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ABSTRACT 

Rapid population growth, economic development, land-use modifications, and 

climate change are the major driving forces of growing hydrological disasters like 

floods and water stress. Reliable flood modelling is challenging due to the spatio-

temporal changes in precipitation intensity, duration and frequency, heterogeneity in 

temperature rise and land-use changes. Reliable high-resolution precipitation data and 

distributed hydrological model can solve the problem. This study aims to develop a 

distributed hydrological model using Machine Learning (ML) algorithms to simulate 

streamflow extremes from satellite-based high-resolution climate data. An integrated 

statistical index coupled with a classification optimisation algorithm was used to select 

coupled model intercomparison project (CMIP6) global climate model (GCMs). 

Several bias-correction methods were evaluated to identify the best method for 

downscaling GCM simulations. The study also evaluated the performance of different 

Satellite-Based Products (SBPs) in replicating observed rainfall to select the best 

product. A novel two-stage bias correction method were used to correct the bias of the 

selected SBP. Besides, four widely used bias correction methods were compared to 

select the best method for downscaling GCM simulations at SBP grid locations. A 

novel ML-based distributed hydrological model was developed for modelling runoff 

from the corrected satellite rainfall data. Finally, the model was used to project future 

changes in runoff, and streamflow extremes from the downscaled GCM projected 

climate.  The Johor River Basin (JRB) located at the south of Peninsular Malaysia was 

considered as the case study area. The results showed that three GCMs, namely EC-

Earth, EC-Earth-Veg and MRI-ESM-2, were the best in replicating the precipitation 

climatology in mainland Southeast Asia. IMERG was the best among five SBPs with 

an R2 of 0.56 compared to SM2RAIN-ASCAT (0.15), GSMap (0.18), PERSIANN-

CDR (0.14), PERSIANN-CSS (0.10) and CHIRPS (0.13). The two-step bias 

correction approach improved the performance of IMERG, which reduced the mean 

bias up to 140 % compared to the other conventional bias correction methods. The 

method also successfully simulates the historical high rainfall events that caused floods 

in Peninsular Malaysia. The distributed hydrological model developed using ML 

showed NSE values of 0.96 and 0.78 and RMSE of 4.01 and 5.64 during calibration 

and validation. The simulated flow analysis using the model showed that the river 

discharge would increase in the near future (2020 − 2059) and the far future (2060 − 

2099) for different SSPs. The largest change in river discharge would be for SSP-585. 

The extreme rainfall indices, such as R95TOT, R99TOT, Rx1day, Rx5day and RI, 

were projected to increase from 5% for SSP-119 to 37% for SSP-585 in the future 

compared to the base period. The ML based distributed hydrological model developed 

using the novel two-step bias corrected SBP showed sufficient capability to simulate 

runoff from satellite rainfall. Application of the ML-based distributed model in JRB 

indicated that climate change and socio-economic development would cause an 

increase in the frequency streamflow extremes, causing larger flood events. The 

modelling framework developed in this study can be used for near-real time 

monitoring of flood through bias correction near-real time satellite rainfall. 
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ABSTRAK 

Pertumbuhan penduduk yang pesat, pembangunan ekonomi, pengubahsuaian 

guna tanah, dan perubahan iklim adalah pendorong utama bencana hidrologi yang semakin 

meningkat seperti banjir dan tegasan air. Pemodelan banjir yang andal adalah mencabar 

kerana perubahan spatio-temporal dalam kelebatan hujan, tempoh masa dan frekuensi, 

heterogeniti dalam kenaikan suhu dan perubahan guna tanah. Data hujan resolusi tinggi 

yang andal dan model agihan hidrologi boleh menyelesaikan masalah. Kajian ini bertujuan 

untuk membangunkan model agihan hidrologi menggunakan algoritma Mesin 

Pembelajaran (ML) untuk mensimulasikan aliran air yang ekstrem daripada data iklim 

resolusi tinggi berasaskan satelit. Indeks statistik bersepadu yang digabungkan dengan 

algoritma pengoptimuman klasifikasi telah digunakan untuk memilih Model Iklim Umum 

(GCMs) Model Projek Antara-bandingan (CMIP6). Beberapa kaedah pembetulan-bias 

telah dinilai untuk mengenal pasti kaedah terbaik untuk mengunjurkan simulasi GCM. 

