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Highlights 
 

 We describe registration-based methods for mouse brain morphoanatomical imaging. 
 Detailed workflows for anatomical labelling, voxel based morphometry and cortical 

thickness are reported.  
 The same preprocessing can be applied to map multiple complementary anatomical 

readouts.  
 The present work may help to promote the use of rodent morphoanatomical imaging. 
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Abstract 1 

Background 2 

Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, 3 

substantial differences in the anatomical organisation of human and rodent brain prevent a 4 

straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, the 5 

vast majority of the published approaches rely on tailored routines that address single 6 

morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex 7 

workflow required to process images and quantify structural alterations.  8 

New method 9 

Here we provide a detailed description of semi-automated registration-based procedures for 10 

voxel based morphometry, cortical thickness estimation and automated anatomical labelling of 11 

the mouse brain. The approach relies on the sequential use of advanced image processing tools 12 

offered by ANTs, a flexible open source toolkit freely available to the scientific community.  13 

Results 14 

To illustrate our procedures, we described their application to quantify morphological alterations 15 

in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison 16 

recently described by us and other research groups. We show that the approach can reliably 17 

detect both focal and large-scale gray matter alterations using complementary readouts.  18 

Comparison with existing methods 19 

No detailed operational workflows for mouse imaging are available for direct comparison with 20 

our methods. However, empirical assessment of the mapped inter-strain differences is in good 21 

agreement with the findings of other groups using analogous approaches. 22 

Conclusion 23 

The detailed operational workflows described here are expected to help the implementation of 24 

rodent morphoanatomical methods by non-expert users, and ultimately promote the use of these 25 

tools across the preclinical neuroimaging community.   26 

 27 

Keywords 28 
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1. Introduction 31 

A deep understanding of the genetic, physiological and anatomical underpinnings of 32 

brain disease is essential for the development of improved therapies. A milestone towards this 33 

goal is the generation of genetically modified mouse lines that recapitulate targeted genetic 34 

mutations in experimentally controlled studies. Genetically modified mouse lines permit to relate 35 

genetic mutations to clinically relevant endophenotypes without the complexity of genetic 36 

heterogeneity and the uncontrolled impact of gene-gene and gene-environment interactions in 37 

adult human populations (Nestler and Hyman, 2010). 38 

Magnetic resonance imaging (MRI) methods offer a privileged point of view to study 39 

genetically altered mouse models of neuropsychiatric disorders in many respects. First, the use of 40 

comparable imaging readouts in men and mice permits a cross-species comparison of brain 41 

endophenotypes of translational relevance, thus enhancing the transfer of information from and 42 

to the clinic. At the same time, MRI readouts can also be employed to assess the extent to which 43 

mouse models of central nervous system pathology replicate neuroimaging findings observed in 44 

clinical populations, informing preclinical researchers on the translational validity of these 45 

models. Moreover, high resolution morphometric MRI, achievable at ultra-high field strength or 46 

in ex vivo formalin-fixed samples (Lerch et al., 2012; Tucci et al., 2014) can be employed to 47 

obtain a fine-grain assessment of structural brain alterations that could serve as a convenient 48 

surrogate for labour intensive manual morphometric measurements in ex vivo brain slice 49 

preparations, with the additional advantage of being non-invasive and multi-dimensional.  50 

Structural MRI based imaging methods - such as voxel based morphometry (VBM) of 51 

gray matter (GM), cortical thickness mapping and anatomical labelling - have been widely 52 

employed to study brain morphology in human populations (Mueller et al., 2012). The 53 

application of analogous readouts to map genetically determined brain alterations in transgenic 54 

mouse lines has been recently proposed, an effort collectively referred to as MRI phenotyping 55 

(Borg and Chereul, 2008; Johnson et al., 2007; Lerch et al., 2011a). Recent improvements in 56 

MRI sequences and hardware, together with the development of fixation protocols for ex vivo 57 

imaging of stained brain specimens (Lerch et al., 2012), have made it possible the acquisition of 58 

artefact-free and high resolution – with a voxel size less than 80 µm – mouse brain volumes even 59 

at relatively low magnetic field strengths. This efforts have resulted in the publication of several 60 

examples or the application of morphoanatomical imaging to transgenic mouse models (Lerch et 61 
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al., 2008; Sawiak et al., 2009; Xie et al., 2010; Yushkevich et al., 2006). 62 

The development of standardised preprocessing and analytical pipelines for human 63 

imaging data, and their implementation in popular software toolkits such as such as FMRIB 64 

Software Library (FSL) (Jenkinson et al., 2012), Statistical Parametric Mapping (SPM) (Friston 65 

et al., 1994) and Advanced Normalization Tools (ANTs) (Avants et al., 2009), have been 66 

instrumental to the widespread use of MRI in human brain research. However, substantial 67 

differences in the dimensions and anatomical organisation of the human and rodent brain prevent 68 

a straightforward extension of these tools to morphoanatomical mouse brain mapping. As a 69 

result, several research groups have developed  tailored procedures for the preprocessing and 70 

analyses of morphoanatomical brain MRI readouts in mouse models (Badea et al., 2012; Borg 71 

and Chereul, 2008; Delatour et al., 2006; Johnson et al., 2007; Lee et al., 2010; Lerch et al., 72 

2011a; Nieman et al., 2005; Sawiak et al., 2009; Sawiak et al., 2013). However, the vast majority 73 

of the published approaches typically address single morphoanatomical readouts (e.g., VBM or 74 

anatomical labelling or cortical thickness), and lack a detailed description of the complex 75 

workflow and computational parameters required to process, analyse and quantify structural MRI 76 

alterations, thus complicating the implementation of these procedures by non-expert users. 77 

