom hand enables a greater degree of control of the phantom hand

itself, both perceptually by the user as well as quantitatively through performance of the pattern

recognition classifier. Subjective feedback from the amputee participants indicated stronger percep-

tion of the phantom hand as a result of sensory feedback, which in turn enabled a greater ability to

move their phantom hand despite its absence.

Previous research has shown that users tend to perceive greater embodiment of their prosthesis

when it is more functional and more lifelike [92] as well as during sensory feedback in an immersive

128



CHAPTER 7. PERCEPTION AND CONTROL

virtual reality environment [198]. We postulate that in order to create a lifelike prosthesis, it is

necessary to develop methods for strengthening the internal sensorimotor models of the amputee’s

phantom hand. The phantom hand sensation should be utilized in a way that can improve prosthesis

control, which in turn will hopefully lead to even better device embodiment by the user. We have

shown that sensory feedback to peripheral nerves improves perceptions of the phantom hand, which

in turn improves the ability to generate unique myoelectric signals for pattern recognition. The

feedback does not change the physiological nature of the amputated limb, yet it seems to be a

driving factor in the ability to reliably produce voluntary muscle contractions in the residual limb

for mimic complex movements with the phantom hand.

7.5 Methods

7.5.1 Study objectives.

Our objectives were to show that 1) perception of the phantom limb plays a role in prosthesis control

through the use of myoelectric pattern recognition of complex movements and 2) that enhancing the

perception of the phantom limb can directly improve the ability to control a prosthesis through

pattern recognition as a result of improved internal sensorimotor models.

7.5.2 Participant recruitment.

All experiments were approved by the Johns Hopkins Medicine Institutional Review Board. The

three amputee participants were recruited from previous studies at Johns Hopkins University in

Baltimore, MD or through referrals from local prosthetists.
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7.5.3 Sensory feedback.

The sensory feedback experiments consisted of T2ENS of the median and ulnar nerves using monopha-

sic square wave pulses. We performed mapping of the phantom hand using a 1 mm beryllium copper

(BeCu) probe connected to an isolated current stimulator (DS3, Digitimer Ltd., UK). An amplitude

of 0.8 – 3.0 mA and frequency of 2 – 4 Hz were used while mapping the phantom hand. Anatom-

ical and ink markers were used, along with photographs of the amputee’s limbs, to map the areas

of the residual limb to the phantom hand. For all other stimulation experiments, we used a 5 mm

disposable Ag-Ag/Cl electrode.

The structural similarity (SSIM) index [199] was used to compare similarity of sensory mapping

regions of the phantom hand across different days. We cropped each sensory mapping image to the

region of interest (median, ulnar, or radial) and removed the background so that only the colored

regions remained. We used the SSIM function in MATLAB (Natick, USA) and compared each

sensory mapping image to all other images with the same region of interest. This was done for every

image and the results were averaged together to generate a single value for each day (Fig. 7.3b).

To calculate the sensory coverage area, we removed the background from every sensory mapping

image and converted the image to grayscale. The percentage area was calculated by summing the

number of elements with color and dividing by the total number of elements in the image of the

hand.

7.5.4 EMG recording.

For participants A01 and A02, eight channels of raw EMG signals were collected using bipolar

Ag/Ag-Cl electrodes placed approximately equidistant around the circumference of the residual
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limb. No specific muscle groups or locations were targeted for electrode placemenet. Raw EMG

signals were amplified using 13E200 Myobock amplifiers (Ottobock, Plymouth, MN). The output

of the amplifiers was captured by a NI USB-6009 (National Instruments, Austin, TX) at 1024 Hz

and filtered with a 60 Hz digital notch filter as well as a 20 – 500 Hz bandpass digital filter.

Participant A03 used a custom socket manufactured by the participant’s prosthetist (Dankmeyer,

Linthicum, MD). Bipolar Ag/Ag-Cl electrodes (Infinite Biomedical Technologies, Baltimore, MD)

were embedded within the socket. Eight electrodes were used in the socket and each one was

targeted to a specific location on the residual limb by the prosthetist. These locations did not change

during the duration of this study. The bipolar electrodes in the custom socket were amplified and

filtered with a 20 – 500 Hz bandpass filter and a 60 Hz digital notch filter using on-board signal

processing hardware.

