4,351 research outputs found

    Soft Computing Based Risk Management

    Get PDF

    From Fuzzy Expert System to Artificial Neural Network: Application to Assisted Speech Therapy

    Get PDF
    This chapter addresses the following question: What are the advantages of extending a fuzzy expert system (FES) to an artificial neural network (ANN), within a computer‐based speech therapy system (CBST)? We briefly describe the key concepts underlying the principles behind the FES and ANN and their applications in assisted speech therapy. We explain the importance of an intelligent system in order to design an appropriate model for real‐life situations. We present data from 1‐year application of these concepts in the field of assisted speech therapy. Using an artificial intelligent system for improving speech would allow designing a training program for pronunciation, which can be individualized based on specialty needs, previous experiences, and the child\u27s prior therapeutical progress. Neural networks add a great plus value when dealing with data that do not normally match our previous designed pattern. Using an integrated approach that combines FES and ANN allows our system to accomplish three main objectives: (1) develop a personalized therapy program; (2) gradually replace some human expert duties; (3) use “self‐learning” capabilities, a component traditionally reserved for humans. The results demonstrate the viability of the hybrid approach in the context of speech therapy that can be extended when designing similar applications

    An intelligent framework for monitoring student performance using fuzzy rule-based linguistic summarisation

    Get PDF
    Monitoring students' activity and performance is vital to enable educators to provide effective teaching and learning in order to better engage students with the subject and improve their understanding of the material being taught. We describe the use of a fuzzy Linguistic Summarisation (LS) technique for extracting linguistically interpretable scaled fuzzy weighted rules from student data describing prominent relationships between activity / engagement characteristics and achieved performance. We propose an intelligent framework for monitoring individual or group performance during activity and problem based learning tasks. The system can be used to more effectively evaluate new teaching approaches and methodologies, identify weaknesses and provide more personalised feedback on learner's progress. We present a case study and initial experiments in which we apply the fuzzy LS technique for analysing the effectiveness of using a Group Performance Model (GPM) to deploy Activity Led Learning (ALL) in a Master-level module. Results show that the fuzzy weighted rules can identify useful relationships between student engagement and performance providing a mechanism allowing educators to transparently evaluate teaching and factors effecting student performance, which can be incorporated as part of an automated intelligent analysis and feedback system

    A Dynamic Neuro-Fuzzy Model Providing Bio-State Estimation and Prognosis Prediction for Wearable Intelligent Assistants

    Get PDF
    BACKGROUND: Intelligent management of wearable applications in rehabilitation requires an understanding of the current context, which is constantly changing over the rehabilitation process because of changes in the person's status and environment. This paper presents a dynamic recurrent neuro-fuzzy system that implements expert-and evidence-based reasoning. It is intended to provide context-awareness for wearable intelligent agents/assistants (WIAs). METHODS: The model structure includes the following types of signals: inputs, states, outputs and outcomes. Inputs are facts or events which have effects on patients' physiological and rehabilitative states; different classes of inputs (e.g., facts, context, medication, therapy) have different nonlinear mappings to a fuzzy "effect." States are dimensionless linguistic fuzzy variables that change based on causal rules, as implemented by a fuzzy inference system (FIS). The FIS, with rules based on expertise and evidence, essentially defines the nonlinear state equations that are implemented by nuclei of dynamic neurons. Outputs, a function of weighing of states and effective inputs using conventional or fuzzy mapping, can perform actions, predict performance, or assist with decision-making. Outcomes are scalars to be extremized that are a function of outputs and states. RESULTS: The first example demonstrates setup and use for a large-scale stroke neurorehabilitation application (with 16 inputs, 12 states, 5 outputs and 3 outcomes), showing how this modelling tool can successfully capture causal dynamic change in context-relevant states (e.g., impairments, pain) as a function of input event patterns (e.g., medications). The second example demonstrates use of scientific evidence to develop rule-based dynamic models, here for predicting changes in muscle strength with short-term fatigue and long-term strength-training. CONCLUSION: A neuro-fuzzy modelling framework is developed for estimating rehabilitative change that can be applied in any field of rehabilitation if sufficient evidence and/or expert knowledge are available. It is intended to provide context-awareness of changing status through state estimation, which is critical information for WIA's to be effective