To begin to address these issues, here we provide a detailed methodological description 78 

of a semi-automated operational workflow for VBM, cortical thickness estimation and automated 79 

anatomical mapping of the mouse brain. To simplify and streamline operations, we based image 80 

processing mainly on ANTs (Avants et al., 2009), a flexible and powerful open source toolkit 81 

freely available to the scientific community. Importantly, our approach has been recently applied 82 

by our research group to map fine-grain brain anatomy alterations in different mutant mouse 83 

lines (Dodero et al., 2013; Lassi et al., 2015; Minervini et al., 2014; Sannino et al., 2014; Tucci et 84 

al., 2014) and to describe large-scale networks of anatomical covariance between gray matter 85 

regions in wild-type mice (Pagani et al., 2016), with excellent agreement between MRI and 86 

manual morphometric measurements (Sannino et al., 2014), exhibiting corresponding 87 

morphoanatomical features in mice and reference clinical populations (Cutuli et al., 2016; Tucci 88 

et al., 2014). Below, we provide a detailed  description of our procedural workflow and show its 89 

capabilities by describing its application to quantify morphological alterations in socially-90 

impaired BTBR T+Itpr3tf/J mice with respect to normo social C57BL/6J controls (Dodero et al., 91 

2013; Squillace et al., 2014), a comparison that has been recently described by our research 92 
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group (Dodero et al., 2015) and others (Ellegood et al., 2013), thus permitting an empirical cross-93 

laboratory assessment of the validity of our findings.   94 

 95 

2. Materials and Methods 96 
 97 

2.1. Ethical statement  98 

All in vivo studies were conducted in accordance with the Italian law - D.L. n° 116, 1992, 99 

Ministero della Sanità, Roma - and following the recommendations in the Guide for the Care and 100 

Use of Laboratory Animals of the National Institutes of Health. The animal research protocol 101 

was approved by the Animal Care Committee of the Istituto Italiano di Tecnologia (Permit Date 102 

07-2012). All surgical procedures were performed under deep anaesthesia.   103 

 104 

2.2. Sample Preparation and MR acquisition 105 

High-resolution morphoanatomical T2-weighted MR imaging of mouse brains was 106 

performed in paraformaldehyde (4% PFA; 100 ml, Sigma, Milan) fixed specimens, a procedure 107 

employed to obtain high-resolution images with negligible confounding contributions from 108 

physiological or motion artefacts (Cahill et al., 2012). Sample preparation and MRI acquisition 109 

of BTBR T+Itpr3tf/J (BTBR) and C57BL/6J (B6) mice has been recently described in previous 110 

work (Dodero et al., 2013; Sforazzini et al., 2014a; Sforazzini et al., 2014b) and is briefly 111 

summarised  here. Male BTBR (N=9, 15-26 weeks old) and age-matched control B6 (N=9) mice 112 

were deeply anaesthetized with an intraperitoneal Avertin injection (375 mg/Kg, Sigma, Milan) 113 

and their brains were perfused in situ via cardiac perfusion. The perfusion was performed with 114 

phosphate buffered saline followed by paraformaldehyde (4% PFA; 100 ml). Both perfusion 115 

solutions were added with a Gadolinium chelate (Prohance, Bracco, Milan) at a concentration of 116 

10 and 5 mM, respectively, to shorten longitudinal relaxation times (Lerch et al., 2012).  117 

A multi-channel 7.0 Tesla MRI scanner (Bruker Biospin, Milan) was used to acquire 118 

anatomical images of the brain, using a 72 mm birdcage transmit coil, a custom-built saddle-119 

shaped solenoid coil for signal reception, and the following imaging parameters: 3D RARE spin-120 

echo sequence, TR=550 ms, TE=33 ms, RARE factor=8, echo spacing 11ms, matrix size of 192x 121 

170x170 and voxel size of 0.09 mm (isotropic), with a total acquisition time of 4 hrs and 25 122 

mins. 123 
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 124 

2.3. Image preprocessing and analysis 125 

A detailed description of the image processing workflow employed to create a study 126 

based template, to estimate cortical thickness, and to perform automated anatomical labelling and 127 

VBM is reported below for structural images acquired at 7 Tesla. We refer to our approach as 128 

“registration-based”   as   several   preprocessing   and estimation steps (e.g., cortical thickness) are 129 

executed via a combination of affine and symmetric diffeomorphic transformations as 130 

implemented in antsRegistration command (Avants et al., 2014). The tool entails the application 131 

of affine registration with twelve degrees of freedom to coarsely normalise the overall shape of a 132 

source image to a reference image. Afterwards, a non-linear transformation is applied to create a 133 

differentiable and invertible diffeomorphic map which locally aligns source and reference image 134 

by adjusting for local inter-individual morphological differences.   135 

Flowcharts are provided as a visual reference to guide the description of each 136 

computational step, where light grey shading denotes image inputs, dark grey shading denotes 137 

the final output and computational processes are outlined in the form of rectangular boxes. All 138 

the computational steps have been carried out using tools and algorithms implemented within the 139 

ANTs toolkit (version 1.9 http://sourceforge.net/projects/advants/) and employed to process 3D 140 

RARE morphoanatomical images acquired at 7 Tesla with the image sequence parameters 141 

described above. The parameter employed for the preprocessing steps were optimized in pilot 142 

assessments using both empirical (e.g. segmentation) and quantitative approaches (e.g. 143 

registration). 144 

 145 

2.3.1. Image preprocessing  146 

Basic image preprocessing includes bias field correction and skull stripping (Figure 1). 147 

As a first step, all the images are corrected for intensity non-uniformity using 148 

N3BiasFieldCorrection, an automated algorithm implemented within the ANTs toolkit using 50 149 

fitting levels. This step reduces bias field signal related to the reception profile of MRI receive 150 

coils, a low frequency amplitude modulation of the signal that produces regional variation in 151 

voxel intensity  as a function of  coil proximity. The correction of this bias is an important pre-152 

requisite for subsequent intensity based MR image processing, such as tissue segmentation.  153 

