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Over the last two decades, the application of machine technology has shifted from industrial to residential use. Further, 
advances in hardware and software sectors have led machine technology to its utmost application, the human-machine 
interaction, a multimodal communication. Multimodal communication refers to the integration of various modalities of 
information like speech, image, music, gesture, and facial expressions. Music is the non-verbal type of communication that 
humans often use to express their minds. Thus, Music Information Retrieval (MIR) has become a booming field of research 
and has gained a lot of interest from the academic community, music industry, and vast multimedia users. The problem in 
MIR is accessing and retrieving a specific type of music as demanded from the extensive music data. The most inherent 
problem in MIR is music classification. The essential MIR tasks are artist identification, genre classification, mood 
classification, music annotation, and instrument recognition. Among these, instrument recognition is a vital sub-task in MIR 
for various reasons, including retrieval of music information, sound source separation, and automatic music transcription. In 
recent past years, many researchers have reported different machine learning techniques for musical instrument recognition 
and proved some of them to be good ones. This article provides a systematic, comprehensive review of the advanced 
machine learning techniques used for musical instrument recognition. We have stressed on different audio feature 
descriptors of common choices of classifier learning used for musical instrument recognition. This review article emphasizes 
on the recent developments in music classification techniques and discusses a few associated future research problems. 

Keywords: Classifier learning, Feature descriptors, Instrument recognition, Multimodal communication, Music information 
retrieval  

Introduction 
Music is one of the natural forms of art that spreads 

its essence over our minds. It has a substantial social 
and physiological impact. With the advent of 
technology and the industry 4.0 revolution, 
researchers have now focused on the human-machine 
interaction, a multimodal communication. In 
response, there has been an enormous growth in the 
music industry. Distribution and capturing of music 
data have become more accessible now. All these lead 
to a massive repository of music data. Automatic 
identification of music characteristics can act as a 
fundamental step towards organized storage and 
retrieval of music data. In the context of Music 
Information Retrieval (MIR), proper organization of 
the extensive collection of music data is very 
important. Music data can be archived in a structured 
manner based on metadata. The extraction of such 
metadata may be manual, where a domain expert 

annotates the piece of music or a text-based metadata-
oriented query. The annotation problem may be less 
severe nowadays as different music formats 
embedded metadata in them.1 But music recorded 
from other sources lack this information. A primary 
concern arises when the user does not provide the 
metadata as a music query rather submit the music 
clip as the query and expect the music with similar 
characteristics. Thus, a content-based music retrieval 
system becomes essential, automatically extracting 
the properties from the query signal and comparing 
them with the same obtained from the music signal in 
the database. Automatic classification of music 
signals based on genre, singer, instrumental, etc.2–6 
has gained impetus over the last decades. It can be 
crucial in various applications like music retrieval and 
recommendation systems, archival and indexing of 
music database, and annotating a music database. 
Nowadays, Automatic Musical Instrument 
Recognition (AMIR) systems are more accurately 
presented through the industry 4.0 revolution. 
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Automatic musical instrument recognition is vital 
as a high-level subtask in MIR. The goal of AMIR is 
to identify the different types of instruments in the 
raw music at different time intervals. Unlike genre, 
mood, and artist classification, instrument recognition 
is a sequence of labelling tasks based on which the 
music classification may be tagged to monophonic or 
polyphonic instrument labels. Early instrument 
recognition research was focused on recognizing 
instruments from solo played music with one 
instrument at a time. Hence, this is far from  
real-world music performances. Now the researcher's 
focus has switched from solo to polyphonic music to 
deal with several instruments simultaneously.6 
Instrument recognition in polyphonic music is more 
complicated than its monophonic counterpart.7 The 
fact that the source to be detected often corresponds to 
a very minimal proportion of the overall energy of the 
mixture signal makes polyphonic music instrument 
recognition extremely difficult. Also, the identities of 
the other instruments are frequently unknown; the 
interference induced by them is very non-stationary 
and unpredictable.8 Although there have been a lot of 
pioneer works on music classification, it is worth 
mentioning that AMIR is now becoming an evolving 
task in music classification. Automatic Musical 
Instrument Recognition has two impacts on music 
recording. One is the retrieval of musical instruments 
played in the music, and the other is managing the 
music audio. As a result, musical instrument 
identification and retrieval is a critical step in 
organizing a database to allow for faster access to 
needed data, automatic indexing of musical data and 
database retrieval applications. Therefore, developing 
an AMIR system is very much needed. To support 
this, a comprehensive survey is required on current 
advances in this field. 

This review paper presents a summary of different 
audio features and classification techniques used for 
AMIR task. We focus on musical instrument recognition 
based on audio signals unless otherwise stated. It is to be 
noted that the details of other MIR tasks like genre 
classification, mood classification, artist classification, 
and music annotation are beyond the scope of this study. 
The rest of the review article is prepared as follows. We 
present a concise study on different classes of audio 
features used for musical classification. Thereafter, we 
discuss different classifier-feature learning techniques of 
common choices used for AMIR task. A few unresolved 
research issues for further study are discussed. In the 
end, we have concluded our review with a conclusion. 

