268 research outputs found

    Statistical/climatic models to predict and project extreme precipitation events dominated by large-scale atmospheric circulation over the central-eastern China

    Get PDF
    Global warming has posed non-negligible effects on regional extreme precipitation changes and increased the uncertainties when meteorologists predict such extremes. More importantly, floods, landslides, and waterlogging caused by extreme precipitation have had catastrophic societal impacts and led to steep economic damages across the world, in particular over central-eastern China (CEC), where heavy precipitation due to the Meiyu-front and typhoon activities often causes flood disaster. There is mounting evidence that the anomaly atmospheric circulation systems and water vapor transport have a dominant role in triggering and maintaining the processes of regional extreme precipitation. Both understanding and accurately predicting extreme precipitation events based on these anomalous signals are hot issues in the field of hydrological research. In this thesis, the self-organizing map (SOM) and event synchronization were used to cluster the large-scale atmospheric circulation reflected by geopotential height at 500 hPa and to quantify the level of synchronization between the identified circulation patterns with extreme precipitation over CEC. With the understanding of which patterns were associated with extreme precipitation events, and corresponding water vapor transport fields, a hybrid deep learning model of multilayer perceptron and convolutional neural networks (MLP-CNN) was proposed to achieve the binary predictions of extreme precipitation. The inputs to MLP-CNN were the anomalous fields of GP at 500 hPa and vertically integrated water vapor transport (IVT). Compared with the original MLP, CNN, and two other machine learning models (random forest and support vector machine), MLP-CNN showed the best performance. Additionally, since the coarse spatial resolution of global circulation models and its large biases in extremes precipitation estimations, a new precipitation downscaling framework that combination of ensemble-learning and nonhomogeneous hidden Markov model (Ensemble-NHMM) was developed, to improve the reliabilities of GCMs in historical simulations and future projection. The performances of downscaled precipitation from reanalysis and GCM datasets were validated against the gauge observations and also compared with the results of traditional NHMM. Finally, the Ensemble-NHMM downscaling model was applied to future scenario data of GCM. On the projections of change trends in precipitation over CEC in the early-, medium- and late- 21st centuries under different emission scenarios, the possible causes were discussed in term of both thermodynamic and dynamic factors. Main results are enumerated as follows. (1) The large-scale atmospheric circulation patterns and associated water vapor transport fields synchronized with extreme precipitation events over CEC were quantitatively identified, as well as the contribution of circulation pattern changes to extreme precipitation changes and their teleconnection with the interdecadal modes of the ocean. Firstly, based on the nonparametric Pettitt test, it was found that 23% of rain gauges had significant abrupt changes in the annual extreme precipitation from 1960 to 2015. The average change point in the annual extreme precipitation frequency and amount occurred near 1989. Complex network analysis showed that the rain gauges highly synchronized on extreme precipitation events can be clustered into four clusters based on modularity information. Secondly, the dominant circulation patterns over CEC were robustly identified based on the SOM. From the period 1960–1989 to 1990–2015, the categories of identified circulation patterns generally remain almost unchanged. Among these, the circulation patterns characterized by obvious positive anomalies of 500 hPa geopotential height over the Eastern Eurasia continent and negative values over the surrounding oceans are highly synchronized with extreme precipitation events. An obvious water vapor channel originating from the northern Indian Ocean driven by the southwesterly airflow was observed for the representative circulation patterns (synchronized with extreme precipitation). Finally, the circulation pattern changes produced an increase in extreme precipitation frequency from 1960–1989 to 1990–2015. Empirical mode decomposition of the annual frequency variation signals in the representative circulation pattern showed that the 2–4 yr oscillation in the annual frequency was closely related to the phase of El Niño and Southern