Skull stripping is required to remove extra brain tissue, thus crucially improving the 154 

http://sourceforge.net/projects/advants/
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accuracy of subject-to-template registration. In order to automate skull-stripping and avoid 155 

tedious and error-prone manual segmentation, an automatic registration-based approach to skull 156 

stripping was devised. This is carried out by registering the bias adjusted MRI volumes to a skull 157 

stripped reference image using an affine and diffeomorphic registration algorithm. The skull 158 

stripped reference image should ideally be chosen from the study population or from comparable 159 

experiments of the same laboratory. A companion brain binary mask of the reference image can 160 

be segmented manually. While potentially labour intensive in high resolution brain images, this 161 

process can be performed only once, and it is instrumental to automating skull stripping for all 162 

the subsequent subjects and analyses. After the registration, the diffeomorphic map is applied to 163 

non-linearly transform the brain mask of the reference image into the subjects’ space using 164 

WarpImageMultiTransform. The   subject’s   brain   mask   is   then   applied   to   each   original   subject  165 

image to obtain skull stripping. An additional bias correction is subsequently performed on the 166 

skull stripped subject image to achieve a more accurate estimation of the bias field, devoid of the 167 

contribution of non-brain related protrusions.   168 

An illustrative example of the advantage of performing two independent bias corrections, 169 

(before and after skull stripping, respectively) is reported in Figure 2. Even though the first step 170 

does not flawlessly compensate for signal inhomogeneity in all brain regions (i.e. the ventral 171 

areas of the brain and in the ventricles), its use provides a first normalization of signal intensity 172 

that results in an improved the accuracy of registration based estimation of brain mask, and the 173 

removal of brain extra tissue. After this skull stripping step, the bias field of the original subject 174 

image is re-estimated, leading to a more accurate bias correction. The results of this first-pass 175 

skull stripping are typically visually inspected for imperfections, usually present in a minority of 176 

subjects, which can be easily manually corrected, for example using the brushtool of  ITKsnap 177 

(Yushkevich et al., 2006). For each subject, the result of preprocessing is a skull stripped and 178 

bias corrected brain image, exhibiting uniform contrast within the same tissue class, and its 179 

binary mask.  180 

 181 

2.3.2. Study based template  182 

A critical element in our approach is the construction of a study based template to 183 

establish a common reference space for all the subsequent analyses. In cross-sectional mouse 184 

studies, the most adopted experimental designs for mouse phenotyping with transgenic lines, this 185 
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involves the creation of an average template from a reference population, typically the control 186 

subjects (B6 in this study). This leads to the generation of a template recapitulating 187 

neuroanatomical features of “healthy” or reference population, avoiding the combination of 188 

conflicting morphoanatomical traits which could affect subsequent computational steps (e.g. 189 

segmentation). For example, the use of both normo-callosal B6 and acallosal BTBR mice for 190 

template creation would result in a chimeric image exhibiting a blurred and hypo-intense corpus 191 

callosum, a feature that could negatively affect the quality of subsequent segmentation priors. 192 

The creation of different templates for different studies can help minimizing confounding effects 193 

related, for instance, to perfusion, age, sex and brain sizes.   194 

Study-based template creation was implemented via the use of the buildtemplateparallel 195 

script available within the ANTs toolkit (Avants et al., 2010b). This script entails an automated 196 

and iterative intensity-based registration approach to automatically create a study based template 197 

using a predefined list of subjects (Kovacevic et al., 2005). A representative subject is selected as 198 

initial reference and each subject is linearly registered to the reference subject using an affine 199 

transformation. After intensity averaging all registered images to obtain a first linear group 200 

average, an iterative five-generation multi-scale non-linear alignment process is performed using 201 

a Greedy Syn diffeomorphic registration algorithm (Avants et al., 2008) with a maximum of 120 202 

iterations for each step. This process entails an initial diffeomorphic registration of each subject 203 

to the reference linear group average to   obtain   individuals’   warps using cross correlation as 204 

similarity metric. These warps are then averaged and applied to the template to update its shape 205 

and conform it to the population shape. The process is iteratively repeated four more times, by 206 

using as reference the warped template from the previous iteration. The final outcome is an 207 

average template volume exhibiting clear structural boundaries, incorporating fine grain 208 

neuroanatomical descriptions of the reference population, and reduced intensity variation.  209 

 210 

2.3.3. Anatomical labelling  211 

The assessment of subtle anatomical differences in gross morphology via manual delineation 212 

of brain structures is a laborious and time consuming task that may introduce intra- and inter-213 

observer bias (Badea et al., 2012). The procedures described here allows for volumetric 214 

estimation via anatomical labelling, a procedure whereby brain regions can be labelled and 215 

classified depending on their anatomical location. The process employed in our workflow relies 216 
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on the availability of preprocessed images, a study-based template and two neuroanatomical 217 

labelled reference MRI atlases for cortical (Ullmann et al., 2013) and subcortical (Dorr et al., 218 

2008) areas, respectively. The output of automated anatomical labelling is a fine-grained 219 

projection of a given anatomical label in   the  subject’s  coordinate  space.  The  anatomical labels 220 

thus registered can be used both to measure the volume of anatomical regions of interest for 221 

cross-strain statistical comparison, or as intermediate input for further analyses, such as cortical 222 

thickness estimation (Figure 3). 223 

The volume of specific anatomical regions in individual subjects is computed using a 224 

template based  anatomical labelling strategy (Avants et al., 2010b). As previously reported in 225 

the literature, the propagation of labels from the anatomical labelled atlas to the subject space is 226 

more accurate when performed via the study based template to minimize variation due to 227 

registration errors (Jia et al., 2011). To this purpose, a composition of affine and diffeomorphic 228 

(SyN) registration between the reference neuroanatomical atlas and the study based template is 229 

performed to project the anatomical labels in the coordinate system of the study based template 230 

(Avants et al., 2009) For the anatomical images and RARE sequence used in this study we 231 

adopted cross correlation as similarity metric, with a window radius of 5 and a gradient step 232 

length of 0.25. The optimisation was performed over four resolutions for both transformations 233 

with a maximum of 100 iterations for the coarse levels and 10 at the full resolution. A simple 234 

propagation of the neuroanatomical labels mapped in the study-based template space to the 235 

subjects’   space can then be achieved via the registration of each subject to the study based 236 

template and the subsequent propagation of the labels to each subject. The efficiency of the 237 

registration procedures can  evaluated using the Dice coefficient (DiceAndMinDistSum command 238 

from ImageMath), which quantifies the overlap between a manually defined label and the same 239 

label resulting from our automated labelling, in the subject space (Dice, 1945). Label volumes 240 

can then be easily computed using tools included in several MRI software packages (e.g. 241 