Overview of Audio Features 
Audio features are vital parameters for categorizing 

a piece of music and musical instruments. There are 
no rules on what audio features are appropriate for 
what type of music (monophonic/polyphonic) or 
instrument kinds. Choosing the optimum audio 
feature descriptors and classification methods plays a 
key role in correctly identifying musical instruments.9 
Many different types of audio features have been 
proposed for the assignment of sound description 
coming from the speech recognition community and 
the prior studies on musical instrument sound 
classification.10 A complete description of features is 
described by Peeters.11 Further, Weihs et al.12 
categorized the complete set of audio features 
taxonomically. From the standpoint of music 
comprehension, the audio features may be divided 
into five different classes as follows. 
 
Timbral Features 

Timbral features are utilized to differentiate 
between sound signals with similar pitch and 
rhythmic content. The tonal quality of a sound signal 
associated with varied instruments is captured by 
timbral features. Timbral features are used 
predominantly in music classification. To extract the 
timbral features of a sound signal, the signal is 
divided into short-time frames which are statistically 
stationary, by employing windowing function at fixed 
intervals. In common practice, a Hamming 
windowing function is used that removes the edge-
effects. For each frame, the timbral features are 
computed with its statistical mean and variance.  
 
Temporal Features 

Extraction of temporal features typically relies on 
timbral features over the length of timbral feature 
extraction, which captures the timbre variation over 
time. The temporal features are created by combining 
timbre features extracted from several frames. We 
will be able to construct a richer collection of features 
for categorization by combining timbre and temporal 
features in this way. Extraction of temporal features 
was done in the time domain, requiring less 
computational effort, and making them easy to put 
into practice.  
 
Cepstral Features 

Cepstral features are computed from the cepstral 
analysis of the signal. Cepstral analysis is a nonlinear 
signal processing approach used in speech and image 
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processing domains. Cepstral features are used to 
distinguish between dominating instrumental sources. 
Cepstrum values clustered at the origin provide 
information about the instrument filter, whereas 
values distant from the origin provide information 
about the excitation source.  
 
Spectral Features  

These features are obtained from the signal 
transformation in the frequency domain. Generally, an 
audio signal is segmented into several short-time 
duration signals followed by a suitable windowing 
technique to get various local frames. Various signal 
processing tools can be applied to the local frame 
signals to obtain different spectral features.  
 
Perceptual Features 

Perceptual features are generally based on human 
hearing mechanism. These features are found over 
local frames of small-time duration varying from 10 
ms to 100 ms for music audio samples. Each frame 
signal is then analysed to obtain different perceptual 
features.  
 
Classifier-Feature Learning 

In various disciplines, Machine Learning (ML) 
techniques13,14 have enabled major breakthroughs in 
automated data processing and pattern identification 
capabilities. This includes image processing, speech 
processing, and musical sound processing. The two 
major kinds of machine learning methodologies are 
unsupervised and supervised learning. The third type 
of learning is known as reinforcement learning; 
however, it is not included in this paper. 

With labelled input and output pairs, the task of 
supervised learning is to find a correct mapping 
between input and output. The most extensively used 
ML category is supervised learning. K-Nearest-
Neighbour classifiers (K-NN),10,15–20 support vector 
machine (SVM),7,9,16,21–34 Neural Network (NN) 
models, also known as Artificial NNs (ANN),35–50 and 
Hidden Markov Models (HMM)51–55 are some 
examples of supervised learning. Unsupervised 
learning has no labels; therefore, the purpose is to 
uncover the very useful structure of data. Anomaly 
detection, exploratory data analysis, feature learning, 
and data visualization are just a few available 
applications. Unsupervised approaches like Principal 
Components Analysis (PCA),56 K-means57 and 
Gaussian Mixture Models (GMMs)15,58–64 as well as 
matrix factorization methods like Non-negative 

Matrix Factorization (NMF),68,69 Independent 
Component Analysis (ICA)70 and Linear Discriminant 
Analysis (LDA)71,72 have been used for decades. 

Prior machine learning approaches were 
constrained to analyse input data in terms of its raw 
form. As a result, the input to the learning system, 
normally a classifier, must typically be a hand-crafted 
portrayal of the feature. Thereby, substantial field 
expertise and a thorough engineering approach are 
required.47 In traditional classification, we are given 
training and testing data sets, with each example 
labelled. From the available labelled training data set, 
a huge array of features are extracted for the given 
audio samples of individual instruments to capture 
varied characteristics of the individual class of 
instruments. Feature descriptors are weighed and 
evaluated on unlabeled data in a test set. A suitable 
classifier then classifies the test samples after being 
trained.10 Several works73–76 have used a variant of 
Martin & Kim15 classical pattern recognition approach 
for AMIR. 

The generic problem found in the classification of 
musical instruments is three-fold: (1) data  
pre-processing, (2) extraction of features, and (3) 
feature classification.77 In instrument classification, 
finding a compact, effective, and robust feature set is 
the key difficulty. Furthermore, choosing the right 
classifier is critical for enhancing classification 
accuracy. A few common choices of classifiers and 
feature learning for musical recognition tasks are 
stated below. 
 
Classifier Learning 
 
K-Nearest Neighbour (K-NN) 

The K-NN algorithm is the frequently used 
learning-based algorithm, which preserves the feature 
vectors of all the training examples. Then, for 
classifying a new instance, it finds a set of k nearest 
training examples in the feature space and assigns the 
new example to the class that has more examples in 
the set. To determine similarity, the Euclidean 
distance measure has long been used. Despite its ease 
of implementation, the K-NN technique is sluggish, 
among others. 