Kajian ini juga menilai prestasi Produk Berasaskan Satelit (SBP) yang berbeza dalam 

mereplikasi hujan yang diperhatikan untuk memilih produk yang terbaik. Kaedah nobel 

pembetulan-bias dua peringkat telah digunakan untuk membetulkan biasan SBP yang 

dipilih. Selain itu, empat kaedah pembetulan-bias yang digunakan secara meluas telah 

dibandingkan untuk memilih kaedah terbaik untuk mengunjurkan simulasi GCM di lokasi 

grid SBP. Model agihan hidrologi berasaskan ML telah dibangunkan untuk pemodelan 

aliran air daripada data hujan satelit yang diperbetulkan. Akhirnya, model tersebut 

digunakan untuk mengunjurkan perubahan aliran air pada masa hadapan, dan aliran air 

ekstrem daripada unjuran iklim GCM. Lembangan Sungai Johor (JRB) yang terletak di 

selatan Semenanjung Malaysia dipertimbangkan sebagai kawasan kajian kes. Keputusan 

menunjukkan bahawa tiga GCM, iaitu EC-Earth, EC-Earth-Veg dan MRI-ESM-2, adalah 

yang terbaik dalam mereplikasikan iklim hujan di tanah besar Asia Tenggara. IMERG 

adalah yang terbaik antara lima SBP dengan R2 0.56 berbanding SM2RAIN-ASCAT 

(0.15), GSMap (0.18), PERSIANN-CDR (0.14), PERSIANN-CSS (0.10) dan CHIRPS 

(0.13). Pendekatan pembetulan-bias dua peringkat telah meningkatkan prestasi IMERG, 

dengan pengurangan pembiasan purata sehingga 140 % berbanding kaedah pembetulan-

bias konvensional yang lain. Kaedah ini juga berjaya mensimulasikan peristiwa sejarah 

hujan lebat yang menyebabkan banjir di Semenanjung Malaysia. Model hidrologi teragih 

yang dibangunkan menggunakan ML menunjukkan nilai NSE 0.96 dan 0.78 dan RMSE 

4.01 dan 5.64 semasa penentukuran dan pengesahan. Analisis simulasi aliran air 

menggunakan model tersebut menunjukkan bahawa kadar alir air sungai akan meningkat 

dalam masa terdekat (2020 - 2059) dan masa depan (2060 - 2099) untuk SSP yang berbeza. 

Perubahan terbesar dalam kadar alir air sungai adalah untuk SSP-585. Indeks hujan 

ekstrem, seperti R95TOT, R99TOT, Rx1day, Rx5day dan RI, diunjurkan meningkat 

daripada 5% untuk SSP-119 kepada 37% untuk SSP-585 pada masa depan berbanding 

tempoh asas. Model agihan hidrologi berasaskan ML yang dibangunkan menggunakan 

SBP pembetulan-bias dua peringkat menunjukkan keupayaan yang mencukupi untuk 

mensimulasikan aliran air daripada hujan satelit. Aplikasi model agihan hidrologi 

berasaskan ML di JRB menunjukkan bahawa perubahan iklim dan pembangunan sosio-

ekonomi akan menyebabkan peningkatan frekuensi aliran air yang ekstrem, menyebabkan 

kejadian banjir yang lebih besar. Rangka kerja pemodelan yang dibangunkan dalam kajian 

ini boleh digunakan untuk pemantauan banjir melalui pembetulan-bias hujan satelit 

hampir masa nyata.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Hydrological disasters like floods and water stress have become a common 

phenomenon in many countries globally. Flood in a catchment is triggered when 

precipitation becomes more than the storage and drainage capacity of the catchment 

(Konrad, 2003). On the other hand, the water stress of a catchment depends on water 

balance, measured as the difference between water supply and water demand 

(European Commission and Environment, 2015). Due to rapid population growth, 

economic development, land-use modifications and climate change, many catchments 

globally become highly prone to hydrological disasters like floods and water stress 

(Dai et al., 2017). Consequently, a moderate dry spell often forces water rationing and 

moderate or extreme rainfall causing floods, especially in rapidly developing urban 

catchments (Pereira et al., 2009). The changing pattern of hydrological disasters due 

to environmental changes is a major concern for scientists and policy-makers all over 

the globe.  