LabelStats command from ImageMath, or  FSL’s  fslstats).  242 

 243 

2.3.4. VBM 244 

VBM is a whole-brain technique for characterizing regional brain volume and differences 245 

in tissue concentration, in particular GM, across subjects. In our procedure, it consists of five 246 

main steps (Figure 4).  247 
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First, a study based template is created using brain anatomical images from reference 248 

population described above. Second, the original images of the two groups of subjects are 249 

registered to the study based template via the same affine and diffeomorphic mapping used for 250 

anatomical labelling. Third, spatially normalized images are segmented using a Markov Random 251 

Field model, implemented by the Atropos command of the ANTs toolkit (Avants et al., 2011). 252 

To classify tissues we applied a smoothing factor of 0.0125, a radius of 1 and the maximum 253 

number of iterations was set at 10. The separation of GM (i.e. the readout of interest) from white 254 

matter (WM) and cerebrospinal fluid (CSF) is improved by initializing the process with the study 255 

based template, previously segmented using standard k-means clustering included in the Atropos 256 

command. (Figure 5, B-C). This step is especially critical and it is therefore here described in 257 

greater detail. In pilot work, we explored the number of tissue classes leading to optimal 258 

separation of GM from non-GM components (WM plus CSF). A canonical three-class 259 

segmentation of ex vivo mouse brain using Atropos results in inefficient GM/WM segmentation, 260 

leading to an overestimation of WM fraction at the expense of GM (Figure S1). The use of six 261 

independent classes results in three GM clusters that can be merged to provide a final accurate 262 

GM map (Fig. 5). A similar approach has been employed by other investigators (e.g. (Li et al., 263 

2009)). Our segmentation procedure results in a two-voxel layer on the outmost edge of the 264 

cortex   which   is   labelled   as   “non   gray   matter”   and, as such, is not included in subsequent 265 

analysis. These voxels are characterised by low or very-low signal intensity and reflect a 266 

combination of partial volume effects between gray matter and non MRI visible skull signal, and 267 

possibly also small inaccuracies due to registrations. In our workflow, these   “low  confidence”  268 

gray matter voxels are discarded to improve the robustness of subsequent voxelwise statistical 269 

mapping.  270 

In our procedure, the quality of segmentation is assessed empirically by comparing 271 

individual and merged tissue classes with the anatomical distribution of known high-density WM 272 

structures such as the corpus callosum, anterior and posterior commissures, as seen in the study 273 

based template (Figure 5). These structures are easily identifiable and their extension can be 274 

compared with their segmented counterparts. Future developments of our initial workflow could 275 

employ quantitative approaches to estimate goodness of cluster separation  (Chou et al., 2004; 276 

Wu and Yang, 2005), although operator dependent assessments of tissue class separations are 277 

ultimately warranted to ensure biologically meaningful results.  278 
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It should be noted that the segmentation procedure employed in our work does not always 279 

lead to a clear separation of WM and CSF, at least on brain volumes acquired ex vivo. Besides 280 

differences in the anatomical organization of the mouse brain and image contrast in the PFA 281 

perfused brain (Cahill et al., 2012), a contributing reason for this is the occurrence of CSF loss 282 

from the brain in a large proportion (ca. 70%) of the subjects as a consequence of the ex vivo 283 

fixation procedure, leading to the presence of signal voids in ventricular space. These low signal-284 

intensity intra-ventricular foci are typically classified as WM, leading to mixed or incomplete 285 

separation between these two brain components. Such incomplete separation however does not 286 

limit the validity of our approach, because both CSF and WM (even if separate) would invariably 287 

end up being discarded from subsequent GM-based analyses (i.e. VBM and cortical thickness).  288 

After tissue segmentation, the Jacobian determinants of the deformation are calculated with 289 

ANTSJacobian command of the ANTs toolkit and used to modulate the GM probability maps 290 

calculated during the segmentation step. This step permits the analysis of GM probability maps 291 

in terms of local anatomical variation instead of tissue density (Ashburner and Friston, 2000). 292 

Jacobian determinants can be also normalized by the total intracranial volume to further 293 

eliminate overall brain volume variations and calculate relative GM volumes. Fifth, the resulting 294 

modulated GM probability maps are smoothed using a Gaussian kernel with a sigma of three 295 

voxel width (FWHM=0.64mm) and employed for voxel-wise statistical comparison. 296 

  297 

2.3.5. Cortical Thickness 298 

The proposed registration-based cortical thickness DiReCT estimation approach (Figure 299 

3) is a voxelwise computational approach based on the method presented by Das and colleagues 300 

(Das et al., 2009) and relies on the KellyKapowsky command within ANTs toolkit. The method 301 

provides cortical thickness measurements at the voxel level using cortical and non-cortical 302 

labelled volumes as inputs. From an anatomical standpoint, the cortical labelled volume 303 

employed (cortical ribbon) is limited between  an external outline corresponding to the outer 304 

layer of the cortex and an  internal outline identified by the inner layer of the cerebral cortex 305 

adjacent to callosal WM fibres. The method identifies a continuous one-to-one correspondence 306 

between inner and outer cortical surfaces and the cortical thickness is estimated via a distance 307 

measure on the basis of this diffeomorphic correspondence. The inner surface is used as a 308 

reference to initialize a thin layer of about 1 voxel width. This layer, which replicates the shape 309 
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of the outer layer of the cortex, is then allowed to expand under the diffeomorphic deformation. 310 

The deformation is introduced through the cortical label until the layer reaches the outer cortical 311 

surface and the obtained deformation map can eventually be used to compute the cortical 312 

thickness. The final result of this process is a cortical voxelwise map with a nominal  “thickness” 313 

value in each voxel, reflecting the deformation field that voxel has been subjected to (Das et al., 314 