Oscillation (ENSO); while the 20–25 yr and 42–50 yr periodic oscillations were responses to the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. (2) A regional extreme precipitation prediction model was constructed. Two deep learning models-MLP and CNN were linearly stacked and used two atmospheric variables associated with extreme precipitation, that is, geopotential height at 500 hPa and IVT. The hybrid model can learn both the local-scale information with MLP and large-scale circulation information with CNN. Validation results showed that the MLP-CNN model can predict extreme or non-extreme precipitation days with an overall accuracy of 86%. The MLP-CNN also showed excellent seasonal transferability with an 81% accuracy on the testing set from different seasons of the training set. MLP-CNN significantly outperformed over other machine learning models, including MLP, CNN, random forest, and support vector machine. Additionally, the MLP-CNN can be used to produce precursor signals by 1 to 2 days, though the accuracy drops quickly as the number of precursor days increases. (3) The GCM seriously underestimated extreme precipitation over CEC but showed convincing results for reproducing large-scale atmospheric circulation patterns. The accuracies of 10 GCMs in extreme precipitation and large-scale atmospheric circulation simulations were evaluated. First, five indices were selected to measure the characteristics of extreme precipitation and the performances of GCMs were compared to the gauge-based daily precipitation analysis dataset over the Chinese mainland. The results showed that except for FGOALS-g3, most GCMs can reproduce the spatial distribution characteristics of the average precipitation from 1960 to 2015. However, all GCMs failed to accurately estimate the extreme precipitation with large underestimation (relative bias exceeds 85%). In addition, using the circulation patterns identified by the fifth-generation reanalysis data (ERA5) as benchmarks, GCMs can reproduce most CP types for the periods 1960–1989 and 1990–2015. In terms of the spatial similarity of the identified CPs, MPI-ESM1-2-HR was superior. (4) To improve the reliabilities of precipitation simulations and future projections from GCMs, a new statistical downscaling framework was proposed. This framework comprises two models, ensemble learning and NHMM. First, the extreme gradient boosting (XGBoost) and random forest (RF) were selected as the basic- and meta- classifiers for constructing the ensemble learning model. Based on the top 50 principal components of GP at 500 hPa and IVT, this model was trained to predict the occurrence probabilities for the different levels of daily precipitation (no rain, very light, light, moderate, and heavy precipitation) aggregated by multi-sites. Confusion matrix results showed that the ensemble learning model had sufficient accuracy (>88%) in classifying no rain or rain days and (>83%) predicting moderate precipitation events. Subsequently, precipitation downscaling was done using the probability sequences of daily precipitation as large-scale predictors to NHMM. Statistical metrics showed that the Ensemble-NHMM downscaled results matched best to the gauge observations in precipitation variabilities and extreme precipitation simulations, compared with the result from the one that directly used circulation variables as predictors. Finally, the downscaling model also performed well in the historical simulations of MPI-ESM1-2-HR, which reproduced the change trends of annual precipitation and the means of total extreme precipitation index. (5) Three climate scenarios with different Shared Socioeconomic Pathways and Representative Concentration Pathways (SSPs) were selected to project the future precipitation change trends. The Ensemble-NHMM downscaling model was applied to the scenario data from MPI-ESM1-2-HR. Projection results showed that the CEC would receive more precipitation in the future by ~30% through the 2075–2100 period. Compared to the recent 26-year epoch (1990–2015), the frequency and magnitude of extreme precipitation would increase by 21.9–48.1% and 12.3–38.3% respectively under the worst emission scenario (SSP585). In particular, the south CEC region is projected to receive more extreme precipitation than the north. Investigations of thermodynamic and dynamic factors showed that climate warming would increase the probability of stronger water vapor convergence over CEC. More wet weather states due to the enhanced water vapor transport, as well as the increased favoring large-scale atmospheric circulation and the strengthen pressure gradient would be the factors for the increased precipitation