Martin and Kim15 created a hierarchical 
classification method using a k-NN model applied to 
a database of 1023 isolated sound samples from 15 
orchestral instruments. When no hierarchy was used, 
they had an 87% family classification success rate and 
a 61% instrument classification success rate.  
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The hierarchical technique improved instrument 
accuracy to 67% but lowered family performance to 
79%. Agostini et al.16 discovered a similar result of 
66% for 27 instrument classes and 77% for a two-
level six-element hierarchy. In this study, the k-NN 
approach performed poorly when compared to 
discriminant functions and Support Vector Machines. 
Eronen & Klapuri17 correctly identified instrument 
families (brass, string, and woodwind) with a  
94% accuracy rate and individual instruments with an 
80% accuracy rate, covering the full ranges of 30 
orchestral instruments played with various articulation 
styles. 44 spectral and temporal features were 
computed for audio sounds primarily from the MUMS 
collection. Cross-validation was utilized using 
Gaussian and k-NN classifiers, with 70 percent/30 
percent splits of train and test data. Fujinaga et al.18 
reported the recognition rate 50% for 23 orchestral 
instruments with over 1300 notes from the McGill CD 
library and 81% for a 3-instrument group. To find the 
best set of weights for the features, they used a k-NN 
classifier and a genetic algorithm. Eronen19 tested a 
data collection that includes 5286 acoustic and 
synthetic solo tones from the database with 29 varied 
western symphonic instruments, 16 of which were 
included in the test set. Researchers employed a  
K-NN classifier to extract MFCC, delta MFCC, 
LPCC, and modulation features. The best results were 
achieved in solo tone recognition, with 35% for 
solitary instruments and 77% for families. MFCC 
delivered the best performance. Kaminskyj & 
Czaszejko20 used k-NN classifiers to recognize 
individual monophonic instrument sounds. Amplitude 
envelope, constant Q transform, MFCC, and  
Multi-Dimensional Scaling (MDS) analysis 
trajectories were used. These features were reduced to 
a total dimensionality of 710 using Principal 
Component Analysis (PCA). After that, the k-NN 
classifiers were trained using various hierarchical 
schemes. The experiment resulted in 93% recognition 
accuracy for individual instruments and a 97% for 
instrument families. Using computerized musical 
instrument recognition and outlier detection 
approaches, algorithms for automatic elimination of 
poor instrument samples were proposed by Livshin & 
Rodet.10 A K-NN classifier was utilized to test the 
proposed techniques utilizing 162 feature descriptor 
values from a database of 20 musical instruments. On 
a meticulously contaminated sound data set, the 
introduced Multiclass Interquantile Range (MCIQR) 

methodology obtained the best evaluation results, 
deleting 70.1% "bad" samples with a 0.9% false-
alarm rate and 90.4% with an 8.8% false-alarm rate. 
 
Support Vector Machine (SVM) 

 SVM is a cutting-edge binary classifier that  
works on the big margin principle. For the given 
labelled instances from two classes, SVM finds the 
optimal separating hyperplane that optimizes 
 the distance between support vectors and the 
hyperplane. The support vectors are the instances 
closest to the hyperplane whose labels are most 
 likely to be confused. As a result, the SVM performs 
better in classification since it focuses on difficult 
instances.21 

