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Resumo

O objectivo do trabalho exposto foi desenvolver um algoritmo de Machine Learning capaz de
emular a variabilidade climática de modo a que fosse possível extrair resultados de previsão.

Este projecto começou com a selecção dos dados a serem utilizados, os dados escolhidos foram
os relatórios "Global Surface Summary of the Day" de uma das estações meteorológicas do "Porto",
e dados relativos a teleconexões, tais como a North Atlantic Oscillation (NAO), a Arctic Oscillation
(AO) e a Pacific Decadal Oscillation (PDO). Após a sua selecção, os dados foram processados e
submetidos a técnicas de limpeza e filtragem. Vários datasets tiveram origem a partir destes dados
e subsequentemente foram fornecidos aos vários modelos de deep learning desenvolvidos, sendo os
mesmos designados: Multi-Channel CNN, Vanilla LSTM, Encoder-Decoder LSTM, CNN-LSTM
Encoder-Decoder and ConvLSTM Encoder-Decoder.

Os testes foram realizados por dataset, cada modelo seria avaliado tendo em conta uma configu-
ração de entrada e saída. Os resultados foram avaliados através das seguintes medições estatísticas:
Coeficiente de Determinação, R2 Score; Soma de Erros Quadrados, SSE; e o Índice de Persistência,
PERS.

Após analisados os resultados, concluiu-se que é possível fazer previsões do estado da atmosfera
com técnicas de deep learning utilizando apenas dados do histórico.

Palavras Chave: Previsão climática, Previsão meteorológica, Machine Learning, Deep Learning,
Tempo, Teleconexão, GSOD, NAO, AO, PDO
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Abstract

The objective of following work was to develop a Machine Learning algorithm capable of
emulating climate variability so that it could be possible to extract forecasting results.
This project started with the selection of the data to be utilised throughout the rest of the
dissertation, the data chosen was the "Global Surface Summary of the Day" reports from one of
"Oporto"’s weather stations, and data regarding teleconnections, such as North Atlantic Oscillation
(NAO), Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO). Following their
selection, the data was processed and subjected to data cleaning and filtering techniques. Several
datasets originated from these data and subsequently were provided to the various deep learning
models developed, being the same designated as: Multi-Channel CNN, Vanilla LSTM,
Encoder-Decoder LSTM, CNN-LSTM Encoder-Decoder and ConvLSTM Encoder-Decoder.
The tests were carried out by dataset, each model would be evaluated taking into account an input
and output configuration. The results were evaluated by the following statistical measurements:
Coefficient of Determination, R2 Score; Sum of Squared Errors, SSE; and the Persistence Index,
PERS.
Upon analysis of the results it was concluded that it is possible to make predictions of the state of
the atmosphere with deep learning techniques using only historical data.

Keywords: Climate Prediction, Weather Forecast, Machine Learning, Deep Learning, Weather,
Teleconnection, GSOD, NAO, AO, PDO
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Chapter 1

Introduction

1.1 Context

The planet Earth is under constant observation by several weather stations, these facilities capture

data relative to current weather conditions. Generally, these centres report at 15 min to hourly

intervals thus creating huge amounts of data. Since sample intervals are not deterministic the

collected data is processed to generate daily weather reports, such as "Global Surface Summary

of the Day" reports or commonly known as GSOD. Collecting data samples through long periods

of time enables the comprehensive study of weather and climate, thus, allowing for a better

understanding of its behaviour and the possibility to formulate more advanced ways to predict

meteorological events.

Climate and weather have always been predicted through various models, these are composed

of equations that describe the physical and chaotic behaviour of the atmosphere, and as one

would expect these need enormous computational power in order to solve and predict the next

stages of the atmosphere. And even with the computational power available these models have a

maximum resolution of two weeks. Therefore, statistical models, less computationally powerful,

were designed to assist the existing models, or even to predict by themselves the next states of the

atmosphere. However, these have proven not to be better than traditional models, namely because

of the chaotic/non-linear nature of the atmosphere. Even with the presence of non-linear statistical

models they suffer from the limitation that it is necessary to establish the non-linearity in order for

them to work. But currently the hope of replacing traditional models is high with the appearance of

machine learning algorithms, more specifically Deep Learning, which are appreciated for being

able to make non-linear predictions without the need to established the non-linearity.

Throughout the course of this thesis an application of climate prediction will be developed

using machine learning techniques, specifically Deep Learning.

First the data to be used will be selected. Subsequently the data will be subject to preprocessing

techniques in order to clean and filter it. Several deep learning models will be developed to be tested

later on with the data. At the end of this project it will be proven that the hope of predicting the
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2 Introduction

state of the atmosphere through deep learning techniques is possible and that it shows an evolution

on the knowledge of the atmosphere and its behaviour.

1.2 Motivation

Climate and weather forecasts influence our daily lives, it can be a key element for business

estimates/decisions, and a preventive mechanism for large and dangerous meteorological events

that can have societal impact, such as displacement or migration of people. Forecasts are of extreme

importance for several sectors of the economy, e.g. agriculture, tourism, insurance losses and even

for event companies.

The increasing availability of large amounts of historical data opens the opportunity to generate

studies on the long-term evolution of the atmosphere and try to forecast its future behaviour.

1.3 Objectives

The main objective of this dissertation was to develop a Machine Learning algorithm capable of

emulating climate variability so that it could be possible to extract forecasting results as good

or better than traditional forecasting models being these statistical or conditioned by physical

equations of the atmosphere.



Chapter 2

Background

The present chapter will provide a means of contextualising terms, methods and techniques related

to the target theme of this project which is Climate Predictions.

Firstly a brief introduction on climate, weather and their differences will be carried out. After-

wards the climatic variability and certain events that lead to it will be presented, such as teleconnec-

tions. Concluding with the survey of how weather and climate predictions were originated, existing

models, stations and observation centres worldwide responsible for this task.

2.1 Weather and Climate

Weather and climate are meteorological terms although related they are not interchangeable.

Weather describes variation of the atmospheric behaviour over short periods of time, whereas,

climate describes the weather conditions for a particular location through long periods of time.

2.1.1 Meteorology and Climatology

Climatology and Meteorology are branches of atmospheric science and both take into account the

study of atmospheric processes.

Meteorology is the study of weather or atmospheric processes. It is considered to be a branch

of atmospheric science which deals with weather phenomena and weather changes over a short

timescale [17].

Climatology is the study of atmospheric behaviour and changes in its factors over long periods

of time. Responsible for the research of climate: variations, extremes, and the influence on a variety

of activities including human health, safety and welfare to support evidence-based decision-making

on how to best adapt to a changing climate [17].

The understanding of climate is rooted in observations of the atmosphere, oceans, land surface,

the hydrological and carbon cycles and the cryosphere. Utilising weather observations made

regularly over a period of time, can provide means to quantify long-term average conditions

and gain insight into an area’s climate. Climatologists use climate normals — 30-year historical

averages of variables — as benchmarks, in order to historically contextualise some climatic events

3
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(e.g. heatwaves). Climate characterisation is influenced by several variables, which are referred to

as Essential Climate Variables, or ECV. "An ECV is a physical, chemical or biological variable or a

group of linked variables that critically contributes to the characterisation of Earth’ s climate."[1].

Figure 2.1: Essential Climate Variables, [1]

The proposed study for this dissertation focused mainly on the prediction of climatic variables

of the surface of the atmosphere, also considered ECV, the temperature and precipitation.

2.1.2 Atmospheric Variability and Teleconnections

The atmospheric circulation is known to exhibit substantial variability. This variability reflects in

weather patterns and circulation systems that occur on many time scales, lasting from a few days

(i.e. normal storm system), a few weeks (i.e. mid-winter warm-up or a mid-summer wet period), a

few months (i.e. particularly cold winters or hot summers), several years (i.e. abnormal winters for

several years in a row) and even centuries (i.e. long-term climate change) [18].