    Analysis, Characterization, Prediction and Attribution of Extreme Atmospheric Events with Machine Learning: a Review

    Full text link
    Atmospheric Extreme Events (EEs) cause severe damages to human societies and ecosystems. The frequency and intensity of EEs and other associated events are increasing in the current climate change and global warming risk. The accurate prediction, characterization, and attribution of atmospheric EEs is therefore a key research field, in which many groups are currently working by applying different methodologies and computational tools. Machine Learning (ML) methods have arisen in the last years as powerful techniques to tackle many of the problems related to atmospheric EEs. This paper reviews the ML algorithms applied to the analysis, characterization, prediction, and attribution of the most important atmospheric EEs. A summary of the most used ML techniques in this area, and a comprehensive critical review of literature related to ML in EEs, are provided. A number of examples is discussed and perspectives and outlooks on the field are drawn.Comment: 93 pages, 18 figures, under revie

    Rain Fall Prediction using Ada Boost Machine Learning Ensemble Algorithm

    Get PDF
    Every government takes initiative for the well-being of their citizens in terms of environment and climate in which they live. Global warming is one of the reason for climate change. With the help of machine learning algorithms in the flash light of Artificial Intelligence and Data Mining techniques, weather predictions not only rainfall, lightings, thunder outbreaks, etc. can be predicted. Management of water reservoirs, flooding, traffic - control in smart cities, sewer system functioning and agricultural production are the hydro-meteorological factors that affect human life very drastically. Due to dynamic nature of atmosphere, existing Statistical techniques (Support Vector Machine (SVM), Decision Tree (DT) and logistic regression (LR)) fail to provide good accuracy for rainfall forecasting. Different weather features (Temperature, Relative Humidity, Dew Point, Solar Radiation and Precipitable Water Vapour) are extracted for rainfall prediction. In this research work, data analysis using machine learning ensemble algorithm like Adaptive Boosting (Ada Boost) is proposed. Dataset used for this classification application is taken from hydrological department, India from 1901-2015. Overall, proposed algorithm is feasible to be used in order to qualitatively predict rainfall with the help of R tool and Ada Boost algorithm. Accuracy rate and error false rates are compared with the existing Support Vector Machine (SVM) algorithm and the proposed one gives the better result

    Distributed hydrological model using machine learning algorithm for assessing climate change impact

    Get PDF
    Rapid population growth, economic development, land-use modifications, and climate change are the major driving forces of growing hydrological disasters like floods and water stress. Reliable flood modelling is challenging due to the spatio-temporal changes in precipitation intensity, duration and frequency, heterogeneity in temperature rise and land-use changes. Reliable high-resolution precipitation data and distributed hydrological model can solve the problem. This study aims to develop a distributed hydrological model using Machine Learning (ML) algorithms to simulate streamflow extremes from satellite-based high-resolution climate data. An integrated statistical index coupled with a classification optimisation algorithm was used to select coupled model intercomparison project (CMIP6) global climate model (GCMs). Several bias-correction methods were evaluated to identify the best method for downscaling GCM simulations. The study also evaluated the performance of different Satellite-Based Products (SBPs) in replicating observed rainfall to select the best product. A novel two-stage bias correction method were used to correct the bias of the selected SBP. Besides, four widely used bias correction methods were compared to select the best method for downscaling GCM simulations at SBP grid locations. A novel ML-based distributed hydrological model was developed for modelling runoff from the corrected satellite rainfall data. Finally, the model was used to project future changes in runoff, and streamflow extremes from the downscaled GCM projected climate. The Johor River Basin (JRB) located at the south of Peninsular Malaysia was considered as the case study area. The results showed that three GCMs, namely EC-Earth, EC-Earth-Veg and MRI-ESM-2, were the best in replicating the precipitation climatology in mainland Southeast Asia. IMERG was the best among five SBPs with an R2 of 0.56 compared to SM2RAIN-ASCAT (0.15), GSMap (0.18), PERSIANN-CDR (0.14), PERSIANN-CSS (0.10) and CHIRPS (0.13). The two-step bias correction approach improved the performance of IMERG, which reduced the mean bias up to 140 % compared to the other conventional bias correction methods. The method also successfully simulates the historical high rainfall events that caused floods in Peninsular Malaysia. The distributed hydrological model developed using ML showed NSE values of 0.96 and 0.78 and RMSE of 4.01 and 5.64 during calibration and validation. The simulated flow analysis using the model showed that the river discharge would increase in the near future (2020 - 2059) and the far future (2060 - 2099) for different SSPs. The largest change in river discharge would be for SSP-585. The extreme rainfall indices, such as R95TOT, R99TOT, Rx1day, Rx5day and RI, were projected to increase from 5% for SSP-119 to 37% for SSP-585 in the future compared to the base period. The ML based distributed hydrological model developed using the novel two-step bias corrected SBP showed sufficient capability to simulate runoff from satellite rainfall. Application of the ML-based distributed model in JRB indicated that climate change and socio-economic development would cause an increase in the frequency streamflow extremes, causing larger flood events. The modelling framework developed in this study can be used for near-real time monitoring of flood through bias correction near-real time satellite rainfall

