3 research outputs found

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc

    Get PDF
    Drosophila Transmembrane channel-like (Tmc) is a protein that functions in larval proprioception. The closely related TMC1 protein is required for mammalian hearing and is a pore-forming subunit of the hair cell mechanotransduction channel. In hair cells, TMC1 is gated by small deflections of microvilli that produce tension on extracellular tip-links that connect adjacent villi. How Tmc might be gated in larval proprioceptors, which are neurons having a morphology that is completely distinct from hair cells, is unknown. Here, we have used high-speed confocal microscopy both to measure displacements of proprioceptive sensory dendrites during larval movement and to optically measure neural activity of the moving proprioceptors. Unexpectedly, the pattern of dendrite deformation for distinct neurons was unique and differed depending on the direction of locomotion: ddaE neuron dendrites were strongly curved by forward locomotion, while the dendrites of ddaD were more strongly deformed by backward locomotion. Furthermore, GCaMP6f calcium signals recorded in the proprioceptive neurons during locomotion indicated tuning to the direction of movement. ddaE showed strong activation during forward locomotion, while ddaD showed responses that were strongest during backward locomotion. Peripheral proprioceptive neurons in animals mutant for Tmc showed a near-complete loss of movement related calcium signals. As the strength of the responses of wild-type animals was correlated with dendrite curvature, we propose that Tmc channels may be activated by membrane curvature in dendrites that are exposed to strain. Our findings begin to explain how distinct cellular systems rely on a common molecular pathway for mechanosensory responses.Peer ReviewedPostprint (published version

    Life Sciences Program Tasks and Bibliography for FY 1997

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page
    corecore