2009). Figure S2 shows an illustrative example of the obtained voxelwise cortical thickness map 315 

where the presence of parallel columns of voxels exhibiting constant thickness is apparent. The 316 

obtained maps are then typically cross-compared using standard voxelwise statistics. The 317 

original method (Das et al., 2009) was optimized to identify deep sulci of the human brain by 318 

forcing the algorithm to recover lost sulci, but can also be applied to map lissencephalic cortices 319 

like those of the rodent brain. The estimation process is carried out separately for right and left 320 

hemisphere to preserve the Neumann boundary (Lee et al., 2011).  321 

The cortical thickness estimation includes four main steps. First, a right and the left 322 

cortical label need to be created, as well as the non-cortical label. In the present study this was 323 

achieved  by combining all cortical labels mapped (enthorinal cortex, frontal, occipital and 324 

parieto-temporal lobe) of the Dorr MRI atlas of the mouse brain (Dorr et al., 2008) into one 325 

single hemispheric label. A non-cortical label was generated by merging all the remaining non-326 

cortical regions. Second, cortical thickness is estimated using KellyKapowsky, with a prior 327 

anatomical constraint of cortical thickness of two millimetres and a gradient step size for 328 

optimisation of 0.02. Number of iterations, threshold and window size for convergence were left 329 

unchanged (e.g. default parameters). Third, maps of cortical thickness are combined into a joint 330 

volume and transformed to template space using available registration maps obtained previously. 331 

Fourth, the transformed cortical maps are smoothed using a Gaussian kernel with a sigma of two 332 

voxel width (FWHM=0.42). This process yields images that can be used for univariate or 333 

multivariate analysis at the voxel level.  334 

Despite the use of non-callosal mice our automated anatomical labelling correctly 335 

labelled the cortical mantle of BTBR in virtually all cortical areas, with possible minor 336 

underestimations of cortical thickness in medial anterior cingulate regions. As a result, 337 

intergroup alterations in those regions may be interpreted cautiously when acallosal mice are 338 

used as reference strain. However most mouse lines commonly used in neuroscience and 339 

preclinical research exhibit normal callosal integrity and are therefore to be considered immune 340 
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to this potential artefact.  341 

To further evaluate the accuracy of the cortical thickness estimation process, manual 342 

measurement was also performed by an experienced operator blinded to the results of the cortical 343 

thickness estimation (Figure 6). In a randomly chosen subject, three coronal slices were extracted 344 

and cortical thickness was measured for secondary motor cortex (M2), secondary somatosensory 345 

cortex (S2) and auditory cortex (Au) using the ruler tool available in the ITK Workbench. 346 

 347 

2.4. Statistical analysis 348 

All statistical analysis of the smoothed and modulated GM probability maps and cortical 349 

thickness maps were conducted using FSL. Firstly, maps were concatenated in a 4D dataset, 350 

using fslmerge. Subsequently, standard non-parametric Monte Carlo test with 5000 random 351 

permutations was performed using randomise. Threshold-free cluster enhancement was 352 

employed to   include   voxels’   neighbourhood information without defining a-priori cluster 353 

threshold. P-values were corrected for multiple comparisons using a cluster-based threshold of 354 

0.01 (Jenkinson et al., 2012; Worsley et al., 1992). Two-tailed voxelwise statistics were used for 355 

inter-group VBM and cortical thickness mapping. Brain volumes, resulting from the 356 

segmentation process, were tested for statistical differences between the two strains using a two-357 

tailed Student’s t-test, followed  by  Hochberg’s  correction  for  multiple  comparisons. 358 

 359 

3. Results  360 

As an illustrative example of the approach, we tested our set of methods to map and 361 

quantify morphological variations in inbred socially impaired BTBR mice with respect to 362 

normosocial B6 (Squillace et al., 2014). A biological interpretation of the differences mapped 363 

has been recently reported by us (Dodero et al., 2013) and others (Ellegood et al., 2013), and will 364 

not be re-discussed here. 365 

 366 

3.1. Study based template and volumetric analysis  367 

A study based template created following the procedure herein explained is depicted in 368 

Figure 5. The template was created using the scans of nine normosocial B6 mice, which have 369 

been used as reference population for this illustrative study. The template reveals clear structural 370 

boundaries and high WM-GM contrast, depicting fine-grain anatomical features that can be used 371 
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to describe the population more effectively and reliably than a single representative subject 372 

(Tucci et al., 2014). 373 

In pilot studies, we assessed the accuracy of registrations as a function of varying 374 

registration parameters (i.e. window radius and gradient step for symmetric normalization) as 375 

recently described (Badea et al., 2012). By varying registration parameters, the approach can be 376 

used to identify the best set of parameters matching the results of manual parcellation. We varied 377 

windows radius between 3 and 9 voxels, and gradient step for symmetric normalization between 378 

0.10 and 2 voxels. The results of this analysis (Figure S3) show that the parameters choses (5 and 379 

0.5 voxels, respectively) produce a good registration accuracy in all the brain regions tested. 380 

These parameters are in agreement with those previously selected by Badea and colleagues using 381 

ex vivo brain samples imaged at 9.4 Tesla.  382 

Using these validated parameters, cross-strain volumetric analysis using anatomical 383 

labels from the two atlases highlighted the presence of a general reduction in cortical volume in 384 

BTBR mice with respect to B6 mice. Also major subcortical structures, including caudoputamen, 385 

hippocampus and hypothalamus reported a statistical significant reduction in volume (Figure 7). 386 