Teleconnection pattern refers to a recurring and persistent, large-scale mode of pressure and

circulation anomalies that spans through vast geographical areas. Although these patterns typically

last for weeks to months, they can be prominent for several consecutive years, thus reflecting an

important part of both inter-annual and inter-decadal variability of the atmospheric circulation.

Many of the teleconnection are of planetary-scale nature, and span entire ocean basins and conti-

nents. These phenomena reflect large-scale changes in the atmospheric wave, jet stream patterns,

temperature, rainfall, storm tracks and jet stream location and intensity over vast areas. Thus, they

are often the culprit for abnormal weather patterns occurring simultaneously over seemingly vast

distances [18].

Several teleconnection patterns have been identified, however for this study only the following

were considered: North Atlantic Oscillation, Arctic Oscillation, Pacific Decadal Oscillation and

Sea Ice and Extent.

2.1.2.1 North Atlantic Oscillation

The North Atlantic Oscillation (NAO), the leading recurring mode of variability in the extra-tropical

North Atlantic region, describes an opposing pattern of sea level pressure between the Atlantic
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subtropical high and the Iceland/Arctic low [19]. The positive phase of the NAO reflects below-

normal heights and pressure across the high latitudes of the North Atlantic and above-normal

heights and pressure over the central North Atlantic, the eastern United States and western Europe.

The negative phase reflects an opposite pattern of height and pressure anomalies over these regions

(2.2).

Figure 2.2: NAO: Negative and Positive phase, [20]

Both phases of the NAO are associated with basin-wide changes in the intensity and location

of the North Atlantic jet stream and storm track, and in large-scale modulations of the normal

patterns of zonal and meridional heat and moisture transport [21], which in turn results in changes

in temperature and precipitation patterns often extending from eastern North America to western

and central Europe [22].

The NAO index can be measured by the difference between the sea-level pressure of two

observational stations located in Iceland and the Azores.

Figure 2.3: Annual NAO Index, [23]

If the state of this phenomena could be predicted in advance then extremely valuable seasonal

climate forecasts could be made for Europe. Unfortunately, the NAO is a noisy mid-latitude

phenomenon and even the best predictions to date have not been able to capture more than 10% of

its year-to-year variation.
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2.1.2.2 Arctic Oscillation

The Arctic Oscillation (AO) is a large scale climate pattern characterised by winds circulating

counterclockwise around the Arctic. When the AO is presented in its positive phase, a ring of winds

circulating around the North Pole acts to confine colder air across polar regions. However, in the

negative phase of the AO the belt of winds around the arctic becomes weaker and distorted, which

allows for an easier southward entrance of colder, arctic air masses and increased storminess into

the mid-latitudes 2.4.

Figure 2.4: AO: Positive (left) and Negative (right) Phases, [2]

The daily AO index is constructed by projecting the daily 1000mb height anomalies pole ward

of 20-90oN onto the loading pattern of the AO.

Figure 2.5: AO index, [3]

2.1.2.3 Pacific Decadal Oscillation

The Pacific Decadal Oscillation (PDO) refers to cyclical variations in sea surface temperatures

in the Pacific Ocean. The PDO index is defined as the leading principal component of North



2.1 Weather and Climate 7

Pacific monthly sea surface temperature variability [24]. The PDO index consists of a warm

and cool phase which alters upper level atmospheric winds. Shifts in the PDO phase can have

significant implications for global climate, affecting Pacific and Atlantic hurricane activity, droughts

and flooding around the Pacific basin, the productivity of marine ecosystems, and global land

temperature patterns [25].

Figure 2.6: PDO, [4]

Global temperatures are tied directly to sea-surface temperatures. When sea-surface tempera-

tures are cool, global climate cools. When sea-surface temperatures are warm, the global climate

warms, regardless of any changes in atmospheric CO2. As such during PDO’s cold mode, cool

sea surface temperatures extend from the equator northward along the coast of North America into

the Gulf of Alaska cooling global climate. However, during PDO’s warm mode, warm sea surface

temperatures extend from the equator northward along the coast of North America into the Gulf of

Alaska warming global climate.

2.1.3 Weather Forecast

Weather forecasts are implemented in our society, they are accessible everywhere: on television,

computers and even mobile phones. These furnish essential information for everyday life, planting

and harvesting crop, selection of routes over land, sea and air, for building roads or infrastructure,

for making preparations against impending natural hazards, and for much more.

Weather forecasting is characterised as the act of predicting future weather conditions or an

attempt to indicate events that have a high probability of occurrence. It is an application of Science

and Technology to predict the state of the atmosphere for a future time to a given location. These

require observations of our environment around the clock and around the world. The bulk of

those observations are carried out by National Meteorological Services as part of the WMO World
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Weather Watch, which networks the observing stations to national, regional and global weather and

climate prediction centres 24 hours a day in real-time [26].

2.1.3.1 Numerical Weather Prediction

One of the first attempts to forecast the weather using calculations, i.e. the first attempt to make

a Numerical Weather Prediction, was by Lewis Fry Richardson in 1922. A variety of primitive

equations were used to calculate, a 6-hour forecast for the state of the atmosphere over two points

in central Europe. Unfortunately, the almost non-existent calculation of computational power did

not enable an efficient estimation, having been developed again later on when more significant

computational power was available [26].

Numerical Weather Prediction, or NWP, targets on taking current observations of the state of

the atmosphere and processing these data with computer models to forecast future states. Knowing

the current state of the atmosphere is just as important as the numerical computer models processing

the data. Current states of the atmosphere serve as input to the numerical computer models through

a process known as data assimilation to produce outputs of temperature, precipitation, and hundreds

of other meteorological elements from the oceans to the top of the atmosphere.

Since the very first attempt, NWP has made advances due to more and better assimilated

observations, higher computing power and progress in our knowledge of dynamics and physics of

the atmosphere. Viable NWP systems provide an accurate indication of developing weather events

from hours to days ahead. Hense, these are one of the most relevant components of routine and

severe weather forecasting and warnings at National Meteorological and Hydrological Services

[26].

2.1.4 Climate Predictions

Monitoring shorter-term climate conditions and predicting how climate will change in coming years

is critical for sustainable development and is an important component of climate adaptation and

climate services. Climate prediction is similar to NWP, but the forecasts are for longer periods.

Climatic numerical models, global or regional, are used to alter trace atmospheric gases, sea ice

and glacier cover, changes in incoming solar radiation, and a host of other parameters.

2.1.4.1 Global Climate Models

Global climate models, or GCM, are mathematical frameworks built on fundamental equations

of physics organised using a three dimensional grid over the globe (2.7). They account for

the conservation of energy, mass, momentum and how these are exchanged among different

components of the climate system. Using these fundamental relationships, GCMs are able to

simulate many important aspects of Earth’s climate: large-scale patterns of temperature and

precipitation, general characteristics of storm tracks and extratropical cyclones, observed changes

in global mean temperature and ocean heat content as a result of human emissions [27].
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Previously GCMs were designated as “general circulation models” due to including only the

physics to simulate the general circulation of the atmosphere. Nowadays, global climate models

simulate many aspects of the climate system: atmospheric chemistry and aerosols, land surface

interactions including soil and vegetation, land and sea ice, and increasingly even an interactive

carbon cycle and/or biogeochemistry [27].

Figure 2.7: GCM, [5]

Thus the WMO designated centres to generate global seasonal forecasts as WMO Global

Producing Centres of Long-Range Forecasts (2.8). These form an integral part of the WMO Global

Data-Processing and Forecasting System.

Figure 2.8: WMO Global Producing Centres of Long-Range Forecasts, [6]
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2.1.4.2 Regional Climate Models

Dynamical downscaling models are often referred to as regional climate models, or RCM, since

they include many of the same physical processes that make up a GCM, but simulate these processes

at higher spatial resolution over smaller regions (2.9).

