416 research outputs found

    A Review on Emotion Recognition Algorithms using Speech Analysis

    Get PDF
    In recent years, there is a growing interest in speech emotion recognition (SER) by analyzing input speech. SER can be considered as simply pattern recognition task which includes features extraction, classifier, and speech emotion database. The objective of this paper is to provide a comprehensive review on various literature available on SER. Several audio features are available, including linear predictive coding coefficients (LPCC), Mel-frequency cepstral coefficients (MFCC), and Teager energy based features. While for classifier, many algorithms are available including hidden Markov model (HMM), Gaussian mixture model (GMM), vector quantization (VQ), artificial neural networks (ANN), and deep neural networks (DNN). In this paper, we also reviewed various speech emotion database. Finally, recent related works on SER using DNN will be discussed

    Analysis and detection of human emotion and stress from speech signals

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Classification of stress based on speech features

    Get PDF
    Contemporary life is filled with challenges, hassles, deadlines, disappointments, and endless demands. The consequent of which might be stress. Stress has become a global phenomenon that is been experienced in our modern daily lives. Stress might play a significant role in psychological and/or behavioural disorders like anxiety or depression. Hence early detection of the signs and symptoms of stress is an antidote towards reducing its harmful effects and high cost of stress management efforts. This research work thereby presented Automatic Speech Recognition (ASR) technique to stress detection as a better alternative to other approaches such as chemical analysis, skin conductance, electrocardiograms that are obtrusive, intrusive, and also costly. Two set of voice data was recorded from ten Arabs students at Universiti Utara Malaysia (UUM) in neural and stressed mode. Speech features of fundamental, frequency (f0); formants (F1, F2, and F3), energy and Mel-Frequency Cepstral Coefficients (MFCC) were extracted and classified by K-nearest neighbour, Linear Discriminant Analysis and Artificial Neural Network. Result from average value of fundamental frequency reveals that stress is highly correlated with increase in fundamental frequency value. Of the three classifiers, K-nearest neighbor (KNN) performance is best followed by linear discriminant analysis (LDA) while artificial neural network (ANN) shows the least performance. Stress level classification into low, medium and high was done based of the classification result of KNN. This research shows the viability of ASR as better means of stress detection and classification

    Voice Analysis for Stress Detection and Application in Virtual Reality to Improve Public Speaking in Real-time: A Review

    Full text link
    Stress during public speaking is common and adversely affects performance and self-confidence. Extensive research has been carried out to develop various models to recognize emotional states. However, minimal research has been conducted to detect stress during public speaking in real time using voice analysis. In this context, the current review showed that the application of algorithms was not properly explored and helped identify the main obstacles in creating a suitable testing environment while accounting for current complexities and limitations. In this paper, we present our main idea and propose a stress detection computational algorithmic model that could be integrated into a Virtual Reality (VR) application to create an intelligent virtual audience for improving public speaking skills. The developed model, when integrated with VR, will be able to detect excessive stress in real time by analysing voice features correlated to physiological parameters indicative of stress and help users gradually control excessive stress and improve public speaking performanceComment: 41 pages, 7 figures, 4 table

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    A Comprehensive Review on Audio based Musical Instrument Recognition: Human-Machine Interaction towards Industry 4.0

    Get PDF
    Over the last two decades, the application of machine technology has shifted from industrial to residential use. Further, advances in hardware and software sectors have led machine technology to its utmost application, the human-machine interaction, a multimodal communication. Multimodal communication refers to the integration of various modalities of information like speech, image, music, gesture, and facial expressions. Music is the non-verbal type of communication that humans often use to express their minds. Thus, Music Information Retrieval (MIR) has become a booming field of research and has gained a lot of interest from the academic community, music industry, and vast multimedia users. The problem in MIR is accessing and retrieving a specific type of music as demanded from the extensive music data. The most inherent problem in MIR is music classification. The essential MIR tasks are artist identification, genre classification, mood classification, music annotation, and instrument recognition. Among these, instrument recognition is a vital sub-task in MIR for various reasons, including retrieval of music information, sound source separation, and automatic music transcription. In recent past years, many researchers have reported different machine learning techniques for musical instrument recognition and proved some of them to be good ones. This article provides a systematic, comprehensive review of the advanced machine learning techniques used for musical instrument recognition. We have stressed on different audio feature descriptors of common choices of classifier learning used for musical instrument recognition. This review article emphasizes on the recent developments in music classification techniques and discusses a few associated future research problems
    corecore