These results are in good agreement with recent comparative neuroanatomical mapping of these 387 

two strains performed by other labs (Ellegood et al., 2013), where a similar significant decrease 388 

in the volume of cortex and corpus callosum was shown. 389 

 390 

3.2. VBM 391 

Whole-brain VBM revealed widespread and bilateral reductions in GM volume across 392 

dorsofrontal, cingulate, retrosplenial, occipital and parietal cortex (Figure 8, Z>3.1, p-393 

corrected<.001), in BTBR compared to B6 controls. These findings are in agreement with the 394 

results of anatomical labelling. GM volume reductions were also evident in subcortical areas, 395 

including the lateral and posterior thalamus (longitudinal fasciculus), the posterior hypothalamus 396 

and the ventral hippocampus. Interestingly, VBM highlighted also small bilateral foci of 397 

increased GM volume in the olfactory bulbs, in the medial pre-frontal and insular cortex, in the 398 

amygdala and in the dorsal hippocampus. The detection of small focal effects that could not be 399 

revealed when integrated over large anatomical volumes is one of the main advantages of the 400 

VBM approach over classic neuroanatomical volumetric mapping. These results are in good 401 

agreement with recent comparative neuroanatomical mapping of these two strains performed by 402 
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other labs using tensor based morphometry (Ellegood et al., 2013), which showed similar 403 

significant alterations (using Tensor Based Morphometry, see discussion below) in hippocampal 404 

and cortical areas.  405 

 406 

3.3. Cortical Thickness Estimation 407 

 Further investigation of the presence of local alterations of GM in BTBR mice compared 408 

to B6 controls was performed in terms of cortical thickness estimation. Average spatially-409 

normalized voxel-based thickness maps were calculated separately for each of the two strains 410 

and three-dimensionally rendered for visualization purposes (Figure 9). In good agreement with 411 

the results of automated anatomical labelling and VBM mapping, a widespread reduction in 412 

mean cortical thickness (Z>2.3, p-corrected<0.01) was observed in BTBR mice compared to B6 413 

controls. Importantly, inter-group voxel-wise statistics revealed significantly increased cortical 414 

thickness in medial prefrontal and insular regions in the BTBR cohort (Z>2.3, p-corrected<0.01).  415 

 416 
4. Discussion and conclusions 417 

Here we described semi-automated procedures for automated anatomical labelling, VBM 418 

and cortical thickness estimation in the mouse brain. The approach has been recently applied to 419 

detect fine-grained morphoanatomical alterations in different mutant mouse lines, including 420 

alterations  in  β-catenin mouse mutants (Tucci et al., 2014), acallosal and socially-impaired mice 421 

(Dodero et al., 2013) and to identify sexually divergent effects on cortical anatomy in catechol-422 

O-methyltransferase mutant lines (Sannino et al., 2014). In the latter study, we showed 423 

remarkably consistent intergroup differences in regional GM volume as assessed with our VBM 424 

pipeline, or manual morphometric measurements of cortical thickness in post-mortem brain 425 

slices (Sannino et al., 2014), thus underscoring  the accuracy and sensitivity of our workflow.  426 

The image processing described here adopts the methodologies and toolkits originally 427 

developed for human brain imaging and can be straightforwardly extended to other areas of 428 

research and mouse models of disease. For example, we also used VBM to describe symmetric 429 

networks of anatomical covariance in the cortex of inbred mice complementary to those 430 

previously identified in humans, providing a new tool to study gray matter disrupted connectivity 431 

in brain disorders with transgenic mice (Pagani et al., 2016).  Although prominent examples of 432 

the use of morphoanatomical methods in the mouse have been recently described by other labs 433 
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(Badea et al., 2012; Borg and Chereul, 2008; Budin et al., 2013; Delatour et al., 2006; Johnson et 434 

al., 2007; Lee et al., 2010; Lerch et al., 2011a; Nieman et al., 2005; Oguz and Sonka, 2014; 435 

Sawiak et al., 2009; Sawiak et al., 2013), the vast majority of these contribution lack a detailed 436 

description of the complex workflow required to process and analyse different 437 

morphoanatomical readouts, thus complicating the replication of these methods by other groups. 438 

The methodological workflow presented in this work was designed to facilitate the 439 

implementation of fine-grained morphoanatomical mapping tools by non-expert users, and 440 

promote forward and back translation of MRI preclinical and clinical research evidence. We also 441 

point out that a preliminary account on the implementation of these procedures in parallel 442 

computing cloud environment has been recently reported (Minervini et al., 2014), a strategy that 443 

can streamline and accelerate image processing time by exploiting large high-performance-444 

computing infrastructures.  445 

A dominant feature of our unified approach is the coupling of standard intensity based 446 

affine registration with a symmetric diffeomorphic normalization algorithm to obtain optimal 447 

MR image registration (Avants et al., 2008). This approach, which has been successfully 448 

employed both in human (Kim et al., 2008; Klein et al., 2009; Klein et al., 2010) and small 449 

animal imaging studies (Avants et al., 2010b; Lerch et al., 2011b), is based on the ANTs open 450 

source software library and is adopted to create a study based template, carry out skull stripping 451 

and perform anatomical labelling via label propagation. Our cortical thickness estimation 452 

approach is also registration-based, and employs DiReCT, an advanced diffeomorphic 453 

registration algorithm implemented in ANTs toolkit that has been recently validated on human 454 

imaging data (Das et al., 2009) and used for research studies with clinical population (Avants et 455 

al., 2010a). To the best of our knowledge, this is the first example of the application of this 456 

approach to map cortical thickness in small rodent species.  457 

The cortical thickness mapping and anatomical labelling approaches employed rely on 458 

the availability of three dimensional labelled MRI atlases with delineated cortical and subcortical 459 

morphology. While a universally accepted MRI atlas of the mouse brain is still not available, a 460 

number of mouse brain MRI atlases have been published based on high resolution acquisitions of 461 

a single subject (Badea et al., 2012; Maheswaran et al., 2009a; Xie et al., 2010; Zhang et al., 462 

2010) or constructed from several animals, with data gathered either in vivo (Aggarwal et al., 463 

2009; Ma et al., 2008; Maheswaran et al., 2009b) or from ex vivo fixed specimens (Aggarwal et 464 
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al., 2009; Badea et al., 2007; Dorr et al., 2008; Johnson et al., 2010; Kovacevic et al., 2005; 465 

