49 research outputs found

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Modeling psychiatric disorders for developing effective treatments

    Get PDF
    Recent advances in identifying risk-associated genes have provided unprecedented opportunities for developing animal models for psychiatric disease research with the goal of attaining translational utility to ultimately develop novel treatments. However, at this early stage, successful translation has yet to be achieved. Here we review recent advances in modeling psychiatric disease, discuss the utility and limitations of animal models, and emphasize the importance of shifting from behavioral analysis to identifying neurophysiological abnormalities, which are likely to be more conserved across species and thus may increase translatability. Looking forward, we envision that preclinical research will align with clinical research to build a common framework of comparable neurobiological abnormalities and to help form subgroups of patients on the basis of similar pathophysiology. Experimental neuroscience can then use animal models to discover mechanisms underlying distinct abnormalities and develop strategies for effective treatments.National Institute of Mental Health (U.S.) (Grant 5R01MH097104

    Multiscale Statistical Hypothesis Testing for k-Sample Graph Inference

    Get PDF
    A connectome is a map of the structural and/or functional connections in the brain. This information-rich representation has the potential to transform our understanding of the relationship between patterns in brain connectivity and neurological processes, disorders, and diseases. However, existing computational techniques used to analyze connectomes are often insufficient for interrogating multi-subject connectomics datasets. Several methods are either solely designed to analyze single connectomes, or leverage heuristic graph invariants that ignore the complete topology of connections between brain regions. To enable more rigorous comparative connectomics analysis, we introduce robust and interpretable statistical methods motivated by recent theoretical advances in random graph models. These methods enable simultaneous analysis of multiple connectomes across different scales of network topology, facilitating the discovery of hierarchical brain structures that vary in relation with phenotypic profiles. We validated these methods through extensive simulation studies, as well as synthetic and real-data experiments. Using a set of high-resolution connectomes obtained from genetically distinct mouse strains (including the BTBR mouse—a standard model of autism—and three behavioral wild-types), we show that these methods un- cover valuable latent information in multi-subject connectomics data and yield novel insights into the connective correlates of neurological phenotypes. The documentation and code for all analyses in this thesis are available at https://github.com/neurodata/MCC

    Functional and structural substrates of increased dosage of Grik4 gene elucidated using multi-modal MRI