Marques22 employed an SVM model on a database 
of eight solo instruments played by a group of 
composers. The best classification result was 70% by 
considering 16 MFCC feature vectors from a sound 
segment of 0.2 seconds. When she tried to classify 
longer segments, she found an 83% gain in accuracy. 
Marques & Moreno7 developed an SVM classifier 
based on GMM that can discriminate between eight 
instruments. The classifier was built with 70% 
accuracy after testing various parameters such as 
feature type and classification algorithm. The 
researchers investigated cepstral, mel-cepstral, and 
linear prediction coefficients. Agostini et al.16 
reported a paper on the content-based classification of 
musical timbres using SVM, KNN, CDA  
(Canonical Discriminant Analysis), and QDA 
(Quadratic Discriminant Analysis). The SVM with 
RBF (Radial Basis Functions) kernel with 18 
descriptors was discovered as the best classifier in 
recognition of individual instruments within a 46 ms 
frame, with a success rate of 69.7%, 78.6%, and 
80.2% for 27, 20, and 17 instruments, respectively. 
Essid et al.23 established a new approach to 
instrument recognition (9 instruments and voice) 
ranging from solos to quarters considering real music 
orchestrations. A wide set of acoustic features like 
temporal features, cepstral features, and perceptual 
features were extracted and applied to the SVM 
classifier for recognition and achieved an average 
accuracy of 53%. Essid et al.24 published a paper on 
the musical classification that used natural and 
instrument hierarchical taxonomies. The experiment 
includes ten instrument classes from various 
instrument families. The proposed taxonomy 
comprises cepstral, spectral, perceptual, and MFCC 
features. Using Gaussian mixture models (GMMs) 
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and SVM, they achieved recognition rates of 87%. To 
solve the musical instrument classification problem, 
Deng et al.9 retrieved a vast set of features which 
includes timbral, perceptual, spectral, along with 
MPEG-based features. The authors reported an 
individual classification accuracy of 86.9% and a 
family classification accuracy of 96.5% for 20 
instruments of UIOWA MIS collection using the 
SVM classifier. They also experimented with a 
variety of other classifier algorithms, including naive 
Bayes, k-NN, RBF, and MLP (Multilayer 
Perceptron). The system performance obtained was 
most outstanding for MFCC features. Joder et al.25 
used a Feature Selection Algorithm (FSA) to extract a 
wide range of information from solo music of 10 
musical instruments. The complete set of features 
includes temporal, cepstral, spectral, and wavelet 
features. Binary support vector machine (SVM) 
classifiers were trained with the produced feature set. 
They found an average accuracy of 77.82% for one 
vs. one, 79.08% with PCA, and 73.88% for MAP. 
Fuhrmann et al.26 proposed a method for 
automatically categorizing dominating instruments 
using SVM classifiers trained with features derived 
from real musical audio data containing 11 pitched 
and 3 percussive instruments. The pitched and 
percussive classification tasks reported accuracy of 
63% and 78%, respectively. Fuhrmann & Herrera27 
trained the SVM model using tailor-made timbral 
features based on mean and variance statistics on a 
data set of 11 modelled instruments. They found 
precision values up to 0.86 and F-measures larger 
than 0.65. Ozbek et al.28 released a paper using time-
frequency energy localization to classify musical 
instruments automatically on a database from eight 
different instruments using a support vector machine 
(SVM). They got maximum accuracy of around 93% 
for individual instrument recognition. Wu et al.29 
proposed an Expectation-Maximization (EM) 
technique for polyphonic pitch estimation and 
instrument identification. The suggested approaches 
are based on the EM algorithm’s estimation of the 
parameters of each note's spectro-temporal GMM 
model. The logarithmic transformation and PCA are 
then used to convert these parameters into a low-
dimension timbre feature vector. Finally, using the 
obtained low dimension timbre features, SVM 
classifiers were trained to recognize musical 
instruments with 71% accuracy. By previously 
dividing the original signal into numerous streams, 
Bosch et al.30 addressed the identification of 

dominating musical instruments in polytimbral audio. 
Concerning the segregation method and the employed 
SVM model for classification, several strategies are 
assessed, ranging from low to high complexity. The 
dataset was from professionally produced recordings, 
which are notoriously difficult to separate using 
current source separation algorithms. The instrument 
recognition accuracy was measured at about 50%. A 
new cepstrum representation approach, Unified 
Discrete Cepstrum (UDC), was proposed by  
Duan et al.31 UDC had the advantage of preventing 
overfitting by utilizing a natural local adaptive 
regulator. The authors employed an SVM 
classification model with UDC and its mel-scale 
counterpart MUDC (male-scale variant of UDC) to 
classify 13 different instruments. They reported 
recognition accuracy for two polyphonic musical 
notes as 37% and for six polyphonic music notes as 
25%. Yu et al.32 employed temporal sum pooling and 
sparse coding (SC) on cepstrum and used the 
LIBLINEAR library to train a linear SVM model for 
classification. The proposed system achieved an F-
measure of about 96% in the uni-source dataset and 
about 69% in the multi-source dataset for classifying 
50 instruments. Lin et al.33 developed an audio 
classification technique employing wavelets and 
support vector machines (SVMs) to classify 410 audio 
sounds in 16 different classes. Authors proposed a 
bottom-up SVM technique over acoustical features 
along with frequency cepstral coefficients extracted 
from a public audio database for the audio 
classification. Experimental results have shown a 
reduction in classification error from 8.1% to 3.0% 
and classification accuracy about 100%. Mandel & 
Ellis34 employed Support Vector Machines (SVMs) to 
classify music. They used MFCC as input feature and 
KL (Kullback-Leibler) divergence-based kernel to 
measure the song-level similarity. In their 
experiments, they obtained the classification accuracy 
of 72.45% and 78.81% for the audio genre and artist 
identification respectively.  
 
Artificial Neural Networks (ANNs) 

ANN is a data processing structure that consists of 
several interconnected neurons that work together to 
solve a problem. ANN learns to map between  
input and output data vectors by adjusting the 
assigned weights of connecting neurons. Alterations 
can occur under supervised or unsupervised 
conditions. A few communicated pioneer works are 
briefly discussed here. 
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Kaminsky & Materka35 used a relatively simple 
feed forward network with back propagation training 
algorithm learned to distinguish audio sounds from 
four different instruments with three input units, five 
hidden units, and four output units. They achieved an 
accuracy rate of 97%. Cemgil & Gurgen36 used a  
self-organizing three-layer hybrid network to 
investigate 40 sounds from 10 distinct instrument 
classes. In experimental results, they obtained a 
success rate of 97%, 100%, and 94% for three distinct 
network model architectures. Kostek's team (Kostek 
& Krolikowski,37 Kostek & Czyzewski38) carried out 
several experiments on feedforward neural networks 
(FNNs) with one hidden layer. Initially, the 
instruments chosen had similar sounds, but as the test 
progressed, more categories were introduced latter. 
For different sets of four classes, accuracy rates of 
more than 90% were reached. Kostek39 researched on 
the classification of 12 distinct instruments played 
with various articulations. She used multilayer neural 
networks (NN) trained on FFT (Fast Fourier 
Transform) based features. It was demonstrated that 
combining wavelet transform features with  
MPEG-7 features, the classification accuracy 
improved to a range of 55% to 98%, with an average 
of around 70%. Loughran et al.40 presented a 
classification model to classify musical instruments 
using MFCC and PCA utilizing multilayer 
perceptrons. A multi-layered perceptron was trained 
using principal component analysis. The first 3, 4, and 
5 principal components computed from the envelope 
of the changes in the coefficients were used to train 
the network. Using four principal components from 
the first 15 coefficients, they achieved a classification 
accuracy of 95.88%. Newton & Smith41 suggested 
tone descriptors for the classification of musical 
instruments. In experiments, authors used 2085 
isolated musical tones over five instrument groups 
from the McGill dataset. A neurally inspired tone 
descriptor was developed using a model of the 
auditory system’s response to sound onset. The 
neurally-inspired technique had a classification 
success rate of roughly 75%. 