Ullmann et al., 2013). In this study, a combination of two atlases was employed to obtain a fine-466 

grained parcellation of both cortical (Ullmann et al., 2013) and subcortical (Dorr et al., 2008; 467 

Ullmann et al., 2013) regions. However, our method is not atlas-dependent and can be flexibly 468 

adapted to a number of published or custom mouse brain MRI anatomical partitions.  469 

An important benefit of our approach is the possibility to measure different and 470 

complementary morphoanatomical brain metrics - including volumetric analysis, VBM and 471 

cortical thickness - in a single reference space. This aspect is of crucial importance, as it 472 

broadens the scope of application of MRI-based brain morphometry and it augments its 473 

translational potential by permitting a multi parametric comparison with analogous clinical 474 

readouts. In the illustrative example reported here, an overall agreement between the three 475 

readouts was found. Apparent discrepancies between readouts (e.g., the lack of inter-strain 476 

differences in insular volume, due to the presence of VBM foci of increased and decreased 477 

regional volume in anterior and posterior portions of this region) are the result of different 478 

sampling scales (label vs. voxel level) of the readouts employed. We also note that the 479 

combination of complementary approaches can help disambiguate morphological alterations of 480 

pathological origin, as the relationship between thickness and local GM volume has not been 481 

thoroughly clarified, and may probably change across pathologies and populations (Hutton et al., 482 

2008). Within this scenario, the use of complementary metrics coupled to histological staining 483 

can help to pinpoint the pathological bases of brain morphometric changes of neuropathological 484 

origin.  485 

In addition, our preprocessing workflow can be straightforwardly extended to perform 486 

tensor based morphometry (TBM). As in VBM, TBM entails the local computation of the 487 

Jacobian determinants of the deformation field used  to  map  subjects’  images  to  the  study  based  488 

template. The Jacobian determinant (i.e. the local scaling factor) encodes for local anatomical 489 

expansions  and  contractions  of  subjects’ areas relative to the study based template, and therefore 490 

Jacobian maps can be used to localise inter-group differences in the local shape of brain 491 

structures at the voxel level. TBM analysis can be simply performed by omitting the tissue 492 

segmentation step in the VBM procedure herein described. As TBM does not entail tissue 493 

classification, it can be used for the simultaneous investigation of WM and GM alterations, and 494 

may robustly detect alterations in areas of mixed WM-GM structures, such as the thalamus and 495 
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brain stem, which are especially sensitive to the accuracy of intensity based tissue classification 496 

algorithms.  497 

A few methodological limitations in our approach deserved to be mentioned. The 498 

procedure described here has been developed and optimized or fixed ex vivo brain samples 499 

imaged at 7 Tesla using T2-weighted images. While the application of our workflow to different 500 

field strengths and image contrast is conceivable, adjustments in single preprocessing parameters 501 

may be required to adapt our procedure to different contrast mechanisms or images acquired at 502 

different field strengths. One limitation of our cortical thickness mapping is its poor performance 503 

in resolving thickness at the level of inter-hemispheric fissure in medial regions of the mouse 504 

cortex such as cingulate or retrosplenial areas (Figure S2). As a result, inter-group differences in 505 

cortical thickness in these regions should be interpreted with caution. Researchers interested in 506 

mapping gray matter alterations in these regions with high confidence, should consider cross 507 

validating thickness mapping with voxelwise methods described in our workflow that are 508 

immune to this limitation, such as VBM and TBM. Similarly, the segmentation of the anterior 509 

cingulate in acallosal mice such as BTBR should be considered tentative, as the lack of clear 510 

white matter gray matter boundary prevents an empirical assessment of its accuracy. Once again, 511 

voxelwise-based morphoanatomical mapping together with histological measurements can help 512 

validate cortical thickness measurements in these areas when acallosal mice are employed. 513 

Caution should also be exercised in interpreting inter-group differences in mouse models 514 

characterized by profound demyelination and neurodegeneration, two conditions that can reduce 515 

GM/WM contrast and affect segmentation accuracy for VBM. Notwithstanding these limitations, 516 

the possibility of using a unified workflow to map multiple complementary morphoanatomical 517 

parameters should be emphasized as a major point of strength of our approach, owing to the 518 

possibility of cross-comparing different readouts to dissect specific neuroanatomical features 519 

with increased confidence.  520 

In conclusion, we described a registration-based approach for anatomical mapping, VBM 521 

and cortical thickness estimation in the mouse brain. The application of these procedures enabled 522 

the identification of subtle volumetric differences across subjects without prior knowledge of 523 

structures of interest. Our unified approach based on diffeomorphic registration permits to 524 

integrate complementary MR morphoanatomical techniques, and is based on popular open 525 

source software (ANTs), which has been extensively employed in priori MRI morphometric 526 
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studies. The detailed operational workflow described in the present work is expected to help the 527 

implementation of rodent morphoanatomical methods by non-expert users, thus ultimately 528 

promoting the use of these tools across the preclinical neuroimaging community. 529 