At smaller spatial scales, and for specific variables and areas with complex terrain, such

as coastlines or mountains, regional climate models have been shown to add value. As model

resolution increases, RCMs are also able to explicitly resolve some processes that are parameterized

in global models. However, despite the differences in resolution, RCMs are still subject to many of

the same types of uncertainty as GCMs [27].

Figure 2.9: Regional Climate Models, [7]

The WMO also designated Regional Climate Centres to produce regional climate products,

including long-range forecasts to support regional and national climate activities.

2.1.4.3 Empirical Statistical Downscaling Models

Empirical statistical downscaling models, or ESDM combine GCM output with historical observa-

tions to translate large-scale predictors or patterns into high-resolution projections at the scale of

observations. The observations used in an ESDM can range from individual weather stations to

gridded datasets. As output, ESDMs can generate a range of products, from large grids to analyses

optimized for a specific location, variable, or decision-context [27].

ESDMs are limited by the fact that they require observational data as input; the longer and

complete the record, the greater the confidence that the ESDM is being trained on a representative

sample of climatic conditions for that location [27]. Statistical models are based on the key

assumption that the relationship between large-scale weather systems and local climate or the

spatial pattern of surface climate will remain stationary over the time horizon of the projections.

This assumption may not hold if climate change alters local feedback processes that affect these

relationships [27].
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2.2 Summary

In the follow-up to this chapter some terms and designations in relation to weather, climate,

meteorology were made explicit. The atmospheric variability and its correlation with teleconnection

patterns were exposed. Concluding with a brief introduction to weather and weather forecasts.

Since the research to be done will focus on climate prediction this chapter is essential for an initial

contextualisation.
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Chapter 3

Literature Review

3.1 Time Series Forecasting

The study to be carried out throughout this dissertation aims to perform a climatic forecast, which

is then considered a time series forecast study.

A time series is a sequence S of historical measurements yt of an observable variable y at equal

time intervals. Time series are studied for several purposes such as the forecasting of the future

based on knowledge of the past, the understanding of the phenomenon underlying the measures, or

simply a succinct description of the salient features of the series. Forecasting future values of an

observed time series plays an important role in nearly all fields of science and engineering, such

as economics, finance, business intelligence, meteorology, climatology, telecommunication,power

generation, medicine, water resources and environmental science [28, 29].

Weather/Climate forecasting is the application of science and technology to predict the state

of the atmosphere for a given location. Weather forecasts are made by collecting quantitative

data about the current state of the atmosphere and using scientific understanding of atmospheric

processes to project how the atmosphere will evolve. The chaotic nature of the atmosphere, the

massive computational power required to solve the equations that describe the atmosphere, error

involved in measuring the initial conditions, and an incomplete understanding of atmospheric

processes mean that forecasts become less accurate as the difference in current time and the time

for which the forecast is being made increases [26].

Accurate prediction of rainfall is crucial for agriculture dependent countries like India, China,

Australia, Pakistan, and Iran. Temperature forecasts are used by utility companies to estimate

demand over coming days. On an everyday basis, people use weather forecasts to determine what

to wear on a given day. Since outdoor activities are severely curtailed by heavy rain, snow and the

wind chill, forecasts can be used to plan activities around these events, and to plan ahead [26, 30].

Climate variability leads to increasing risk of weather-related damages that impact virtually all

sectors of the economy, from fisheries and agriculture to tourism, even insurance companies [31].

The increasing availability of large amounts of historical data and the need of performing

accurate forecasting of future behaviour in several scientific and applied domains demands the

13
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definition of robust and efficient techniques able to infer the stochastic dependency between past

and future [28].

But with the discovery of non-linearity in the nature of weather data, the focus has shifted

towards the nonlinear prediction of the weather data. Although, there is literature on nonlinear

statistics for weather forecasting, most of them require that the nonlinear model be specified before

the estimation is done [26].

Research on time series forecasts is widely present in the literature. Hence there are significant

methods used to perform these forecasts and these techniques range from traditional and statistical

methods to data-driven or Machine Learning (ML) methods. In order to carry out weather or

climate forecasts, the methods pointed out in 2 are currently used as well as statistical methods

and presently machine learning techniques, especially Artificial Neuronal Networks (ANN), have

earned confidence from researchers.

3.2 Statistical Methods

For a long time the forecasting domain has been influenced by linear statistical methods. However

it became increasingly clear that linear models are not adapted to many real applications, e.g.

climate or weather forecasting which are of non-linear nature. Statistical methods do not generate

acceptable results for non-linear processes because statistical methods are developed based on the

assumption of linear time series. Therefore, statistical methods cannot clearly identify non-linear

pattern and irregularities in weather/climate time series [28, 30].

The most commonly used statistical models for forecasting time series of a climatic nature are

Auto Regressive (AR), Moving Average (MA), Auto Regressive Moving Average (ARMA), Auto

Regressive Integrated Moving Average (ARIMA), and Multiple Regression. Even so, due to the

limitations presented by these methods they are eventually used as reference models to evaluate the

performance of machine learning models [32, 30]. Some of these techniques have been employed

to predict hydrologic droughts and rainfall/precipitation [33, 32, 30].

Previously it was pointed out the existence of limitations in the statistical models. The AR

models regresses against past values of the series. MA models uses past error as an explanatory

variable. AR and MA both are suitable for developing models for univariate time series. The AR

term only declares the number of linearly correlated lagged observations and is not appropriate for

the data having nonlinear relationships. AR and MA can be combined together to form the ARMA

model, however it can only be used for stationary time-series data. ARIMA model considers p, d,

and q three variables where: p is the number of autoregressive terms, d the number of nonseasonal

differences and q the number of lagged forecast errors in the prediction equation. As mentioned

above statistical approaches lack the ability to identify nonlinear patterns and irregularity in the

time series [32, 30].

With the discovery of non linearity in the nature of weather data, the focus of research has

shifted towards nonlinear prediction of the weather data, i.e. researchers are focusing on conducting

experiments with nonlinear models. Even though, the present literature has examples of nonlinear
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statistical models for the weather forecasting, most of them require that the nonlinear model be

specified before the estimation is done [34]. As such, the adoption of machine learning models has

increased.

3.3 Machine Learning Methods

In the past two decades, machine learning models have drawn attention and have established

themselves as serious contenders to classical statistical models in the forecasting community. These

models, also called black-box or data-driven models, are examples of non-parametric nonlinear

models which use only historical data to learn the stochastic dependency between the past and the

future [28].

Several ML models/algorithms are employed on forecasting applications, and for this case study,

it can be found in the literature methods, such as: Artificial Neuronal Networks, or ANN, specifically

Deep Learning for long-range prediction of annual rainfall [35, 36, 32, 37, 30], precipitation

nowcasting to predict the future rainfall intensity in a local region over a relatively short period of

time [38], to predict water resources variables [29], to forecast the daily maximum temperature [34],

to forecast daily streamflow [39]. It can also be found method e.g. K-nearest-neighbors, or K-NN,

support vector regression, or SVR, Support Vector Machine, or SVM, classification and regression

trees model, or CART, even hybrid models such as adaptive neuro-fuzzy inference system.

As expected when referring to models of ANN we are generalising several strands i.e. several

variants of the model are present in the literature e.g. recurrent neural network (RNN) [40],

convolutional Long-Short Memory (ConvLSTM) [38], modular artificial neural networks (MANN)

[36], Convolutional Neural Network (CNN) [41], Multilayer Perceptron Networks (MLP), Elman

Recurrent Neural Network (ERNN), Radial Basis Function Network (RBFN) and the Hopfield

Model (HFM) [34], Bayesian neural network (BNN) [39].

In [38] it is formulated a precipitation nowcasting as a spatiotemporal sequence forecasting

problem and it is proposed a new extension of LSTM designated ConvLSTM to tackle the problem.