However, deep learning14 is a method of stacking 
numerous layers of nonlinear modules for 
automatically constructing a higher-level 
representation from raw data. A feedforward network 
(FNN) with numerous hidden layers of artificial 
neurons is known as a deep neural network (DNN) or 
multi-layer perceptron (MLP). When feedback links 

are introduced to a network, it becomes the recurrent 
neural network (RNN). RNNs are pretty effective for 
sequential inputs. RNNs are successful in language 
modelling42 and spoken language interpretation.43,44  
A different classifier, convolutional neural network 
(CNN)45 is a modified version of the normal neural 
network model, which finds convolutions on different 
segmented input signals. Therefore, this model is used 
to classify audio signals utilizing different timbre 
features. This is proven in the work of Lee et al.46 
with generic audio classification applications. This is 
utilized in a multilayer CNN extension called a 
convolutional deep belief network (CDBN).  
Han et al.47 proposed a CovNet network structure for 
a vast dataset of 10 instruments and human voice for 
the recognition of predominant musical instrument 
task. The CovNet receives mel-spectrogram as an 
input feature. The network was trained using IRMAS’ 
single-labeled training data, while the multi-labelled 
test data was used to identify the pre-dominating 
instrument. The proposed architecture received a 
micro F1 measure of 0.619 and a macro F1 measure 
of 0.513. Gururani et al.48 proposed a DNN-based 
instrument activity detection (IAD) system for 
detecting the activity of 18 polyphonic instruments. 
This model was trained using mel-spectrograms 
obtained from the multitrack datasets. They used one-
second audio clips to train the deep neural network 
and acquired the final prediction score of 80.92 AUC 
for CNN and 79.22 AUC for CRNN (Convolutional 
Recurrent Neural Network), per instrument. Gomez et 
al.49 proposed a hybrid deep neural network-based 
instrument recognition system which is a combination 
of fully connected convolutional layers for learning 
characteristics of spectral-temporal patterns. This is a 
blend of convolutional and fully connected layers. 
They investigated the effects of two source separation 
strategies on instrument recognition for six jazz solo 
instruments, as well as used transfer learning to fine-
tune the trained model. The proposed network shown 
a micro measure of 0.805 and a macro measure of 
0.803. Yu et al.50 used the previously published work 
of Han et al.47 as a baseline and conducted 
experiments to compare their results to it. The authors 
introduced auxiliary classification along with six 
numbers of additional features extracted from the 
IRMAS data set of 10 instruments and human voice. 
They obtained an enhanced accuracy of 0.685 as 
micro F1 and 0.597 as macro F1 measures. Also, they 
found an increased accuracy of 10.7% and16.4% in 
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micro and macro measures, respectively, compared to 
the baseline work of Han et al.47 
 
Hidden Markov Models (HMM) 

An HMM model assumes a set of observations 
produced by another set of hidden states. Thus, in 
each state, a random measurement from different 
distribution functions is found to give a joint 
probability distribution. The model which 
communicates the highest probability is selected as a 
likely source for the observation. 

Eronen51 developed a baseline instrument 
recognizer that employed MFCC and delta  
cepstrum (AMFCC) coefficients as features and 
HMMs to describe the feature distributions. A 
database of isolated notes from 27 Western orchestral 
instruments, as well as a smaller collection of 
drumbeats, was used to assess the system. The authors 
proposed two methods to improve the system's 
performance. The first was independent component 
analysis (ICA), and the second was discriminative 
HMMs training. The highest level of accuracy 
discovered was 85%. A comparison of six  
approaches for classifying sports audio signals was 
presented by Xiong et al.52 They employed Mel-scale 
Frequency Cepstrum Coefficients (MFCCs) and 
MPEG audio characteristics for feature extraction.  
For classification, they used Maximum Likelihood-
HMM (ML-HMM) and Entropic-PriorHMM  
(EP-HMM). The best result obtained with all the 
combinations was with an accuracy of around 90%. 
Kitahara et al.53 provided a method for calculating the 
temporal trajectory of instrument existence 
probabilities for each F0, visualizing it as an 
instrogram, a spectrogram-like graphical 
representation, and applied it to an HMM model. In 
studies with authentic music, the instrument 
annotation had an average accuracy of 76.2%, and  
the instrogram-based similarity measured better 
approximated actual instrumentation similarity than 
an MFCC-based one. Eichner et al.54 proposed an 
HMM model for instrument classification with a 
database of four instrument types. The recognition are 
based on solo music pieces played on the instrument 
under various conditions. They allowed to  
pass the recordings through a 31-channel mel-scaled 
filter bank and extracted the first and second-order 
differences, and then compressed the feature  
space to 25 dimensions using statistical principal 
component analysis (PCA). Accuracy of a  
maximum of 78% was reported in the experiment. 