    Get PDF
    Grik4 is the gene responsible for encoding the high-affinity GluK4 subunit of the kainate receptors. Increased dosage of this subunit in the forebrain was linked to an increased level of anxiety, lack of social communication, and depression. On the synaptic level, abnormal synaptic transmission was also reported. The manifestations of this abnormal expression have not been investigated at the circuit level, nor the correlations between those circuits and the abnormal patterns of the behavior previously reported. In this line of work, we aspired to use different non-invasive magnetic resonance imaging (MRI) modalities to elucidate any disturbance that might stem from the increased dosage of Grik4 and how those changes might explain the abnormal behaviors. MRI offers a noninvasive way to look into the intact brain in vivo. Resting-state functional MRI casts light on how the brain function at rest on the network level and has the capability to detect any anomalies that might occur within or between those networks. On the microstructural level, the diffusion MRI is concerned with the underlying features of the tissues, using the diffusion of water molecules as a proxy for that end. Moving more macroscopically, using structural scans, voxel-based morphometry can detect subtle differences in the morphology of the different brain structures. We recorded videos of our animals performing two tasks that have long been linked to anxiety, the open field and the plus-maze tests before acquiring structural and functional scans. Lastly, we recorded blood-oxygenationlevel dependent (BOLD) signals in a different set of animals during electrical stimulation of specific white matter tracts in order to investigate how neuronal activity propagates. Our analysis showed a vast spectrum of changes in the transgenic group relative to the animals in the control group. On the resting-state networks level, we observed an increase in the within-network strength spanning different structures such as the hippocampus, some regions of the cortex, and the hypothalamus. The increased internal coherence or strength in the networks contrasted with a significant reduction in between-networks connectivity for some regions such as parts of the cortex and the hypothalamus, suggesting long-range network decorrelation. Supporting this idea, major white matter (WM) tracts, such as the corpus callosum and the hippocampal commissure, suffered from substantial changes compatible with an important reduction in myelination and/or a decrease in the mean axonal diameter. Macrostructurally speaking, the overexpression of GluK4 subunit had a bimodal effect, with expansion in some cortical areas in the transgenic animals accompanied by a shrinkage in the subcortical regions. Upon stimulating the brain with an electrical current, we noticed a difference in activity propagation between the two hemispheres. In transgenic animals, the evoked activity remained more confined to the stimulated hemisphere, again consistent with an impaired long-range connectivity. The structural changes both, at the micro and macro level, were in tight correlation with different aspects of the behavior including markers of anxiety such as the time spent in the open arms vs the closed arms in the plus-maze test and the time spent in the center vs the corners in the open field test. Our findings reveal how the disruption of kainate receptors, or more globally the glutamate receptors, and the abnormal synaptic transmission can translate into brain-wide changes in connectivity and alter the functional equilibrium between macro-and mesoscopic networks. The postsynaptic enhancement previously reported in the transgenic animals was here reflected in the BOLD signal and measured as an increase in the within-network strength. Importantly, the correlations between the structural changes and the behavior help to put the developmental changes and their behavioral ramifications into context. RESUMEN Grik4 es el gen responsable de codificar la subunidad GluK4 de alta afinidad de los receptores de kainato. El aumento de la dosis de esta subunidad en el prosencĂ©falo se relacionĂł con un mayor nivel de ansiedad, falta de comunicaciĂłn social y depresiĂłn. A nivel sinĂĄptico, tambiĂ©n se informĂł una transmisiĂłn sinĂĄptica anormal. Las manifestaciones de esta expresiĂłn anormal no se han investigado a nivel de circuito, ni las correlaciones entre esos circuitos y los patrones anormales de la conducta previamente informada. En esta lĂ­nea de trabajo, aspiramos a utilizar diferentes modalidades de imĂĄgenes por resonancia magnĂ©tica (MRI) no invasivas para dilucidar cualquier alteraciĂłn que pudiera derivarse del aumento de la dosis de Grik4 y cĂłmo esos cambios podrĂ­an explicar los comportamientos anormales. La resonancia magnĂ©tica ofrece una forma no invasiva de observar el cerebro intacto in vivo. La resonancia magnĂ©tica funcional en estado de reposo arroja luz sobre cĂłmo funciona el cerebro en reposo en el nivel de la red y tiene la capacidad de detectar cualquier anomalĂ­a que pueda ocurrir dentro o entre esas redes. En el nivel microestructural, la resonancia magnĂ©tica de difusiĂłn se ocupa de las caracterĂ­sticas subyacentes de los tejidos utilizando la difusiĂłn de molĂ©culas de agua como un proxy para ese fin. MoviĂ©ndose mĂĄs macroscĂłpicamente, utilizando escaneos estructurales, la morfometrĂ­a basada en vĂłxeles puede detectar diferencias sutiles en la morfologĂ­a de las diferentes estructuras cerebrales. Grabamos videos de nuestros animales realizando dos tareas que durante mucho tiempo se han relacionado con la ansiedad, el campo abierto y las pruebas de laberinto positivo antes de adquirir escaneos estructurales y funcionales. Por Ășltimo, registramos señales dependientes del nivel de oxigenaciĂłn de la sangre (BOLD) en un grupo diferente de animales durante la estimulaciĂłn elĂ©ctrica de tractos especĂ­ficos de materia blanca para investigar cĂłmo se propaga la actividad neuronal. Nuestro anĂĄlisis mostrĂł un amplio espectro de cambios en el grupo transgĂ©nico en relaciĂłn con los animales en el grupo de control. En el nivel de las redes de estado de reposo, observamos un aumento en la fuerza dentro de la red que abarca diferentes estructuras como el hipocampo, algunas regiones de la corteza y el hipotĂĄlamo. La mayor coherencia interna o fuerza en las redes contrastĂł con una reducciĂłn significativa en la conectividad entre redes para algunas regiones como partes de la corteza y el hipotĂĄlamo, lo que sugiere una descorrelaciĂłn de redes de largo alcance. Apoyando esta idea, los grandes tractos de materia blanca (WM), como el cuerpo calloso y la comisura del hipocampo, sufrieron cambios sustanciales compatibles con una importante reducciĂłn de la mielinizaciĂłn y / o una disminuciĂłn del diĂĄmetro axonal medio. Macroestructuralmente hablando, la sobreexpresiĂłn de la subunidad GluK4 tuvo un efecto bimodal, con expansiĂłn en algunas ĂĄreas corticales en los animales transgĂ©nicos acompañada de una contracciĂłn en las regiones subcorticales. Al estimular el cerebro con una corriente elĂ©ctrica, notamos una diferencia en la propagaciĂłn de la actividad entre las dos hemiesferas. En los animales transgĂ©nicos, la actividad evocada permaneciĂł mĂĄs confinada al hemisferio estimulado, de nuevo consistente con una conectividad de largo alcance deteriorada. Los cambios estructurales, tanto a nivel micro como macro, estaban en estrecha correlaciĂłn con diferentes aspectos de la conducta, incluidos marcadores de ansiedad como el tiempo pasado con los brazos abiertos frente a los brazos cerrados en la prueba del laberinto positivo y el tiempo pasado en el centro vs las esquinas en la prueba de campo abierto. Nuestros hallazgos revelan cĂłmo la interrupciĂłn de los receptores de kainato, o mĂĄs globalmente los receptores de glutamato, y la transmisiĂłn sinĂĄptica anormal pueden traducirse en cambios de conectividad en todo el cerebro y alterar el equilibrio funcional entre las redes macro y mesoscĂłpicas. La mejora postsinĂĄptica informada anteriormente en los animales transgĂ©nicos se reflejĂł aquĂ­ en la señal BOLD y se midiĂł como un aumento en la fuerza dentro de la red. Es importante destacar que las correlaciones entre los cambios estructurales y elcomportamiento ayudan a contextualizar los cambios en el desarrollo y sus ramificaciones conductuales