7.5.5 EEG recording and analysis.

A 64-channel EEG cap with Ag-Ag/Cl electrodes was used for the EEG experiment. Participant

A03 was seated, and stimulation electrodes were placed on the median, ulnar, and radial nerve sites

of his residual limb. Each site was stimulated individually for a period of 2 s, followed by a 4 s

delay with 25% jitter before the next stimulation. There was a total of 60 stimulation presentations

with varying pulse width (1 to 20ms) and frequencies (4 to 45 Hz) with an amplitude of 1.6 mA.

The EEG data was band-pass filtered from 1 to 50 Hz and re-referenced to both of the mas-

toids. Automatic artifact Removal (AAR) was used to remove the muscle (canonical correlation

approach, 5 sec window size) and ocular (blind source separation sobi algorithm, 256 sec window

size) artifacts [200]. Further, Independent Component Analysis (ICA) was used to remove any other
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additional artifacts. Continuous EEG data was then epoched from the start of each trial till 2 secs

after the stimulus presentation. All preprocessing steps were carried out using the EEGLAB toolbox

in MATLAB [201].

The epoched data was band-pass filtered from 8 Hz to 12 Hz to obtain the alpha band which

is reported to be more relevant for motor-related activity [187, 188]. We further epoched the data

from 450 – 850 ms to remove the early activations due to the TENS and visual stimulation from

analysis and focusing on the motor-related activity in the brain [202]. We evaluated the alpha band

power in all the electrodes for each condition and each trial. All the three phantom hand movement

conditions (thumb, pinky and wrist) were combined for rest of the analysis. The band power analysis

was performed in MATLAB.

Classification of stimulation sites from the EEG data was performed using the gumpy toolbox

[203]. Multi-class spatial patterns (CSP) [204] were used as features for classification with a support

vector machine (SVM). A 100 ms sliding window was used and 80% of the trials were used for

training and 20% were used for testing. A grid search was performed to select the best hyper

parameters for the SVM classifier.

7.5.6 Experimental protocol.

Phantom Movements with Feedback: We used a modified Virtual Integration Environment (VIE)

(Johns Hopkins University Applied Physics Lab, Laurel, MD) with MATLAB to display movement

cues in a random order. The subjects were seated comfortably in front of a screen that displayed

the 9 individual movement classes. The skin of the residual limb was cleaned with an alcohol wipe

before placing the electrodes on the arm. The electrodes were allowed to settle for up to 10 minutes.
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The subjects performed three repetitions of each movement. After EMG data collection, the subject

underwent T2ENS for sensory feedback and phantom hand mapping. The sensory feedback lasted

between 30 – 60 min with stimulation of each site of the phantom hand for up to 10 s at a time. If

the subject began to feel a constant buzzing or tingling in the phantom hand as a result of the nerve

stimulation, then the sensory feedback was stopped until the residual sensations subsided. After the

sensory feedback, the participants performed another round of EMG data collection. Anatomical

markers and photographs were used to ensure the electrodes were positioned in approximately the

same location for subjects A01 and A02. Subject A03 used a customized socket, which ensured

consistent electrode placement for ever session. The total experiment lasted between 2 – 3 hr.

Long Term Sensory Feedback and EMG: For the long term study, participant A03 performed 3

different sets of pattern recognition data collection. In this case, 14 movement patterns were used.

Over the course of 6 weeks, A03 came in for an EMG recording session on average once per week.

For the following 2 weeks, he came in for EMG recording sessions on 4 different days. There were

3 separate rounds of EMG data collection on each of those days. During this 2 week period, a

pre-stimulation set of EMG signals were recorded for each movement with each movement being

repeated 3 times. Next, EMG signals were recorded simultaneously while sensory feedback was

being given to the relevant parts of his phantom hand. The motivation of this was to see what role

active sensory feedback plays in the sensorimotor control loop of the amputee. After the session

with both EMG recording and nerve stimulation, a final EMG recording session was performed

without stimulation. There was up to a 30 min break between each of the 3 recording sessions. The

total experiment lasted between 2.5 – 3.5 hr each day.