Zlatintsi & Maragos55 proposed the Multi-scale  
Fractal Dimension (MFD) technique to distinguish 
different musical instruments. Using PCA analysis, 
the trials were conducted with 1331 notes from seven  
different instruments. Authors classified musical 
instruments using both GMM and HMM models, 
which were found to be the most promising ones.  
They reported an error reduction of up to 32%  
in instrument recognition.  

 
Gaussian Markov Models (GMM) 

GMMs contemplate the continuous probability 
density of an observation and model it as a weighted 
sum of many Gaussian densities. Mean vector, 
mixture component density, and covariance matrix are 
taken as the hidden parameters in GMM. The 
expectation-maximization (EM) or k-means approach 
is used to estimate the parameter. 

Martin et al.15 described a statistical pattern-
recognition technique based on Gaussian models with 
Fisher's multiple-discriminant analysis. Perceptually 
relevant acoustic parameters linked to the physical 
properties of resonance structure and source 
excitation were quantified from the output of an 
auditory model over a full pitch range of 15 orchestral 
instruments. Approximately 99 percent of the time, 
the classifiers correctly discriminated transient from 
continuous tones. Instrument families were identified 
with an overall success rate of around 90%.The 
individual instruments with an overall rate of 70% 
were recognized. Krishna & Sreenivas58 proposed a 
classification for solo phrases instead of individual 
notes. Line Spectral Frequencies (LSF) was taken as 
features for identifying musical instruments. MFCC 
and LPCC features were used to evaluate the 
proposed system. For classification, the K-Nearest 
Neighbour and Gaussian Mixture Model classifiers 
were utilized. The best result found for the instrument 
family level was 95%, and for the individual 
instrument level was 90% from a data set of 14 
instruments. Essid et al.59 trained a GMM classifier 
with an MFCC feature to distinguish the musical 
instrument in solo phrases. To denoise the feature 
data, PCA was used. An overall accuracy of 
distinguishing five musical instruments was reported 
at around 67%. Virtanen & Klapuri60 separated notes 
using a multi-pitch estimation algorithm and an 
optional streaming technique that organizes individual 
notes into sound sources. The most likely note 
sequence was found using the Viterbi algorithm. The 
classifiers employed MFCCs (with a 40-channel filter 
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bank) and the first derivatives of MFCCs. The 
instrument conditional densities of features were 
modelled using GMM, and the parameters were 
evaluated using the EM (expectation-maximization) 
algorithm from the training material. The 
classification was then done using a Maximum 
Likelihood classifier. The dataset was artificially 
created from the RWC dataset. The F1 measure of 
59.1 was achieved for 19 distinct pitched instruments 
with a maximum of six-note polyphony. Burred61 
presented an instrument classification system using 
Gaussian likelihood for timbre similarity measure 
with stereo-line source separation as the pre-step. The 
experimental result was found with an accuracy of 
86.7% with a polyphony of two instruments and five 
classes. They found a better result than the monaural 
separation, with an accuracy of 79.8%. Heittola et 
al.62 obtained an accuracy of 59% by using NMF 
based source filter model along with MFCC and 
GMM to classify 19 instruments producing six 
polyphonic notes. Diment et al.63 employed a 
modified group delay (MODGDF) feature, a 
combination of phase information and MFCC. The 
authors used a GMM classifier with an EM algorithm 
and obtained an accuracy of about 71% on a database 
of 22 instruments. Eronen64 used GMM classifier to 
classify 30 orchestral instruments of 7 classes in 
MUMS database. For the classifier training, 
researcher selected different features like MFCC, 
delta MFCC, LPCC, and modulation characteristics. 
The best result achieved for instrument family 
recognition was 58%.  

Also, some other pioneer classification techniques 
were reported, which also obtained satisfactory 
accuracy in the field of musical instrument 
recognition, such as Brown et al.65 found correct 
instrument identification accuracy of 79–84% for four 
classes of instruments with constant-Q coefficients, 
autocorrelation coefficients, and cepstral coefficients 
applied to short segments of solo passages from real 
records. The authors used Bayes decision rules with 
the K-means algorithm to classify the instruments. 
Garcia et al.66 proposed a method using individual 
partials to identify musical instruments. The authors 
used isolated partials information to find spectral 
disjointness between the instruments. The data in 
those features were then used to figure out which 
instrument was most likely to have that partial. As a 
result, the sole need for the strategy to work was that 
each instrument must have at least one isolated partial 
somewhere in the signal. The experimental result 

showed an accuracy of 63% using 25 instruments. 
Vatolkin & Rudolph67 pointed out the use of  
different musical features for western and ethnic 
music from a database of 8 western and 12 ethnic 
categories. The most suitable features were extracted 
for classification purposes for each selected category 
and were used to enhance the accuracy. 
 
