15,284 research outputs found

    PIN generation using EEG : a stability study

    Get PDF
    In a previous study, it has been shown that brain activity, i.e. electroencephalogram (EEG) signals, can be used to generate personal identification number (PIN). The method was based on brain–computer interface (BCI) technology using a P300-based BCI approach and showed that a single-channel EEG was sufficient to generate PIN without any error for three subjects. The advantage of this method is obviously its better fraud resistance compared to conventional methods of PIN generation such as entering the numbers using a keypad. Here, we investigate the stability of these EEG signals when used with a neural network classifier, i.e. to investigate the changes in the performance of the method over time. Our results, based on recording conducted over a period of three months, indicate that a single channel is no longer sufficient and a multiple electrode configuration is necessary to maintain acceptable performances. Alternatively, a recording session to retrain the neural network classifier can be conducted on shorter intervals, though practically this might not be viable

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by NaĂŻve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Transparent authentication: Utilising heart rate for user authentication

    Get PDF
    There has been exponential growth in the use of wearable technologies in the last decade with smart watches having a large share of the market. Smart watches were primarily used for health and fitness purposes but recent years have seen a rise in their deployment in other areas. Recent smart watches are fitted with sensors with enhanced functionality and capabilities. For example, some function as standalone device with the ability to create activity logs and transmit data to a secondary device. The capability has contributed to their increased usage in recent years with researchers focusing on their potential. This paper explores the ability to extract physiological data from smart watch technology to achieve user authentication. The approach is suitable not only because of the capacity for data capture but also easy connectivity with other devices - principally the Smartphone. For the purpose of this study, heart rate data is captured and extracted from 30 subjects continually over an hour. While security is the ultimate goal, usability should also be key consideration. Most bioelectrical signals like heart rate are non-stationary time-dependent signals therefore Discrete Wavelet Transform (DWT) is employed. DWT decomposes the bioelectrical signal into n level sub-bands of detail coefficients and approximation coefficients. Biorthogonal Wavelet (bior 4.4) is applied to extract features from the four levels of detail coefficents. Ten statistical features are extracted from each level of the coffecient sub-band. Classification of each sub-band levels are done using a Feedforward neural Network (FF-NN). The 1 st , 2 nd , 3 rd and 4 th levels had an Equal Error Rate (EER) of 17.20%, 18.17%, 20.93% and 21.83% respectively. To improve the EER, fusion of the four level sub-band is applied at the feature level. The proposed fusion showed an improved result over the initial result with an EER of 11.25% As a one-off authentication decision, an 11% EER is not ideal, its use on a continuous basis makes this more than feasible in practice

    Overcoming Inter-Subject Variability in BCI Using EEG-Based Identification

    Get PDF
    The high dependency of the Brain Computer Interface (BCI) system performance on the BCI user is a well-known issue of many BCI devices. This contribution presents a new way to overcome this problem using a synergy between a BCI device and an EEG-based biometric algorithm. Using the biometric algorithm, the BCI device automatically identifies its current user and adapts parameters of the classification process and of the BCI protocol to maximize the BCI performance. In addition to this we present an algorithm for EEG-based identification designed to be resistant to variations in EEG recordings between sessions, which is also demonstrated by an experiment with an EEG database containing two sessions recorded one year apart. Further, our algorithm is designed to be compatible with our movement-related BCI device and the evaluation of the algorithm performance took place under conditions of a standard BCI experiment. Estimation of the mu rhythm fundamental frequency using the Frequency Zooming AR modeling is used for EEG feature extraction followed by a classifier based on the regularized Mahalanobis distance. An average subject identification score of 96 % is achieved
    • …
    corecore