    Machine Learning based Wind Power Forecasting for Operational Decision Support

    Get PDF
    To utilize renewable energy efficiently to meet the needs of mankind's living demands becomes an extremely hot topic since global warming is the most serious global environmental problem that human beings are facing today. Burning of fossil fuels, such as coal and oil directly for generating electricity leads to environment pollution and exacerbates global warning. However, large-scale development of hydropower increases greenhouse gas emissions and greenhouse effects. This research is related to knowledge of wind power forecasting (WPF) and machine learning (ML). This research is built around one central research question: How to improve the accuracy of WPF by using AI methods? A pilot conceptual system combining meteorological information and operations management has been formulated. The main contribution is visualized in a proposed new framework, named Meteorological Information Service Decision Support System, consisting of a meteorological information module, wind power prediction module and operations management module. This conceptual framework has been verified by quantitative analysis in empirical cases. This system utilizes meteorological information for decision-making based on condition-based maintenance in operations and management for the purpose of optimizing energy management. It aims to analyze and predict the variation of wind power for the next day or the following week to develop scheduling planning services for WPEs based on predicting wind speed for every six hours, which is short-term wind speed prediction, through training, validating, and testing dataset. Accurate prediction of wind speed is crucial for weather forecasting service and WPF. This study presents a carefully designed wind speed prediction model which combines fully-connected neural network (FCNN), long short-term memory (LSTM) algorithm with eXtreme Gradient Boosting (XGBoost) technique, to predict wind speed. The performance of each model is tested by using reanalysis data from European Center for Medium-Range Weather Forecasts (ECMWF) for Meteorological observatory located in Vaasa in Finland. The results show that XGBoost algorithm has similar improved prediction performance as LSTM algorithm, in terms of RMSE, MAE and R2 compared to the commonly used traditional FCNN model. On the other hand, the XGBoost algorithm has a significant advantage on training time while comparing to the other algorithms in this case study. Additionally, this sensitivity analysis indicates great potential of the optimized deep learning (DL) method, which is a subset of machine learning (ML), in improving local weather forecast on the coding platform of Python. The results indicate that, by using Meteorological Information Service Decision Support System, it is possible to support effective decision-making and create timely actions within the WPEs. Findings from this research contribute to WPF in WPEs. The main contribution of this research is achieving decision optimization on a decision support system by using ML. It was concluded that the proposed system is very promising for potential applications in wind (power) energy management

    MULTIVARIATE MULTISITE STATISTICAL DOWNSCALING OF ATMOSPHERE-OCEAN GENERAL CIRCULATION MODEL OUTPUTS OVER THE CANADIAN PRAIRIE PROVINCES

    Get PDF
    Atmosphere-Ocean General Circulation Models (AOGCMs) are the primary tool for modelling global climate change in the future. However, their coarse spatial resolution does not permit direct application for local scale impact studies. Therefore, either dynamical or statistical downscaling techniques are used for translating AOGCM outputs to local scale climatic variables. The main goal of this study was to improve our understanding of the historical and future climate change at local-scale in the Canadian Prairie Provinces (CPPs) of Alberta, Saskatchewan and Manitoba, comprising 47 diverse watersheds. Given the vast nature of the study area and paucity of recorded data, a novel approach for identifying homogeneous regions for regionalization of precipitation characteristics for the CPPs was proposed. This approach incorporated information about predictors ― large-scale atmospheric covariates from the National Center for Environmental Prediction (NCEP) Reanalysis-I, teleconnection indices and geographical site attributes that impact spatial patterns of precipitation in order to delineate homogeneous precipitation regions using a combination of multivariate approaches. This resulted in the delimitation of five homogeneous climatic regions which were validated independently for homogeneity using statistics computed from observations recorded at 120 stations across the CPPs. For multisite multivariate statistical downscaling, an approach based on the Generalized Linear Model (GLM) framework was developed to downscale daily observations of precipitation and minimum and maximum temperatures from 120 sites located across the CPPs. First, the aforementioned predictors and observed daily precipitation and temperature records were used to calibrate GLMs for the 1971–2000 period. Then the calibrated GLMs were used to generate daily sequences of precipitation and temperatures for the 1962–2005 historical (conditioned on NCEP predictors), and future period (2006–2100) using outputs from six CMIP5 (Coupled Model Intercomparison Project Phase-5) AOGCMs corresponding to Representative Concentration Pathway (RCP): RCP2.6, RCP4.5, and RCP8.5 scenarios. The results indicated that the fitted GLMs were able to capture spatiotemporal characteristics of observed climatic fields. According to the downscaled future climate, mean precipitation is projected to increase in summer and decrease in winter while minimum temperature is expected to warm faster than the maximum temperature. Climate extremes are projected to intensify with increased radiative forcing