The increase in atmospheric greenhouse gases (GHG) caused a significant rise 

in global temperature (Shahid et al., 2017). The changes in precipitation patterns, 

including intensity, duration, and frequency, have been recorded with the rise in 

temperature over the last few decades, resulting in frequent hydrological extremes 

(Ziarh et al., 2021). Water is the most important resource for the survival of living 

beings (UNIDO, 2003). Almost 80% of the world’s population lives under different 

forms of water scarcity (UNEP, 2005). Increasing hydrological disasters may cause a 

quick depletion of the available water resources (Iqbal et al., 2019). The water 

management system needs to be advanced with better management policy to attain 

sustainable development and management of water resources to adapt to climate 
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change (Ahmad and Simonovic, 2000). This needs reliable information on climate 

change projections and implications in catchment hydrological processes. 

However, the projection of water-related hazards in a catchment is very 

intricate due to the complex relationship of climate and land use with various 

ecological and socio-economic factors, including population growth, economic 

development, urbanization as well as policy-related factors, like water management 

strategies and legislation (Guo et al., 2001). Therefore, it is always challenging to 

reciprocate the actual hydrological conditions using hydrological models (Sood, 

2009). A hydrological model requires a lot of observed data and optimising different 

parameters (Minville et al., 2014). The data availability or mismatch of any data leads 

to errors in simulation (Bárdossy and Singh, 2008). Therefore, the major challenge is 

finding the relationship among the water cycle components that affect a system in 

various dimensions. Successful simulation of a hydrological cycle using a dynamic 

approach can address hydrological modelling challenges.   

Rainfall-runoff models simulate the relationships between rainfall and the 

runoff generated in a catchment (Sitterson et al., 2018). Various methods and 

techniques have been developed to simplify this complex relationship, ranging from a 

simple mathematical model to a complex “black box” and physical models (Young, 

2002). According to the methods used to develop the relationship between rainfall and 

runoff, the models are categorised as empirical, conceptual, and physical (Devia et al., 

2015). They are also categorized as lumped, semi-distributed and distributed models 

based on their ability to consider the spatial variability of catchment properties. Devia 

et al. (2015) conducted a comparative study to compare various rainfall-runoff models. 

The study revealed that the empirical models require fewer input data but are limited 

to a certain region or a boundary, whereas the conceptual models are parametric. The 

parameters are catchment dependent, thus, needs large hydrological and 

meteorological data (Perrin et al., 2001). The physical-based model establishes the 

rainfall-runoff relationship based on the governing physical laws (Agrawal and 

Desmukh, 2016). These models are most accurate but suffer from scale-related issues 

and require extensive data (Devia et al., 2015). Therefore, they are considered the most 

complex rainfall-runoff models. The uncertainties associated with extensive data and 
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the parameters used to develop models are specific to the region, making these models 

more time consuming and site-specific. 

In recent years, soft computing or machine learning (ML) methods, such as 

Artificial Neural Network (ANN), Support Vector Regression (SVR), and Fuzzy 

Logic and Genetic Algorithm (GA), have been employed to develop rainfall-runoff 

models (Dawson and Wilby, 2001, Johari et al., 2011, Özger, 2011). However, these 

approaches cannot completely manage the dynamics of hydrological processes 

because of the inherent limitations in the approaches (Wang et al., 2011). Potential 

challenges also arise as these methods require long-term, continuous historical records 

of hydrological and other variables (Qin et al., 2011, Tidwell et al., 2004). 