The ConvLSTM layer preserved the advantages of FC-LSTM (fully connected LSTM) but is

also suitable for spatiotemporal data due to its inherent convolutional structure. By incorporating

ConvLSTM into a encoding-forecasting structure, an end-to-end trainable model for precipitation

nowcasting is built.

In [36] suggests the use of a modular artificial neural network (MANN) coupled with data-

preprocessing techniques to improve rainfall predictions from India and China. In order to evaluate

MANN’s performance, three models, Linear Regression, K-NN and ANN, are used for the purpose

of comparison. In the process of model development, model inputs and data-preprocessing tech-

niques are carefully analysed, such methods as: linear correlation analysis (LCA) regarded as an

effective and efficient input technique due to its simplicity of computation and comparable capabil-

ity of forecasting; Singular Spectrum Analysis (SSA) is proved in improving model performance is

to strengthen the mapping relation of model input and output by deleting noises in the raw signal.
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For the case of the following study [33] it was investigated the ability of data driven models

to forecast drought. It proposed and evaluated the use of the Wavelet Transform coupled models.

Overall, coupled wavelet-neural network (WA-ANN) models were found to provide better results

than the other model types used for the forecasts. Wavelet coupled models were proved to

consistently present lower values of RMSE and MAE compared to the other data driven models.

Wavelet analysis denoises the time series and subsequently allows the ANN and SVR model to

model the main signal without the noise.

The study [42] states that PSO-SVM, Particle Swarm Optimization - Support Vector Machine)

algorithm is proven to be an effective method of the rainfall forecast decision. It was established

and compared with the traditional mesh optimisation, the Genetic algorithm and the Ant Colony

algorithm it was proven through experiment results that the PSO algorithm has a higher accuracy

and efficiency.

The following study [43] focuses on the application and evaluation of Classification and

Regression Tree (CART) in prediction of seasonal precipitation. The accuracy of the CART model

was compared with two commonly used models. The results revealed that the CART produced

more accurate fall precipitation values than the other models, and this was also confirmed by spatial

bias analysis. The results of the CART, in addition, demonstrated that the predictions accomplished

better performance by two of the best climate indices in prediction of fall precipitation at time t by

using the climate signals at t−1.

In the study [39] several ML models were employed to forecast streamflow at lead times of

1–7 days, models such as Bayesian neural network (BNN), support vector regression (with genetic

algorithm used for selecting hyperparameters and kernels) (SVRGA), and Gaussian process (GP).

The multiple local minima problem of BNN was alleviated by using the average forecast of an

ensemble of BNN models. It was established that the nonlinear models generally outperformed

multiple linear regression (MLR), and BNN tended to slightly outperform the other nonlinear

models.

The porpuse of the study [44] was to assess whether it is possible to use a simplified reality - in

this case the most simple GCM without seasonal cycle - to develop a method that also works on

more complex GCMs. We showed that, for the problem of forecasting the model ’weather’, this

seems to be the case. It was used a deep convolutional auto-encoder architecture from [41]
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Methodology

The chapter will focus on the material and process developed for this thesis. The "Material" section

will incorporate the development tools and the data used throughout this project. The "Method"

section will narrate and justify the work procedure. The chapter in question is meant to explain the

pre-processing methods exposed to the data, the models explored and the way results were acquired

and organised.

4.1 Material

The purpose of the following sections will be to exhibit to the reader the material utilised in this

project. First and foremost the data adopted throughout the course of this dissertation is going to

be presented: GSOD and Teleconnections. Finally, the development platforms explored for the

development, analysis and evaluation of the work will be referenced.

4.1.1 Data

The National Centers for Environmental Information (NCEI) was the result of the union of the

former information centres belonging to the National Oceanic and Atmospheric Administration

(NOAA) — The National Climatic Data Center (NCDC), the National Geophysical Data Center

(NGDC) and the National Oceanographic Data Center (NODC) which includes the National Coastal

Data Development Center (NCDDC).

NCEI is responsible for hosting and providing access to one of the most significant archives on

Earth, with comprehensive oceanic, atmospheric, and geophysical data. Data quality is indisputable

as NOAA issued an Information Quality Guidelines to ensure and maximise quality, objectivity,

utility and integrity of information which it disseminates, withal, the acquired data is based on data

exchanged under the World Meteorological Organization (WMO) World Weather Watch Program

according to WMO Resolution 40 (Cg-XII) [45]. NOAA is also associated with one of the six

World Data Centres of the WMO Global Atmosphere Watch (GAW) responsible for documenting

and archiving atmospheric measurements and associated metadata from measurement stations

worldwide and making these data freely available to the scientific community. [46]

17
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All the information handled throughout this project was obtained via FTP, File Transfer Protocol,

connection from the NCDC archive of observational data. Although the data is made out of historical

observations dating from the 1970s to the present day, it does not prevent it from being exposed to

revisions and possible corrections. Therefore taking into consideration the date on which the data

was extracted it may have been subjected to modifications. Even if, hypothetically, the data has

been altered after the data extraction it does not devalue the work done.

4.1.1.1 GSOD and Teleconnection data

Global Surface Summary of the Day, or GSOD, is derived from the Integrated Surface Hourly

(ISH) dataset. The files available online date back almost to the beginning of the 20th century

and continue to be updated and reviewed by over 9000 worldwide observational stations. The

daily elements included in the dataset are: Mean temperature (.1 Fahrenheit), Mean dew point

(.1 Fahrenheit) Mean sea level pressure (.1 mb), Mean station pressure (.1 mb), Mean visibility

(.1 miles), Mean wind speed (.1 knots) Maximum sustained wind speed, (.1 knots), Maximum

wind gust (.1 knots), Maximum temperature (.1 Fahrenheit), Minimum temperature (.1 Fahrenheit),

Precipitation amount (.01 inches), Snow depth (.1 inches) and an Indicator for occurrence of: Fog,

Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud [47], [48].

Since it was not applicable to make a climate prediction model with all the available stations

data, it was decided to transfer data from a single station. Such a facility is located at the coordinates

41o14’52.8"N, 8o40’51.6"W which locates the post responsible for capturing and storing data for

the region of OPorto, Portugal (Air Force station ID (USAF) — 085450). The station in question

became operational in the early 1930s and continues to store data, however, the available GSOD

data dates from 1973 to the present day.

So the GSOD data acquired for the project came from the USAF — 085450 station and dates

from 1973 until the day the data was obtained.

For this project Teleconnections data was used as well as GSOD. Teleconnections are spatially

and temporally large-scale anomalies that influence the variability of the atmospheric circulation.

The anomalies considered for this thesis were the following: Arctic Oscillation (AO) [49], North

Atlantic Oscillation (NAO) [50], Pacific Decadal Oscillation (PDO) [51]. This type of information

is stored on a monthly basis so each dataset contains monthly values of the anomaly as its variation

is negligible on a daily basis. The dataset provided proves that these deviations have been stored

since the mid-19th century. PDO dataset dates from 1854 to the day the dataset was obtained, and

AO and NAO dataset dates from 1950’s.

Lastly, the Northern Hemisphere Sea Ice Extent, ICE cover, was added to the assemble of

information [52]. The dataset dates from 1979 to the time it was obtained.

4.1.2 Tensorflow

The development of this project would not be possible without the adoption of the end-to-end

open source platform for machine learning — Tensorflow, i.e., an interface for expressing machine
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learning algorithms and an implementation for executing such algorithms. The system is flexible

and can be used to express a wide variety of algorithms, including training and inference algorithms

for deep neural network models, and it has been used for conducting research and for deploying

machine learning systems into production across more than a dozen areas of computer science and

other fields [53].

The preference for this platform over others, i.g. Pytorch, is because of its comprehensive

and flexible ecosystem of tools and libraries dedicated to model ML models, such as Google

Colaboratory (or "Colab"), Tensorboard and Keras [54].

The practical part of this dissertation was completely developed with the programming language

Python and for the management of the immense amount of data several modules such as Pandas

[55], NumPy [56] and Scikit-learn [57] were used.