    Linking Climate Change and Socio-economic Impact for Long-term Urban Growth in Three Mega-cities

    Get PDF
    Urbanization has become a global trend under the impact of population growth, socio-economic development, and globalization. However, the interactions between climate change and urban growth in the context of economic geography are unclear due to missing links in between the recent planning megacities. This study aims to conduct a multi-temporal change analysis of land use and land cover in New York City, City of London, and Beijing using a cellular automata-based Markov chain model collaborating with fuzzy set theory and multi-criteria evaluation to predict the city\u27s future land use changes for 2030 and 2050 under the background of climate change. To determine future natural forcing impacts on land use in these megacities, the study highlighted the need for integrating spatiotemporal modeling analyses, such as Statistical Downscale Modeling (SDSM) driven by climate change, and geospatial intelligence techniques, such as remote sensing and geographical information system, in support of urban growth assessment. These SDSM findings along with current land use policies and socio-economic impact were included as either factors or constraints in a cellular automata-based Markov Chain model to simulate and predict land use changes in megacities for 2030 and 2050. Urban expansion is expected in these megacities given the assumption of stationarity in urban growth process, although climate change impacts the land use changes and management. More land use protection should be addressed in order to alleviate the impact of climate change

    ITIKI: Bridge between African indigenous knowledge and modern science on drought prediction

    Get PDF
    The now more rampant and severe droughts have become synonymous with Sub-Saharan Africa; they are a major contributor to the acute food insecurity in the Region. Though this scenario may be replicated in other regions in the globe, the uniqueness of the problem in Sub-Saharan Africa is to be found in the ineffectiveness of the drought monitoring and predicting tools in use in these countries. Here, resource-challenged National Meteorological Services are tasked with drought monitoring responsibility. The main form of forecasts is the Seasonal Climate Forecasts whose utilisation by small-scale farmers is below par; they instead consult their Indigenous Knowledge Forecasts. This is partly because the earlier are too supply-driven, too ""coarse"" to have meaning at the local level and their dissemination channels are ineffective. Indigenous Knowledge Forecasts are under serious threat from events such as climate variations and ""modernisation""; blending it with the scientific forecasts can mitigate some of this. Conversely, incorporating Indigenous Knowledge Forecasts into the Seasonal Climate Forecasts will improve its relevance (cultural and local) and acceptability, hence boosting its utilisation among small-scale farmers. The advantages of such a mutual symbiosis relationship between these two forecasting systems can be accelerated using ICTs. This is the thrust of this research: a novel drought-monitoring and predicting solution that is designed to work within the unique context of small-scale farmers in Sub-Saharan Africa. The research started off by designing a novel integration framework that creates the much-needed bridge (itiki) between Indigenous Knowledge Forecasts and Seasonal Climate Forecasts. The Framework was then converted into a sustainable, relevant and acceptable Drought Early Warning System prototype that uses mobile phones as input/output devices and wireless sensor-based weather meters to complement the weather stations. This was then deployed in Mbeere and Bunyore regions in Kenya. The complexity of the resulting system was enormous and to ensure that these myriad parts worked together, artificial intelligence technologies were employed: artificial neural networks to develop forecast models with accuracies of 70% to 98% for lead-times of 1 day to 4 years; fuzzy logic to store and manipulate the holistic indigenous knowledge; and intelligent agents for linking the prototype modules
    • …
    corecore