Neural Recording: The purpose of the EEG experiment was to collect neural signals from par-
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ticipant A03 during various phantom hand movements with and without sensory feedback. The

participant was seated comfortably and was shown visual movement cues. The movement cues

chosen by the participant were tripod, index point, and wrist flexion with corresponding nerve stim-

ulation in median, ulnar, and radial regions, respectively (Fig. 7.4). Two trials of baseline activity

were recorded for up to 1 min. In the first trial, the movement cues were shown to the participant

who mimicked the movements with his phantom hand. Next, the participant received TENS on

the residual limb to activate the median, ulnar, and radial regions of the phantom hand, but he did

not perform the movements with his phantom hand. In the next trial, the subject received sensory

feedback while also performing the corresponding movements with his phantom hand. Finally, the

subject repeated another trial of only phantom hand movements but with no sensory feedback. Each

movement cue was presented up to 20 times for each trial.

7.5.7 Movement pattern recognition and classification.

Features of the EMG signals were extracted using a 200 ms sliding window with new feature vec-

tors computed every 50 ms. The EMG signal features used were mean absolute value (Eq. 7.1),

waveform length (Eq. 7.2), and variance (Eq. 7.3). For subject’s A01 and A02, the raw EMG

signals were recorded with the NI USB-6009 and the features extracted in MATLAB (Mathworks,

Natick, MA). For subject A03, the EMG signal features were extracted on the electrodes themselves

and sent via Bluetooth from a custom prosthesis controller (Infinite Biomedical Technologies, Bal-

timore, MD) to MATLAB at 100 Hz. Movements were decoded using the extracted EMG features

with an LDA classifier [205].
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MAV =
1

N

N∑
k=1

|xk| (7.1)

WL =
N∑
k=2

|xk − xk−1| (7.2)

var(x) = E
[
(x− µ)2

]
(7.3)

N is the number of samples, xk is the kth sample, and µ is the mean of x.

7.5.8 Stimulation noise removal and statistics.

The surface EMG electrodes used with participant A03 stream feature extracted data to a PC via

Bluetooth. To mitigate the effects of electrical stimulation on the EMG signal features, we imple-

mented a noise filtering technique to remove unwanted stimulation effects in the EMG signal. To

establish a baseline for the noise source, all possible combinations of electrical stimulation were

provided to the residual limb of A03 while he was resting his phantom hand (i.e. no movement).

The noise signal from the surface EMG electrodes was smoothed and used as a noise baseline. This

noise baseline was subtracted from the actual EMG signal collected during trials with phantom hand

movement and nerve stimulation.

Results from data collected over multiple trials of the same experiment were averaged together.

Error bars represent the standard error of the mean, unless otherwise specified.
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8 | Conclusion

8.1 Summary of results

Hopefully the work contained in this thesis progressed in a logical and straight forward fashion

that was easy to follow. If you started at the beginning and have finally reached this chapter then

congratulations on navigating the numerous pages of technical details and results, and thank you

for reading. If you jumped straight to this chapter then kudos for trying to be efficient with your

time. In either case, hopefully a brief summary of my work will help you grasp the big picture and

potential impact of this work.

8.1.1 Tactile sensing

We showed that local tactile feedback can improve prosthesis grasping and object manipulation.