4.2 Method

In the course of this section, it will become clear the treatment to which the data was subjected, the

Deep Learning algorithm/models tested, the procedure for the acquisition of results and how they

were subsequently organised and analysed, i.e. how the tests were designed and how the results

were evaluated.

Finally, it is important to clarify that throughout this experiment, the variables to be predicted

are the following: The monthly mean values of maximum and daily mean temperatures (◦C) and

the monthly total precipitation (mm)

4.2.1 Forecasting Model: Time Series

Firstly, the problem, which is a time series problem, has to be defined, i.e. the variables to be

forecasted have to be established and how the forecasts will be performed has to be analysed.

The variables to be forecasted, as above-mentioned (4.2), are the monthly mean values of

maximum and daily mean temperatures (◦C) and the monthly total precipitation (mm).

Time series forecasting involves developing and using a predictive model on data where there is

an ordered relationship between observations. Before the development of the project, it is essential

to enhance the understanding of the structure of the forecast problem, the structure of the model

required, and how to evaluate it. Consequently, certain concepts should be established [16].

4.2.1.1 Inputs and Outputs

Generally, a prediction problem involves using past observations to predict or forecast one or more

possible future observations. The objective is to guess about what might happen in the future.

When a forecast is required, it is critical to think about the data that will be available to make the

forecast and what is the result of the forecast.

• Input: Historical data provided to the model in order to make prediction.
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• Output: Prediction for a future time step beyond the data provided as input.

Since the variables to be forecast are of monthly order what will be represented by input will be

the observations of past months and the output the forecast of months to pass.

4.2.1.2 Endogenous and Exogenous

The input data can be subdivided in order to understand its relationship to the output variable.

An input variable is endogenous if it is affected by other variables in the system and the output

variable depends on it. An input variable is an exogenous variable if it is independent of other

variables in the system and the output variable depends upon it. Put simply, endogenous variables

are influenced by other variables in the system (including themselves) whereas exogenous variables

are independent are considered as outside of the system.

Commonly, a time series forecasting problem has endogenous variables (e.g. the output is a

function of some number of prior time steps) and may or may not have exogenous variables. Often,

exogenous variables are ignored given the strong focus on the time series [16].

Given the type of time series under study and the features to be forecast, it is clear that most of

the data is endogenous, even if exogenous variables are also present.

4.2.1.3 Unstructured and Structured

A series with no pattern might be considered as unstructured, e.i. there is no discernible time-

dependent structure. Alternately, a time series may have patterns, e.g. trend or seasonal cycles and

be regarded as structured. The modeling process can be simplified by identifying and removing the

obvious structures from the data, such as an increasing trend or seasonality [16].

As it is anticipated, being the time series related to observations of meteorological elements

some climatic patterns could be identified, such as presented in the figure 4.1.

Figure 4.1: Seasonality example
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4.2.1.4 Regression and Classification

A time series forecasting problem in which the outcome is to predict one or more future numerical

values is a regression type predictive modelling problem. A time series forecasting problem in

which the objective is to classify input time series data is a classification type predictive modelling

problem.

Concluding that in this case the problem will be of regression.

4.2.1.5 Static and Dynamic

To develop a model and use it frequently to make predictions. Given that the model is not updated or

changed between forecasts, it is defined as a static forecasting model. Conversely, new observations

may be received prior to making a subsequent forecast that could be used to create a new model or

update an existing one. Developing a new or updated model prior to each forecasts is defined as a

dynamic model problem [16].

For this project, since deep learning techniques will be employed, the problem will be faced

dynamically.

4.2.1.6 Univariate and Multivariate

For univariate data, each sample xi is described by only one feature. A set with n samples can be

represented by x j =
{

x1,x2, . . . ,xn
}

, where each xi represents a single value [58]. An univariate time

series implies that a single variable/feature is measured over time [16]. Conversely, multivariate

data consists of data that has more than one input feature [58], i.e., multiple variables are measured

over time [16].

However, when establishing a time series forecast model the number of variables may differ

between the inputs and outputs, e.g. the data may not be symmetrical. For example, a model’s input

may be defined by multiple features, even if its purpose is to predict only one of the variables as

output.

• Univariate and Multivariate Inputs: One or multiple input variables measured over time.

• Univariate and Multivariate Outputs: One or multiple output variables to be predicted.

For this project uni and multivariate models were used to forecast only one variable.

4.2.1.7 Single-step and Multi-step

A forecast problem which requires a prediction of the next time step is termed a one-step forecast

model. Whereas a forecast problem that requires a prediction of more than one time step is called a

multi-step forecast model.

In the case of this study, the temporal instances to be foreseen are monthly. Tests were carried

out with one and more time steps, tests were made in order to provide the value of the following

month, the value of the following 6 months or even the values of a whole year.



22 Methodology

4.2.1.8 Problem Definition: Conclusion

In conclusion, this section, 4.2.1, served to clarify certain concepts about the dataset that has been

studied and certain designations for the models that have been elaborated. It has been stated that the

data set is of an endogenous nature (4.2.1.2) and has an organised structure (4.2.1.3). The model

was established to be developed for a regression problem (4.2.1.4) and dynamic nature (4.2.1.5).

Ultimately, it was stipulated that for the tests the input and output data would be months (4.2.1.1),

the models developed would be able to execute tests with uni/multivariate datasets (4.2.1.6) and it

would be possible to provide data with one or more time steps (4.2.1.7).

4.2.2 Data Preparation Process

The performance of the application of ML algorithms is linked to the dataset provided, i.e. their qual-

ity and state affects the performance of the models. Therefore the datasets (GSOD, Teleconnections,

Ice Cover) originally obtained were subjected to cleaning and pre-processing techniques.

Datasets are formed by objects or samples that can represent a physical object, or an abstract

notion, however, in the case of GSOD, each object is one day. The attributes or features are the

characteristics in which the objects are represented, which, in the case of GSOD, are surface

meteorological elements [58].

4.2.2.1 Data Pre-Processing: Formatting, Cleaning and Sampling

The presence of imperfections in the data can result in incorrect statistics and analysis, or even

reduce the performance quality of the models. Frequent deficiencies include noisy data (that has

errors or different values than expected), inconsistent data, redundant and incomplete data. This

type of errors can be caused by problems in the equipment for collecting, transmitting and storing

the information, or human error [58].

Considering the GSOD dataset according to the descriptive file (README. file) all samples

with attributes presented with the value 9999.9, 999.9 and 99.99 are considered missing values and

have therefore been replaced by NaN values.

Since the values presented are in correlation with the imperial system, for a better scientific and

global understanding the same have been converted to the metric system. The mean temperature

(TEMP), mean dew point (DEWP), minimum temperature (MIN) and maximum temperature

(MAX) reported during the day were changed from Fahrenheit, ◦F, to Celsius, ◦C, with the

following calculation (4.1). The mean visibility (VISIB) for the day presented in miles, mi, was

altered to kilometers, km, as illustrated in (4.2). The mean wind speed (WDSP), maximum sustained

wind speed (MXSPD) and maximum wind gust (GUST) reported for the day depicted in knots,

kn, in which 1kn is equal to one nautical mile per hour, was converted to kilometer per hour,

km\h, following the equation (4.4). Finally, the total precipitation (PRCP) and snow depth (SNDP)

reported during the day provided in inches, in, was turned to millimeters, mm, illustrated in (4.3).