Furthermore, many of these approaches simplify the multi-factors and often make the 

nonlinear systems linear, reducing the simulation accuracy (Ropero et al., 2016a). The 

hybridization of ML and conventional physical or conceptual model can improve the 

capability to model complex interactions. Such an approach also can replicate the 

functional relationship between input and output by enhancing the original 

methodologies by data processing, parameter estimation and routing using machine 

learning algorithms (Chandwani et al., 2015). The application of such complex 

problem-solving methodologies in hydrology and water resources can help to provide 

a technique for reliable simulation of hydrological disasters, particularly water scarcity 

and floods, due to the changes in land use driven by physical and socio-economic 

factors and climate. Incorporating quantitative information on complex interactions of 

runoff with land use and climate can enhance the model's accuracy in simulating 

hydrological disasters (Koch et al., 2018).  

1.2 Problem Statement 

Climate is the major driver of the water balance and hydrological extremes. 

Global climate models (GCM) are generally used for generating knowledge of possible 

changes in water resources due to climate change. Coupled model intercomparison 

project (CMIP) phase 5 GCMs have been used globally to generate projection for 

different radiative concentration pathways (RCPs). The major drawback of RCPs is 
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not considering the land use and socio-economic changes in the climate projection. 

Recently released CMIP6 GCMs projections are driven by land use and emission 

scenarios, leading to new social and economic development pathways, the Shared 

Socioeconomic Pathway (SSP) (Riahi et al., 2017). Several studies showed higher 

consistency, lower uncertainty and better reliability in CMIP6 model projections than 

CMIP5 models. This urges the update of the existing RCP-based knowledge to SSPs. 

However, all CMIP6 GCMs are not equally capable of reliable climate projection in 

all regions. Therefore, selecting an appropriate set of GCM remained a major challenge 

for studying impact assessment and changes in climate variables at local and regional 

scales. However, the major problem in GCM selection is the uncertainties associated 

with the selection procedure. This emphasizes the need for a new robust selection 

method for GCM selection to reduce uncertainties in climate change projections (Iqbal 

et al., 2021).  

Reliable modelling of hydrology and water resources needs accurate high-

resolution rainfall data (Tegegne et al., 2017). However, high-resolution dependable 

quality data is absent in most regions of the world (Valeriano et al., 2009, 

Nikolopoulos et al., 2013, Harris et al., 2007). Satellite rainfall data can be an 

alternative for such data-scare regions. However, large and complex biases are the 

major obstacle for using satellite rainfall data in hydrological studies. Several attempts 

have been made to remove or reduce biases in satellite rainfall data before using them 

for hydrological studies (Soo et al., 2019, Semire et al., 2012, Tan et al., 2015b). 

However, the biases are often highly nonlinear in space and time and cannot be 

removed using the existing bias-correction methods. This indicates the need for 

improvement of the existing bias-correction techniques. 

Spatial heterogeneity of climate variables has a significant impact on the 

hydrological behaviour of the catchment. The distributed hydrological model can 

simulate runoff considering catchment spatial heterogeneity. However, calibration and 

validation of the distributed hydrological model are time-consuming and complex 

(Vojinovic and Seyoum, 2008). They also need a large amount of data for several 

hydrological variables (Mitchell and Diaper, 2005, Hardy, 2005). The performance of 

the distributed model is often very poor, even if all the data requirements and 
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complexities are considered. ML-based models have shown their efficiency in 

complex non-linear processes and reliable rainfall-runoff simulations. However, ML-

based hydrological models are not developed to cater for the spatial variability in the 

catchment characteristics and atmospheric variables, so they use the whole catchment 

as a single unit (Jiang et al., 2018). The ML-based distributed hydrological model is a 

recently evolved research topic, where catchment spatial heterogeneity is integrated 

into the ML modelling process. Thus, it uses ML and distributed hydrological models 

to provide reliable runoff estimates from rainfall. Several attempts have been made to 

implement distributed ML model but have not been successfully implemented 

(Konapala et al., 2020, Schmidt et al., 2020). There is a need to advance the effort in 

this regard.  

 The influence of land use and climate changes in the hydrology of an area is 

important to quantify for devising adaptation planning (Zhang et al., 2016, Shahid et 

al., 2017). Deficiencies in data are the major obstacle to such analysis in many regions. 

The reliable flood forecasting in real-time and projections due to climate change need 

high-resolution satellite rainfall and downscaled high-resolution GCM rainfall as input 

in a hydrological model developed through the integration of ML with the physical-

based model. However, the complexity of incorporating distributed hydrology concept 

in ML algorithms is a major challenge. A framework is still lacking in this regard. 