Our hands are capable of making small, yet extremely fast, adjustments to ensure objects we are

handling don’t break or drop. We showed that similar functionality can be given to a prosthetic hand

by providing information of grip force during object manipulation [16]. Furthermore, we showed

for the first time that a neuromorphic tactile signal can be used to provide meaningful information

in real-time to a prosthetic hand for improving object grasping and manipulation [25].
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8.1.2 Sensory feedback

The question persists though as to why use a neuromorphic representation of a tactile signal for a

prosthesis. The answer is because we want to now provide sensory information back to the pros-

thesis, so that it can make automated and fast grip adjustments, as well as the user. The tactile

information we provide to an amputee needs to follow some spiking activity, similar to what may

be found from healthy receptors in the skin. First, we showed that we are able to provide tactile

sensations to the phantom hand of several amputees through transcutaneous (i.e. noninvasive) elec-

trical nerve stimulation on the residual limb. Electrical spikes pass through the skin and activate the

underlying sensory nerves. This process requires several hours of sensory mapping of the residual

limb, but results in the ability to provide sensations of touch back to an amputee [26].

8.1.3 Touch and pain

Our tactile sensation is fairly complicated and extends beyond perceptions of pressure to temper-

ature, proprioception, and even pain. We showed that by using a neuromorphic model to drive

stimulation, we could reliably provide sensations of either touch or pain in an amputee using the

same stimulation modality. We accomplished this by creating a multilayered electronic dermis (e-

dermis) that translates pressure into sensations of touch or pain to both the prosthesis and the user.

We showed that sensations of pain could be perceived by the user but also the prosthesis, which

used an automatic pain reflex to release objects that were sharp and thus perceived as painful.
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8.1.4 Phantom perception and control

Finally, we investigated the effect of sensory feedback not only on its ability to provide tactile

sensations but also in enhancing perception of the phantom limb. We found, in multiple amputees,

that providing sensory feedback enhanced not only their perception of their phantom limb but also

their ability to mimic complicated hand movements. EMG signal pattern recognition showed that

the amputees were better able to perform movements with their phantom hand after having received

sensory feedback. An extended experiment also showed that these effects are limited to short term

improvements, typically within the same day. This suggests that sensory feedback and perception

of the phantom hand play a major role in the internal sensorimotor models of amputees.

8.2 Future directions

8.2.1 Advanced materials

Recently, researchers have investigated more advanced materials for creating sensors and synthetic

skins. One area of continued improvement will be in creating realistic, sophisticated e-skins that will

cover prosthetic limbs. Sensations will likely include pressure as well as things like temperature and

position, much like the receptors throughout our bodies [89]. Additionally, other skinlike properties

such as stretchability and compliance [79, 159] as well as self-healing [85, 160] will be leveraged

in making more sophisticated and lifelike sensing devices.

8.2.2 Stimulating electrodes

Currently, electrodes for peripheral nerve stimulation enable targeting of nerve fasicles within nerve

bundles. As a result, it is likely that a small population of sensory fibers are being stimulated as
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opposed to individual afferents. To fully recreate sensations of natural touch, it may be necessary

to selectively stimulate sensory nerve fibers based on receptor type. To do so, more sophisticated

neural stimulation techniques will need to be developed. Already, there are several techniques that

improve electrodes by using advanced materials [48].

8.2.3 Neuromorphic stimulation

When finer resolution for stimulating sensory nerves is achieved, there will be a larger interest in

using more realistic neuromorphic models to provide sensory feedback. Researchers have developed

sophisticated models that can mimic the behavior of different slowly adapting and rapidly adapting

mechanoreceptors [99]. We have shown that using a neuromorphic model to provide sensations

of touch and pain can be achieved. In future work, researchers will undoubtedly investigate the

effects of different biomimetic stimulation patterns on the perceptual qualities and naturalness of

the perceived sensations.

8.2.4 Sensorimotor integration

Finally, it is important to further investigate the role sensory feedback plays in the ability of am-

putees to control their prosthesis. We rely on sensory feedback for understanding our surrounding

environment and the objects we interact with, but that information is constantly being monitored

by our cortex to update how we model and predict our limb movements through space [172]. Re-

searchers have already shown the benefit of providing sensory feedback for prosthesis use during

object manipulation [92, 175], but a lifelike prosthetic limb requires sophisticated levels of dex-

terous and reliable control. This control could be further improved by developing techniques to

strengthen the internal sensorimotor control models of amputee users.
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