  530 



19 
 

Captions 531 
 532 
Figure 1. Preprocessing workflow.  533 
Each MRI subject image undergoes a first correction for intensity non-uniformity bias using the 534 
N3BiasFieldCorrection. To create individual subject masks, a masked representative reference subject is registered 535 
to each subject, and the transformation of this registration is then applied to the reference subject mask. The 536 
application of this mask permits to remove most extra brain tissue. Non-uniformity bias is subsequently estimated 537 
for individual masked brains. The preprocessing procedure outputs a skull-stripped bias-corrected image and a 538 
companion binary brain mask for each subject.  539 
 540 
Figure 2. Preprocessing results. 541 
In this illustrative example, the original subject image (a) is bias corrected before (b) and after (e) skull stripping (d). 542 
Note the improved bias field correction after skull stripping (f) with respect to the bias correction prior skull 543 
stripping (c), especially in the ventral part of the brain and in the ventricles. Voxels intensity is represented in shades 544 
of red to magnify image contrast. 545 
 546 
Figure 3. Automated anatomical labelling and cortical thickness estimation.  547 
Upper box: Anatomical labels of the MRI atlas are registered into each subject space via the study based template 548 
through a combination of linear and diffeomorphic mapping, using antsRegistration and 549 
WarpImageMultiTransform. A propagation of the labels from the MRI atlas to each subject space is then performed 550 
via the study based template, followed by the estimation of the volume for each label. Lower box: Anatomical labels 551 
of the cortical mantle in the subject space are merged together to build a unified cortical label. This cortical label and 552 
subject brain mask of the subjects are used to create the inputs needed to estimate the cortical thickness using 553 
DiReCT. The obtained cortical thickness maps are eventually warped again into the study based space and smoothed 554 
for subsequent statistical comparison. 555 
 556 
Figure 4. VBM.  557 
Each preprocessed subject image is mapped on the study based template space through a combination of linear and 558 
diffeomorphic mapping, using antsRegistration and WarpImageMultiTransform. Registered volumes are segmented 559 
using the study based template priors. Grey matter probability maps for each subject are then modulated using 560 
Jacobian maps obtained from the registration process and smoothed for subsequent statistical comparison.  561 
 562 
Figure 5. Study based template and tissue segmentation. 563 
Orthogonal slice view of a study based template of the B6 mice population obtained using the iterative 564 
diffeomorphic registration process of the buildtemplateparallel script and its corresponding tissue segmentation (a). 565 
The template is segmented using Atropos in 6 different tissue classes which are used as a-priori information for 566 
individual estimation of gray matter in VBM. The different tissue classes of the template are combined to obtain 567 
gray matter (b) and non gray matter components (c, white matter, plus ventricular regions and CSF). 568 
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Figure 6. Correlation plot between DiReCT outputs and manual measurements of cortical thickness. 569 
Secondary motor (M2), secondary somatosensory (S2) and auditory cortex (Au) were chosen as representative 570 
cortical areas to validate our cortical thickness methodology. Representative measures from DiReCT and manual 571 
estimates are reported for selected cortical regions (middle panel). A correlation plot of manual and automatic 572 
measurements highlighted an excellent correspondence between  the  twee  readouts  in  terms  of  Pearson’s  correlation  573 
(r=0.99; p<0.001). 574 
 575 
Figure 7. Anatomical labelling.  576 
The  labels  of  the  reference  atlas  employed  are  warped  into  subjects’  space  via  the  study  based  template  using  the  577 
combination of affine and diffeomorphic mapping obtained after the registration process. The registered labels 578 
permit to calculate volumes of brain areas of interest and perform t-tests between the mouse samples.  (Cpu: 579 
caudoputamen; Th: thalamus; OB: olfactory bulbs; HP: hippocampus; Hyp: hypothalamus, CC: corpus callosum; 580 
OF: orbitofrontal cortex; RS: retrosplenial cortex; M1: primary motor cortex; V1: primary visual cortex; Rh: rhinal 581 
cortex). **p<.01; ***p<.001.)  582 
 583 
Figure 8. VBM.  584 
Differences in local gray matter volumes are assessed combining gray matter probability maps and local Jacobian 585 
determinants. Statistical comparison (p<.01, threshold-free cluster enhancement followed by cluster-based 586 
thresholding) showed widespread and bilateral reductions in grey matter volumes across dorsofrontal, cingulate, 587 
retrosplenial, occipital and parietal cortex as well as in subcortical structures in BTBR compared to B6 controls. 588 
VBM highlighted also small bilateral foci of increased gray matter volume in the olfactory bulbs, in the medial pre-589 
frontal and insular cortex, in the amygdala and in the dorsal hippocampus. (Cb: cerebellum; Cpu: caudoputamen; 590 
DHyp: dorsal hypothalamus; dPFC: dorsal prefrontal cortex; LTh:  lateral thalamus; mPFC: medial prefrontal 591 
cortex; OB: olfactory bulbs; Rh: rhinal cortex; RS: retrosplenial cortex). 592 
 593 
Figure 9. Cortical thickness estimation.  594 
Three-dimensional rendering views of average cortical thickness in BTBR and B6 mice (a). Statistical comparison 595 
showed significant cortical thickness thinning (p<0.01, threshold-free cluster enhancement followed by cluster-596 
based thresholding) in parietal, temporal and peri-hippocampal cortex of BTBR mice. Increased thickness was 597 
observed in medial prefrontal and anterior insular regions of this strain (b).  598 
 599 
Figure S1. Segmentation of the study based template using six tissue classes provides accurate GM/WM 600 
separation.  601 
A: Standard three-class segmentation of our ex vivo brains using Atropos did not produce an accurate GM/WM 602 
separation, with a great overestimation of white matter fraction. Anatomical template (left), plus the segmentation 603 
classes obtained with a three-cluster segmentation approach (WM, mixed WM/GM and GM matter maps, from left 604 
to right, respectively). B: The combined use of six independent segmentation classes leads to a more accurate 605 
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separation of GM and WM. The final GM map is the combined result of three GM classes (middle row). Additional 606 
non-GM tissue can be obtained by merging the remaining three classes. 607 
 608 
Figure S2. Cortical thickness estimation.  609 
In lissencephalic brains, DiReCT measurement results in a string of voxels exhibiting constant thickness. This 610 
appears  in  the  form  of  parallel  cortical  “columns”  in  coronal  brain  slices  clearly  visible  in  the magnified view, where 611 
colors represent the norm of the deformation field that is the estimated thickness.  612 
 613 
Figure S3. Optimization of registration parameters for anatomical labelling. 614 
Accuracy of registration (Dice coefficient) for varying registration parameters (window radius for cross correlation 615 
and gradient steps). Top: as in Badea et al., (2012), we varied windows radius between 3 and 9 voxels. The chosen 616 
value (5 voxels) produces a good performance in all the brain regions tested. Bottom: the gradient step parameter for 617 
the symmetric normalization was varied between 0.10 and 2 voxels. The chosen parameter (0.5 voxels) produces a 618 
good performance in all the tested regions.  619 
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