    Distributed Online Machine Learning for Mobile Care Systems

    Get PDF
    Appendix D: Wavecomm Tech Docs removed for copyright reasonsTelecare and especially Mobile Care Systems are getting more and more popular. They have two major benefits: first, they drastically improve the living standards and even health outcomes for patients. In addition, they allow significant cost savings for adult care by reducing the needs for medical staff. A common drawback of current Mobile Care Systems is that they are rather stationary in most cases and firmly installed in patients’ houses or flats, which makes them stay very near to or even in their homes. There is also an upcoming second category of Mobile Care Systems which are portable without restricting the moving space of the patients, but with the major drawback that they have either very limited computational abilities and only a rather low classification quality or, which is most frequently, they only have a very short runtime on battery and therefore indirectly restrict the freedom of moving of the patients once again. These drawbacks are inherently caused by the restricted computational resources and mainly the limitations of battery based power supply of mobile computer systems. This research investigates the application of novel Artificial Intelligence (AI) and Machine Learning (ML) techniques to improve the operation of 2 Mobile Care Systems. As a result, based on the Evolving Connectionist Systems (ECoS) paradigm, an innovative approach for a highly efficient and self-optimising distributed online machine learning algorithm called MECoS - Moving ECoS - is presented. It balances the conflicting needs of providing a highly responsive complex and distributed online learning classification algorithm by requiring only limited resources in the form of computational power and energy. This approach overcomes the drawbacks of current mobile systems and combines them with the advantages of powerful stationary approaches. The research concludes that the practical application of the presented MECoS algorithm offers substantial improvements to the problems as highlighted within this thesis

    Examining child obesity risk level using fuzzy inference system

    Get PDF
    The doctor will determine the risk level of childhood obesity by using standard calculations, namely measuring the child's weight and height, and many other factors. Then the doctor will calculate the child's body mass index (BMI). The results of calculations made by the doctor will be compared with standard/normal values set by FAO/WHO, to obtain the level of risk of obesity in children. This study aims to analyze the risk level of obesity in children using the Sugeno method of Fuzzy Inference system, using the trapezoidal membership function and involving six input variables such as exercise habits, consumption of fast food, history of obesity of parents, and others. The application of the fuzzy inference system Sugeno method can help doctors to analyze the risk level of childhood obesity quickly and accurately with an accuracy rate of 85%. The results of the implementation of the Sugeno method of Fuzzy Inference system showed that out of 140 children who were the object of the study, 119 children received a diagnosis of the level of risk of obesity which was the same as the diagnosis made by a doctor

    Design and conceptual proposal of an intelligent clinical decision support system for the diagnosis of suspicious obstructive sleep apnea patients from health profile

    Get PDF
    Obstructive Sleep Apnea (OSA) is a chronic sleep-related pathology characterized by recurrent episodes of total or partial obstruction of the upper airways during sleep. It entails a high impact on the health and quality of life of patients, affecting more than one thousand million people worldwide, which has resulted in an important public health concern in recent years. The usual diagnosis involves performing a sleep test, cardiorespiratory polygraphy, or polysomnography, which allows characterizing the pathology and assessing its severity. However, this procedure cannot be used on a massive scale in general screening studies of the population because of its execution and implementation costs; therefore, causing an increase in waiting lists which would negatively affect the health of the affected patients. Additionally, the symptoms shown by these patients are often unspecific, as well as appealing to the general population (excessive somnolence, snoring, etc.), causing many potential cases to be referred for a sleep study when in reality are not suffering from OSA. This paper proposes a novel intelligent clinical decision support system to be applied to the diagnosis of OSA that can be used in early outpatient stages, quickly, easily, and safely, when a suspicious OSA patient attends the consultation. Starting from information related to the patient’s health profile (anthropometric data, habits, comorbidities, or medications taken), the system is capable of determining different alert levels of suffering from sleep apnea associated with different apnea-hypopnea index (AHI) levels to be studied. To that end, a series of automatic learning algorithms are deployed that, working concurrently, together with a corrective approach based on the use of an Adaptive Neuro-Based Fuzzy Inference System (ANFIS) and a specific heuristic algorithm, allow the calculation of a series of labels associated with the different levels of AHI previously indicated. For the initial software implementation, a data set with 4600 patients from the Álvaro Cunqueiro Hospital in Vigo was used. The results obtained after performing the proof tests determined ROC curves with AUC values in the range 0.8–0.9, and Matthews correlation coefficient values close to 0.6, with high success rates. This points to its potential use as a support tool for the diagnostic process, not only from the point of view of improving the quality of the services provided, but also from the best use of hospital resources and the consequent savings in terms of costs and time.Xunta de Galicia | Ref. ED481A-2020/03
    corecore