1.3 Objectives of the Study 

The main objective of this study is to develop a machine learning-based 

distributed hydrological model for runoff simulation using remote sensing data and 

future flood projections using global climate model data.  The specific objectives of 

the study are; 

(a) To evaluate the performance of CMIP6 GCMs, to select suitable subset and 

downscale rainfall for different shared socioeconomic pathways scenarios. 
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(b) To develop a novel two-step model for correcting bias in satellite rainfall to 

generate high-resolution near-real-time rainfall data. 

(c) To develop a machine learning-based distributed hydrological model to 

simulate the impacts of land use and rainfall changes on surface runoff  

(d) To project the changes in surface runoff in different future periods for different 

shared socioeconomic pathways.   

 

 

1.4 Scope of the Study 

The GCMs of CMIP6 that have projections for four SSPs (SSP-119, SSP-245, 

SSP-375 and SSP-585) were considered in the study. For the selection of GCM, 

Mainland South-East Asia (MSEA) was considered. The best gauge-based gridded 

data set suggested in existing literature was used for GCM downscaling. The four SSPs 

were used to study the effect of upcoming economic and demographic changes on 

water resources for informing stakeholders and aid climate change mitigation.  

The Satellite-Based Precipitation (SBP) products, having data availability for 

2007-2017, were used to assess their performance. Only the available gauge data in 

Peninsular Malaysia was used for bias correction. The highest resolution Digital 

Elevation Model (DEM) and soil type data that are freely available were used.  

ML algorithms, Random Forest (RF), was only considered to develop ML-

based distributed hydrological model owing to its ability to handle the large, noisy 

dataset. The physically-based bucket model concept was considered to develop the 

ML-based distributed model. The model was used to estimate the runoff at only one 

gauge station located on Johor River Basin (JRB).   

The future projection of the best GCM was used to study the effect of climate 

change on the hydrological extremes of the region. The four SSPs were considered to 

analyse the different possible changes in the future hydrology of the region catchment. 
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The considered hydrological extremes were limited to quantiles of river flow and few 

precipitation extremes only. 

1.5 Significance of the Study 

The novelty of this research is the development of a spatially distributed 

hydrological model based on an ML algorithm. The model is developed with the latest 

data set along with the most suitable empirical relationship between the hydrological 

variables.  

Selecting a suitable set of GCMs from CMIP6 using spatial indices is another 

significant contribution of this study. The model selected in this study can be employed 

in hydrometeorological studies in the whole MSEA region. 

Data availability is the major constraint of the modelling process. Recent 

satellite-based data sets have been used to predict hydrology in this study. A novel 

two-step bias correction method is proposed for correcting satellite rainfall data. The 

concept can be used in any other region for correcting bias in satellite rainfall. 

The integrated modelling framework developed in this study can be used to 

assess the climate change effects on runoff and, therefore, water resource planning in 

the region. The maps and information generated in this study can be used to educate 

the people about the effect of the action of human beings and its consequences on long 

term climatic conditions affecting their economy and living.  

1.6 Thesis Outline 

The thesis is divided into five chapters. Descriptions of the chapters are given 

below in brief. 
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Chapter 1 gives a general introduction comprising the background of the study, 

problem statement, objectives of the study, scope of the work, and significance of the 

study.  

Chapter 2 reviews relevant literature from previous studies on GCM selection, 

climate downscaling and projection, hydrological modelling, satellite rainfall bias 

correction, and climate change projections. 

Chapter 3 presents the methods used in the study. The chapter describes the 

data and sources, methods employed for selecting GCM, Statistical Downscaling (SD) 

and climate projection, the procedure developed for the bias correction of satellite data 

and the steps used to develop the hydrological model.  

Chapter 4 presents the results of the studies. Various statistical and spatial maps 

are presented in this chapter to show the results. Besides, a discussion section is also 

provided to analyse the results critically. 

Chapter 5 provides the conclusions drawn from the results presented in Chapter 

4. It also provides recommendations for future works to advance the knowledge 

generated in this study. 
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