The mean sea level pressure (SLP) and the mean station pressure (STD) for the day were not altered

and continue with the its original units millibars, mbar. ptm



4.2 Method 23

◦C =
(◦F−32

)
× 5

9
(4.1)

1mi = 1,609344km 7→ dkm = dmi×1,609344 (4.2)

1in = 25,4mm 7→ dmm = din×25,4 (4.3)

1kn = 1,8520km\h 7→ km\h = kn×1,8520 (4.4)

A piece of information is redundant when it is very similar to another of the same dataset,

i.e. its attributes have values very similar to the attributes of at least another element. The

redundancy of an attribute is related to the correlation with one or more of the attributes in the same

dataset. The more correlated the attributes, the greater the degree of redundancy [58]. Since the

elimination of redundancies is desirable, a routine has been performed in the dataset which returns

the attributes with the highest correlation. The result proves a significant degree of redundancy

between SLP and STP attributes. The STP attribute has been deleted as it contains a higher number

of incomplete/missing values compared to SLP.

4.2.2.2 Outlier detection and disposal

An outlier is an object that deviates significantly from other objects, as if it were generated by a

different mechanism [59] the same are also recognised as aberrant, abnormal or extreme values.

Therefore they are points that must be identified and removed. Depending on the nature of the

outlier they are classified into [60]:

• Punctual Outliers: an observation that deviates from other observations and may be caused

by an abnormal measurement error, behaviour or characteristic of the object.

• Contextual Outliers: Sometimes abnormal values are not obvious due to the context in

which they appear.

• Collective Outliers: can also be a sequence of values.

A Boxplot, figure 4.2, also called Box and Whisker diagram, presents a summary of the 1◦, 2◦

(median) and 3◦ quartiles values, besides the lower and upper limits. The quartiles are one of the

many measures to evaluate the distribution of data, they divide the ordered values into quarters.

Thus the 1◦ quartile of a sequence Q1 is the value for which 25% of the other values are below it.

The use of this type of diagrams facilitates the analysis of data distribution and is a useful tool for

the detection of outliers.

The method applied from attribute to attribute for the detection of outliers was precisely the

Boxplot technique [61]. This technique is based on the first (Q1), third quartile (Q3) and the
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Figure 4.2: Boxplot Example - MIN attribute

interquartile range (IQR = Q3−Q1) of data, it determines that the interval
[
Q1−1,5∗ IQR,Q3+

1,5∗ IQR
]

contains about 99,3% of the data. Therefore, points outside this range are considered

as Moderate Outliers, and points outside the range
[
Q1−3∗ IQR,Q3+3∗ IQR

]
are considered

Extreme Outliers. Outliers considered extreme were excluded from the datasets.

4.2.2.3 Dimension Reduction

A dataset is considered ’large’ either because it contains a high number of objects/samples, or

because each object is described by a high number of attributes/features. In general, the performance

of a learning algorithm improves with increasing numbers of samples, and decreases with increasing

numbers of features. The effect of the very high number of features in algorithms is described by

the "Dimensionality Curse" problem.

One way to minimise the impact of the dimensionality problem is to combine, or eliminate,

some of the irrelevant attributes. The dataset with the highest number of features is GSOD and,

throughout this project, several were considered irrelevant and redundant. We have the case of the

STP removed for presenting a high degree of redundancy with the SLP; the feature of indicators

which reports an occurrence during the day of (Fog, Rain or Drizzle, Snow or Ice Pellets, Hail,

Thunder, Tornado or Funnel Cloud (FRSHTT)) and the Snow depth (SNDP) were considered

irrelevant.

4.2.2.4 Feature Engineering

The primary purpose of this project is the elaboration of a computational application in order to

make time forecasts of climatic elements using deep learning techniques. These methods achieve

better results when they have access to a significant quantity and quality of data.

However, considering the variables to be predicted it is possible and certain that some attributes

of the datasets could be irrelevant and may even impair the performance of the models. Perhaps it
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would be beneficial to reconstruct datasets for the prediction of specific variables in order to have as

much information as possible without suffering a decrease in performance due to the dimensionality

problem.

As the features to be foreseen are the monthly mean values of maximum and daily mean

temperatures (◦C) and the monthly total precipitation (mm), at least three datasets were originated

to supply the models with. As new datasets were recreated with GSOD and teleconnection features,

additional features were developed. These new features are more abstract and based on those

already obtained, these are: the number of days per month that had a total precipitation greater than

or equal to one, the number corresponding to the month in which a certain observation was made

and the season of the year.

PRCP 1mm month season NAO AO PDO
1973-01-31 113.538 10 1 1 -0.46 1.2318 -0.22
1973-02-28 68.8340 9 2 1 0.52 0.7862 -0.59
1973-03-31 76.1200 8 3 1 -0.09 0.53717 -0.89
1973-04-30 27.432 7 4 2 -0.73 -1.1257 -1.4

...
...

...
...

...
...

...
...

Table 4.1: Example: Dataset to predict Total Precipitation

MAX month season ICE
1979-01-31 13.839 1 1 15.41
1979-02-28 14.036 2 1 16.18
1979-03-31 13.839 3 1 16.34
1979-04-30 16.567 4 2 15.45

...
...

...
...

...
Table 4.2: Example: Dataset to predict the Maximum Monthly Temperature

TEMP month season
1974-01-31 8.330 1 1
1974-02-28 9.040 2 1
1974-03-31 11.065 3 1
1974-04-30 12.948 4 2

...
...

...
...

Table 4.3: Example: Dataset to predict the Monthly Daily Mean Temperature

The aforementioned examples of the datasets used for the monthly total precipitation forecast

(4.1), the maximum monthly temperature forecast (4.2) and the monthly daily mean temperature

forecast (4.3)
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4.2.3 Deep Learning Models

Under this section it is made explicit which deep learning models have been implemented and

tested throughout this thesis.

Modern deep learning provides a powerful framework for supervised learning. By increasing

the number of layers and units within a layer, a deep network can produce functions of increasing

complexity depending on the data [14]. Deep learning algorithms seek to exploit the unknown

structure in the input distribution in order to discover good representations, often at multiple levels,

with higher-level learned features defined in terms of lower-level features [62].

In the course of the project, the following models were repeatedly tested:

1. Multi-channel CNN.

2. Vanilla LSTM.

3. Encoder-Decoder LSTM.

4. CNN-LSTM Encoder-Decoder.

5. ConvLSTM Encoder-Decoder.

4.2.3.1 Multi-channel CNN

Convolutional neural networks, or CNNs, are a specialised kind of neural network for processing

data that has a known grid-like topology. It can handle time-series data, which can be thought of as

a 1-D grid taking samples at regular time intervals. The designation “convolutional neural network”

implies that the network employs a mathematical operation named convolution. CNNs are simply

neural networks that use convolution in place of general matrix multiplication in at least one of

their layers [14].

The convolutional operation is as stated in 4.5, being x the input, w the kernel and the result

defined as feature map

s
(
t
)
−
(
x∗w

)(
t
)
⇒ s

(
t
)
−
∫

x
(
a
)
·w
(
t−a

)
da (4.5)

However, regardless of the mathematical of this operation, what motivates the use of it is the

following ideas: sparse interactions,parameter sharing and equivariant representations. Moreover,

convolution provides a means for working with inputs of variable size [62].

CNNs can be used for uni/multivariate and uni/multi-step time series forecasting because it

supports multiple 1D inputs, i.e., it is possible to develop a Multi-Channel model where each input

sequence is read as a separate channel [16]. The Multi-Channel CNN will utilise a separate kernel

and read each input sequence onto a separate set of filter maps, learning features from each input

time series variable.
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4.2.3.2 Vanilla LSTM

Recurrent neural networks (RNNs), are a group of neural networks for processing sequential data.

A RNN is a neural network specialised on processing a sequence of values x1, . . . ,xτ . Such as

convolutional networks can readily scale to images with large width and height, and some can

process images of variable size, recurrent networks can scale to much longer sequences than would

be practical for networks without sequence-based specialisation. RNNs can also process sequences

of variable length. RNNs takes advantage of one of the ideas found in machine learning and

statistical models: sharing parameters across different parts of a model. Parameter sharing makes it

possible to extend and apply the model to examples of different forms, such as in this case different

lengths, and generalised across them [14].