    A systematic review of the relationship between magnetic resonance imaging based resting-state and structural networks in the rodent brain

    Get PDF
    Recent developments in rodent brain imaging have enabled translational characterization of functional and structural connectivity at the whole brain level in vivo. Nevertheless, fundamental questions about the link between structural and functional networks remain unsolved. In this review, we systematically searched for experimental studies in rodents investigating both structural and functional network measures, including studies correlating functional connectivity using resting-state functional MRI with diffusion tensor imaging or viral tracing data. We aimed to answer whether functional networks reflect the architecture of the structural connectome, how this reciprocal relationship changes throughout a disease, how structural and functional changes relate to each other, and whether changes follow the same timeline. We present the knowledge derived exclusively from studies that included in vivo imaging of functional and structural networks. The limited number of available reports makes it difficult to draw general conclusions besides finding a spatial and temporal decoupling between structural and functional networks during brain disease. Data suggest that when overcoming the currently limited evidence through future studies with combined imaging in various disease models, it will be possible to explore the interaction between both network systems as a disease or recovery biomarker

    Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors.</p> <p>Methods</p> <p>Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by <it>in situ </it>hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM).</p> <p>Results</p> <p>In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and NeuroD immunoreactive cells in the subgranular zone of the dentate gyrus, and a marked reduction in the number of 5-bromo-2'-deoxyuridine (BrdU) positive progenitors. Furthermore, a significant and profound reduction in BDNF mRNA was seen in the BTBR dentate gyrus. No significant differences were seen in the expression of AchE, mossy fiber synapses or immunoreactivities of microtubule-associated protein MAP2, parvalbumin and glutamate decarboxylase GAD65 or GAD67 isoforms.</p> <p>Conclusions</p> <p>We documented modest and selective alterations in glia, neurons and synapses in BTBR forebrain, along with reduced neurogenesis in the adult hippocampus. Of all markers examined, the most distinctive changes were seen in the neurodevelopmental proteins NG2, PSA-NCAM, NeuroD and DCX. Our results are consistent with aberrant development of the nervous system in BTBR mice, and may reveal novel substrates to link callosal abnormalities and autistic behaviors. The changes that we observed in the BTBR mice suggest potential novel therapeutic strategies for intervention in autism spectrum disorders.</p

    White and Gray Matter Abnormalities After Cranial Radiation in Children and Mice

    Get PDF
    PurposePediatric patients treated with cranial radiation are at high risk of developing lasting cognitive impairments. We sought to identify anatomical changes in both gray matter (GM) and white matter (WM) in radiation-treated patients and in mice, in which the effect of radiation can be isolated from other factors, the time course of anatomical change can be established, and the effect of treatment age can be more fully characterized. Anatomical results were compared between species.Methods and MaterialsPatients were imaged with T1-weighted magnetic resonance imaging (MRI) after radiation treatment. Nineteen radiation-treated patients were divided into groups of 7 years of age and younger (7−) and 8 years and older (8+) and were compared to 41 controls. C57BL6 mice were treated with radiation (n=52) or sham treated (n=52) between postnatal days 16 and 36 and then assessed with in vivo and/or ex vivo MRI. In both cases, measurements of WM and GM volume, cortical thickness, area and volume, and hippocampal volume were compared between groups.ResultsWM volume was significantly decreased following treatment in 7− and 8+ treatment groups. GM volume was unchanged overall, but cortical thickness was slightly increased in the 7− group. Results in mice mostly mirrored these changes and provided a time course of change, showing early volume loss and normal growth. Hippocampal volume showed a decreasing trend with age in patients, an effect not observed in the mouse hippocampus but present in the olfactory bulb.ConclusionsChanges in mice treated with cranial radiation are similar to those in humans, including significant WM and GM alterations. Because mice did not receive any other treatment, the similarity across species supports the expectation that radiation is causative and suggests mice provide a representative model for studying impaired brain development after cranial radiation and testing novel treatments

    Homozygous loss of autism-risk gene CNTNAP2 results in reduced local and long-range prefrontal functional connectivity

    Get PDF
    Functional connectivity aberrancies, as measured with resting-state fMRI (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in Contactin Associated Protein-like 2 (CNTNAP2), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking Cntnap2 exhibit reduced long-range and local functional connectivity in prefrontal and midline brain “connectivity hubs”. Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between frontoposterior components of the mouse default-mode network (DMN), an effect that was associated with reduced social investigation, a core “autism trait” in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of Cntnap2-/- mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas
    corecore