Feature Learning 

Feature Learning is another important issue in 
music classification. It has a close association with 
classifier learning. Feature learning aims to improve 
classification performance by automatically selecting 
and extracting features. Automatic feature selection 
and extraction are not the same thing. In automatic 
feature selection, features are selected directly from 
many input features following some rules.78 In feature 
extraction, an optimized set of features are extracted 
from the pool of available input features through 
transformations based on some projection rule and 
feature mapping.46,79 The selection and extraction of 
features can be made in a supervised or unsupervised 
manner. Using a supervised setting, labelled data is 
used to enhance the extraction of valuable features 
that best discriminate between distinct labels.79 This is 
accomplished using a variety of metric learning 
algorithms.79 Linear Discriminant Analysis (LDA)71,72 
is a key metric learning method for instrument 
classification that identifies the best dimensional 
transformation by maximizing the inter-class scatter 
whereas reducing intra-class scatter. By modelling the 
fundamental structure of the audio stream, the 
features are extracted in an unsupervised way without 
requiring label information.46 PCA is a common 
method for unsupervised feature extraction, which 
reduces the input feature dimension to a 
 lower-dimensional space while maintaining its 
covariance.56 Nonnegative matrix factorization 
(NMF)68,69 is another method for extracting 
unsupervised features. 

Different researchers have reported a variety of 
novel features for an automatic musical instrument 
recognition task in their experimental works. A few of 
these features are summarized as in Table 1. 
 
Research Issues 

In this section, we discuss three unresolved 
research issues that deserve further exploration in the 
future, based on survey of different classifier learning 
techniques for musical instrument recognition task. 
These three unresolved research issues are outlined 
hereunder. 
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Table 1 — Feature Description 

TIMBRAL FEATURES 
Zero Crossing Rate (ZCR)3,5,21,67 Fast Fourier Transform (FFT)3,7,37–39,61 
Spectral Centroid (SC)3, 5, 15, 17, 21 Short Time Fourier Transform (STFT)3, 6, 25, 36, 61 
Spectral Roll-Off (SR)3, 5, 21 Discrete Wavelet Transform (DWT)28, 33, 38, 39, 54, 61 
Spectral Flux (SF)3, 5, 21 Harmonic Centroid (HC)9, 10, 39, 73, 74 
Spectral Bandwidth (SB)21 Harmonic Deviation (HD)9, 73, 74 
Spectral Flatness Measure (SFM)21 Harmonic Spread (HS)9, 10, 39, 73, 74 
Spectral Crest Factor (SCF)21 Harmonic Variation (HV)9, 10, 73, 74 
Amplitude Spectrum Envelope (ASE)20, 21, 24, 65 Hamonic Spectral Skewness (HSS)10, 73, 74 
Octave Based Spectral Contrast (OSC)21 Harmonic Spectral Kurtosis (HSK)10, 73, 74 
Daubechies Wavelet Coefficient Histogram (DWCH)3, 5, 21, 25, 28 Harmonic Spectral Slope (HSSL)10, 73, 74 
Mel-frequency Cepstrum Coefficients  
(MFCCs)3, 4, 8, 9, 21, 32, 34, 40, 51, 54, 58, 60, 61 

Harmonic Spectral Decrease (HSD)10, 73, 74 

MFCC Harmonic Partials (MFCC-H)8 Harmonic Amplitude (HA)22, 36, 38 
Delta MFCC, Delta-Delta MFCC21, 51 Harmonic Roll-Off10, 73, 74 
Fourier Cepstrum Coefficients (FCCs)22,52 Harmonic Energy (HE)10, 11, 16, 29, 37–39, 73–76 
Linear Predictive Cepstrum Coefficients (LPCCs)3, 4, 21, 58, 64, 65, 67 Low Energy (LE)3, 5, 67 

TEMPORAL FEATURES 
Zero Crossing Rate (ZCR)10, 11, 23–25, 73, 74, 77 FM (Frequency, Amplitude)53, 71 
Energy Envelope Features (Attack Slope; Log-attack Time;  
Decrease Slope; Temporal Centroid; Effective Duration; Energy 
Modulation)9–11, 18, 26, 27, 29, 38, 39, 73–77 

Mean-Variance (mVar)26, 27 

Rise-time; Attack-time; Decay-time; Sustain-time;  
Release-time17, 29, 38, 39, 77 

Auto-Correlation Coefficients (ACS)10, 23, 24, 65 

Group delay features (GDF)63 Auto-Regressive Coefficients (ARs)21, 25, 61 
Statistical Moments (SM)21, 23, 25 On-Set Duration, Slope15, 71 
AM (Frequency, Amplitude)15, 17, 19, 21, 23–25, 53, 64, 66, 71 Tremolo15, 24  

(Frequency, Strength, Heuristic Strength) AM (Tremolo, Roughness)23–25 
CEPSTRAL FEATURES 

Root Mean Square Energy (RMS)17, 19, 20, 26, 27, 35, 62, 64, 66, 67 Fractional Fourier Transform (FrFT)77 
Mel-frequency Cepstral Coefficients (MFCCs)7, 8, 19, 22– 27, 31, 55, 66, 77 Discrete Fourier Transform (DFT)8 
MFCC Harmonic Partials (MFCC-H)8 Fourier Cepstrum Coefficients (FCCs)33, 77 
Delta MFCC; Delta-Delta MFCC23, 55 Linear Predictive Cepstrum Coefficients  