The computation in most RNNs can be decomposed under three blocks of parameters and

associated transformations: From the input to the hidden state, the previous hidden state to the next

hidden state, and to the hidden state to the output (4.3).

Figure 4.3: RNN Architecture - Example, [8]

In a recurrent neural network, throughout the gradient back-propagation phase, the gradient

signal can end up being multiplied by large number of times (as many as the number of time steps)

by the weight matrix associated with the connections between the neurons of the recurrent hidden

layer. Therefore, it means that the magnitude of weights in the transition matrix can have a strong

impact on the learning process [63]. It poses a challenge to learning long-term dependencies in

recurrent networks [14].

If the weights in the transition matrix are small (or if the leading eigenvalue of the weight matrix

is smaller than 1.0), it can lead to a situation called vanishing gradients where the gradient signal

gets so insignificant that learning either becomes very slow or stops working altogether. Making it

can also more difficult the task of learning long-term dependencies in the data. Conversely, if the

weights the matrix are large (or if the leading eigenvalue of the weight matrix is larger than 1.0), it

can lead to a situation where the gradient signal is so large that it can cause learning to diverge,

referred to as exploding gradients [63].

The aforementioned problems are the main motivation behind the gated RNNs models, e.g.

Long short-term memory, LSTM, model. The LSTM introduces a new structure cell termed

memory cell (4.4). A memory cell is composed of four main elements: an input gate, a neuron

with a self-recurrent connection, a forget gate and an output gate. The self-recurrent connection

has a weight of 1.0 and ensures that, barring any outside interference, the state of a memory cell

can remain constant from one time step to another. The gates serve to modulate the interactions



28 Methodology

between the memory cell itself and its environment. The input gate can allow incoming signal to

alter the state of the memory cell or block it. On the other hand, the output gate can allow the state

of the memory cell to have an effect on other neurons or prevent it. Finally, the forget gate can

modulate the memory cell’s self-recurrent connection, allowing the cell to remember or forget its

previous state, as needed [63].

Figure 4.4: LSTM memory cell - Example

Long Short-Term Memory networks (LSTMs) can be applied to time series forecasting. There

are many kinds of LSTM models that could be utilised for each specific type of time series

forecasting problem. A Vanilla/simple LSTM is an LSTM model that has a single hidden layer

of LSTM units, and an output layer used to make a prediction. Key to LSTMs is that it supports

sequences. Unlike a CNN that reads across the entire input vector, the LSTM model reads one time

step of the sequence at a time and builds up an internal state representation that can be used as a

learned context for making a prediction [16].

4.2.3.3 Encoder-Decoder LSTM

A RNN can be trained to map an input sequence to an output sequence which is not necessarily

of the same length. This comes up in many applications, such as speech recognition, machine

translation and question answering, where the input and output sequences in the training set are

generally not of the same length (although their lengths might be related).

The presented model is an allegedly update of the vanilla LSTM 4.5. The model means that

the output will not be a vector sequence directly. Alternately, the model will be comprised of two

sub models, the encoder to read and encode the input sequence, and the decoder that will read the

encoded input sequence and make a one-step prediction for each element in the output sequence.

Additionally a LSTM model is used in the decoder, allowing it to both know what was predicted

for the prior day in the sequence and accumulate internal state while outputting the sequence. For

multivariate model forecasting it will be provided each one-dimensional time series to the model as

a separate sequence of input. The LSTM will in turn create an internal representation of each input

sequence that will together be interpreted by the decoder [16].
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Figure 4.5: Encoder-Decoder LSTM network - Example [9]

4.2.3.4 CNN-LSTM Encoder-Decoder

CNN can be very effective at extracting and learning features from one-dimensional sequence data

e.g. time series data 4.6. A CNN model can be used in a hybrid model with an LSTM backend

where the CNN is capable of automatically understand the sequence input and learn its salient

features, while these can then be interpreted by an LSTM decoder. This hybrid model is defined as

CNN-LSTM Encoder-Decoder [16].

Figure 4.6: CNN-LSTM Encoder-Decoder network - Example [10]

4.2.3.5 ConvLSTM Encoder-Decoder

A extension of the CNN-LSTM approach is to perform the convolutions of the CNN as part of

the LSTM for each time step. This combination is called a Convolutional LSTM (ConvLSTM,

4.7) and, such as the CNN-LSTM, it is also used for spatiotemporal data. Dissimilar to previous
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models the ConvLSTM is using convolutions directly as part of reading input into the LSTM units

themselves [16].

Figure 4.7: ConvLSTM unit - Example [11]

4.2.3.6 Common Considerations

Ultimately, the following clarifies and justifies the common implementations imposed on the above

architectures, such as the loss function, the optimisation algorithm, the metrics chosen to examine

the performance of the algorithms, the activation function for each unit and even the batch/epoch

number. However, it is imperative to state that the choice of certain parameters justifies the choice

of others.

↪→ Gradient Descent Optimisation algorithm and the number/size of epoch/batch

Gradient descent is a neural network optimisation algorithm. Without exception every state-of-

the-art Deep Learning library contains implementations of algorithms to optimise gradient descent

(e.g. keras). Gradient descent is a form of minimising an objective function J
(
θ
)

parameterized by

a model’s parameters θ ∈ Rd by updating the parameters in the opposite direction of the gradient

of the objective function ∇θ J
(
θ
)
. The learning rate η determines the size of the steps we take to

reach a local minimum [64].

Three variations of gradient descent exist, it differ in how much data it is used to compute the

gradient of the objective function. Depending on the amount of data, a trade-off is made between

the accuracy of the parameter update and the time it takes to perform an update [64].

Prior to describing each variant and discussing the advantages and disadvantages the definition

of sample, epoch and batch is made explicit as it has a direct correlation with the variants, further

explained.

A sample is considered as a single row of data in a dataset. The dataset includes inputs fed

into the algorithm and an output compared to the prediction to calculate an error, in order for the

algorithm to evaluate itself.
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The batch size, or batch, is a hyper-parameter that defines the number of samples to work

through before updating the internal model parameters.

Finally, the number of epochs, or simply epoch, is a hyper-parameter which defines the number

of times that a certain algorithm will work through the entire training dataset. One epoch signifies

that each sample in the training dataset has had an opportunity to update the internal model

parameters. An epoch is comprised of one or more batches.

The number of epochs has no limit, as long as it is represented by an integer, however, the batch

size will have to vary between one and the maximum number (including) of samples present in the

training dataset.

Subsequently, the three variants are presented.

1. Batch Gradient Descent ⇒ Batch Size = Size o f Training Dataset

Computes the gradient of the cost function w.r.t. to the parameters θ for the entire training

dataset, as illustrated in (4.6).

θ = θ −η ·∇θ J
(
θ
)

(4.6)

As it is necessary to calculate the gradient for the whole dataset in order to execute just a

single update, batch gradient descent can be slow and is intractable for datasets that won’t fit

in memory. However, it is guaranteed to converge to the global minimum for convex error

surfaces and to a local minimum for non-convex surfaces [64].

2. Stochastic Gradient Descent, SGD ⇒ Batch Size = one

Performs a parameter update for each training example xi and label yi, referenced on (4.7):

θ = θ −η ·∇θ J
(
θ ;xi;yi) (4.7)

Conversely to the redundant computations Batch Gradient Descent performs, as it recomputes

gradients for similar examples before each parameter update. SGD clears the redundancy by

performing one update at a time, therefore it is faster. SGD’s fluctuation enables it to jump

to new and potentially better local minima, or, however, it could hinder convergence to the

exact minimum, as SGD could keep overshooting [64].

3. Mini-Batch Gradient Descent ⇒ one < Batch Size < Size o f Training Dataset

Performs an update for every mini-batch of n training examples, (4.8).