(LPCCs)7, 17, 19, 22, 26, 27, 64, 66 
SPECTRAL FEATURES 

Mel-Spectrogram6, 36, 46–49, 53, 61, 70 Spectral Variation (SV)10, 23, 25, 73, 74 
Mel-frequency Cepstral Coefficients (MFCCs)5, 11, 38, 46, 52, 59, 62–65, 67 Spectral Flatness Measure (SFM)10, 11, 23, 24, 39, 67 
MFCC Harmonic Partials (MFCC-H)8 Constant Q-Coefficient (QC)20, 23, 24, 61, 65 
Delta MFCC; Delta-Delta MFCC11, 59, 64, 67 Octave Band Signal Intensities (OBSI)23–25 
Spectral Centroid (SC)10, 11, 15, 16, 18–20, 23–25, 39, 53, 59, 64–66, 71, 73–77 Spectral Irregularity18, 24, 25 
Spectral Spread (SS)10, 11, 39, 73–76 Spectral Entropy73 
Spectral Roll-Off (SR)10, 11, 26, 27, 73, 74, 77 Spectral Harmonicity10, 16, 26, 27, 29, 67, 75, 76 
Spectral Width (SW)23, 24, 59 Harmonics (Odd, Even)10, 11, 15, 26, 27, 37–39, 53, 65, 71, 73–76 
Spectral Asymmetry (SA)19, 23, 24, 59, 66 Harmonic Energy10, 11, 16, 29, 37, 38, 73–76 
Spectral Skewness (SSW)10, 11, 18, 24, 25, 59, 73–76 Tristimulus10, 11, 18, 26, 27, 37–39, 73, 74 
Spectral Kurtosis (SK)10, 11, 18, 23–25, 67, 73, 74 Fundamental Frequency (f0)

10, 17, 19, 39, 53, 62, 64, 66, 71, 73–76 
Spectral Bandwidth (SB)16, 29, 67 Harmonic Deviation (HD)10, 73, 74 
Spectral Contrast, Spectral Brightness37–39 Spectral Envelope (SE)15, 18, 29, 36 
MPEG-7 Audio Spectrum Flatness (ASF)11, 24, 25, 59 Spectral Energy8, 65 
MPEG-7 Audio Features39, 52 Spectral Moments25–27, 38, 59, 65 
Spectral Crest Factor (SCF)10, 11, 19, 23, 26, 27, 64, 66 Croma Energy67 
Spectral Slope (SSL)10, 11, 23, 25, 64, 67, 73, 74 Short-Time Fourier Transform (STFT)10, 11, 53, 70, 73–76 
Spectral Decrease (SD)10, 25, 73, 74 

PERCEPTUAL FEATURES 
Zero Crossing Rate (ZCR)9, 50 Spectral Bandwidth (SB)9, 16, 29, 33, 50, 67 
Mean of ZCR (ZCRM)9 Spectral Power73 
Standard Deviation of ZCR (ZCRD)9 Spectral Contrast, Spectral Brightness33, 37–39 
Root Mean Square (RMS)9, 50 Pitch (Frequency, Variance)15, 26, 27, 29, 33, 36, 39, 62 
 (Contd.)
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Constraint on Labelled Data 
Majority of data sets used to evaluate current music 

instrument recognition systems are small or mediocre 
in size. Rather than focusing on efficiency, research 
has focused on enhancing classification performance. 
The music industry in today's world is booming. We 
require more efficient music analysis and 
classification systems to handle massive data sets. 
The present methodologies for musical instrument 
classification face two major issues. In terms of 
processing time and storage, scalability is the most 
significant consideration. To streamline feature 
extraction and address the storage issue, faster pre-
processing processes are required to accelerate large-
scale classification tasks. 
 
Learning Similarity Retrieval 

A significant problem related to musical instrument 
classification is finding difficulty in similarity 
retrieval. The purpose of similarity retrieval is to 
search a database for similar music. The fact that 
different similarities are required for different types of 
music inspire a novel classification technique based 
on similarity retrieval. This type of classifier learns in 
an unsupervised fashion. Using exemplar pairings of 
similar and dissimilar music, we may train a classifier 
to learn to recover the similarity between the two. 
 
Usability of Perceptual Features 

The way humans perceive and process music in 
their auditory and neurological systems are highly 
dependent on perceptual characteristics. As a result, 
this observation might be used to design a better 
classifier system. In convolutional neural networks, 
the perceptual features are processed through multiple 
hidden layers with numerous nodes that operate as 
processing units. As a result, training a convolutional 
neural network entails learning perceptual information 
and classification rules. However, convolutional 
neural networks have already been used in musical 

instrument classification tasks but have not been 
thoroughly investigated. 
 
Conclusions 

In this review article, we discussed some popular 
common choices of different state-of-the-art 
techniques for the recognition of musical instruments. 
We feel that this study has offered an up-to-date 
overview of audio features and music classifiers. 
Humans have a significant ability to recognize 
musical instrument sound and can make the right 
decision in a concise time frame. But still, there is a 
gap between human performance and the automatic 
musical instrument recognition system performance. 
As a result, existing AMIR systems still have a lot of 
scope for development. 
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