θ = θ −η ·∇θ J
(
θ ;x
(

i:i+n
)

;y
(

i:i+n
))

(4.8)

The presented variant reduces the variance of the parameter updates, which can lead to more

stable convergence and can make use of highly optimised matrix optimisations common to
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state-of-the-art deep learning libraries that make computing the gradient w.r.t. a mini-batch

very efficient. However, does not guarantee good convergence [64].

Throughout the implementation of the various NN models, a Mini-Batch strategy was applied

in which, preferably, the number of samples for each batch is the same.

To optimise the gradient several challenges must be analysed, such as, choosing a proper

learning rate, dragging out learning rate schedules in order to adjust the learning rate during training

by reducing the η according to a predefined schedule or when the change in objective between

epochs falls below a threshold (problem being the schedule or threshold predefined), avoid getting

trapped in the numerous sub-optimal local minima.

The Gradient Descent optimisation algorithm chosen was, the default, Adaptive Moment

Estimation (Adam). It computes adaptive learning rates for each parameter, stores an exponentially

decaying average of past squared gradients vt and keeps an exponentially decaying average of past

gradients mt . The decaying averages of past and past squared gradients mt (4.9) and vt (4.10), are,

respectively, computed:

mt = β1 ·mt−1 +(1−β1) ·gt (4.9)

vt = β2 · vt−1 +(1−β2) ·g2
t (4.10)

mt and vt are estimates of the first moment (mean) and the second moment (uncentered variance)

of the gradients respectively. Since both mt and vt are initialised as zero, the Adam algorithm is

biased towards zero, such a phenomenon was indicated by the authors of the algorithm. In order to

correct the bias problem it was computed a bias-corrected first, (4.11) and second moment estimates,

(4.12).

m̂t =
mt

1−β t
1

(4.11)

v̂t =
vt

1−β t
2

(4.12)

Finally the Adam update rule goes as follows (4.13).

θt+1 = θt −
η√

v̂t + ε
· m̂t (4.13)

Being the default values of β1, β2, η and ε specified in the tensorflow documentation.

↪→ Loss Function

The loss function (cost function) is a crucial ingredient in all optimising problems, such as

forecasting [65]. In regression cases, the error of the hypothesis f̂ can be calculated by the distance

between the known value, yi, and the value predicted by the model, f̂ (xi) [58]. The loss function

employed is the Mean Squared Error ("MSE", 4.14):
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MSE
(

f̂
)
=

1
n
·

n

∑
i=1

(
yi− f̂ (xi)

)2 (4.14)

Squaring the forecast error forces it to be positive and has the effect of putting more weight on

large errors. Very large or outlier errors drag the mean of the squared forecast errors out resulting

in a larger mean squared error score. Essentially, this loss function penalises the performance of

models that make large and incorrect forecasts.

↪→ Activation Function

A NN is composed of layers of nodes and learns to map examples of inputs to outputs. For a

given node, the inputs are multiplied by the weights in a node and summed. This value is referred to

as the summed activation of the node. The summed activation is then transformed via an activation
function and defines the specific output or “activation” of the node, 4.15).

Y = Activation Function
(
∑
(
weights · input +bias

))
(4.15)

Essentially the activation function controls the activation and deactivation of each unit outputting

a value dependent on the input and function, it could perform linear/simple transformations or

nonlinear transformations depending on the appropriate function[66].

The activation function adopted for each unit of the developed models was the rectified linear

activation unit, or "ReLU" (4.8).

Figure 4.8: ReLU Activation Function [12]

"ReLU" is linear for values greater than zero, it has a lot of properties of linear activation

functions when training a neural network using backpropagation. Nevertheless, it is a nonlinear

function as negative values are always output as zero. However, even if the function is not

differentiable at z = 0 theoretically invalidating it for gradient-based learning algorithm, in practice

gradient descent still performs well enough for the models with "ReLU" to be used for machine

learning tasks.
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↪→ Visualisation tool and Performance Metrics

The performance of the models described above was evaluated by the use of Root Mean Squared

Error ("RMSE", 4.16) metrics and the learning evolution was diagnosed with the Tensorboard

visualisation tool.

RMSE
(

f̂
)
=
√

MSE
(

f̂
)

(4.16)

Tensorboard offers a means to examine the learning curves of each model. A learning curve is

a plot of model learning performance over epoch. Examining learning curves while the models are

training can be used to diagnose problems with learning, e.g. underfit or overfit problems and if the

training and validation datasets are suitably representative.

The shape and dynamics of a learning curve is utilised to diagnose the behaviour of a ML model

and it could suggest configuration changes to improve learning and/or performance. There are

two common challenges, which need to be controlled, that can be easily analysed though learning

curves, such problems are underfitting and its counterpart overfitting.

Ý Underfit

Underfitting occurs when the model is not able to obtain a sufficiently low error value on the

training set, or simply refers to a model that cannot learn the training dataset [14].

An underfit model can be identified only from the learning curve of the training loss. It may

show a flat line or noisy values of significant high loss, indicating that the model is unable to

learn the training dataset (4.9a), howerver some examples of underfitting may indicate that

the model could be capable of further learning and improvement and that the training process

was halted prematurely (4.9b) [13].

(a) Extreme Underfitting (b) Controllable Underfitting

Figure 4.9: Underfit Examples [13]

Ý Overfit

Overfitting occurs when the gap between the training error and test error is too large, i.e. the

generalisation error [14]. Put simple, overfit refers to a model that has learned the training
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dataset too well, including statistical noise or random fluctuations in the training dataset

4.10. The more specialised the model becomes to training data, the less it can generalise to

new data, resulting in an increase in generalisation error. This increase is measured by the

performance of the model on the validation dataset [13].

Figure 4.10: Overfit Example [13]

We can control whether a model is more likely to overfit or underfit by modifying its capacity.

Informally, a model’s capacity is its ability to fit a wide variety of functions. Models with low

capacity may struggle to fit the training set. Models with high capacity can overfit by memorizing

properties of the training set that do not serve them well on the test set [14]. As such, the best

performance is found with the encounter of the middle ground between the capacity and the error.

Figure 4.11: Capacity over Error relationship [14]

Yet this subject can be examined as a Bias-Variance trade-off. As the prediction error for any

ML algorithm can be divided into three types of error: Bias, Variance and Irreducible error.

As for the irreducible error, it is the error introduced from the chosen framing of the problem

and may be caused by factors, such as unknown variables. As such it cannot be reduced.
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Bias is the simplifying assumption executed by a model to make the target function easier

to learn. Generally, linear algorithms have a high bias making them fast to learn and easier to

understand but generally less flexible. In turn, they have lower predictive performance on complex

problems that fail to meet the simplifying assumptions of the algorithms bias. Then a model

that presents low/high bias suggests less/more assumptions about the form of the target function,

respectively [67].

Variance is the amount that the estimate of the target function will change if different training

data was used. The function is estimated from the training data by a ML algorithm, so it is expected

to have some variance. Ideally, it should not change significantly from one training dataset to

another [67]. Therefore a model which presents low/high variance suggests small/large, respectively,

changes to the estimate of the target function with changes to the training dataset.

The ultimate objective of any supervised ML algorithm is to achieve low bias and low vari-

ance, in order to achieve good prediction performance. In order to diminish the bias the com-

plexity/capacity of the model has to be augmented, however, while complexity increases, it is

accompanied by rising variance, (4.17). There is a trade-off at play, noted by the graph 4.12,

between Bias and Variance, as such an achievable objective is to search for a ’sweet spot’, (4.17),

between the complexity and the error, which is equivalent to saying that it is necessary to find a

meeting point between the bias and the variance or between capacity and error.

dBias
dComplexity

=− dVariance
dComplexity

(4.17)

Figure 4.12: Bias/Variance and error relationship [15]

4.2.4 Model Evaluation Test Harness: Walk-Forward Validation

The objective of a test harness is to consistently evaluate candidate models against a fair repre-

sentation of the problem. The outcome of testing multiple algorithms against the harness will be

an estimation of how a variety of models perform on the problem against a chosen performance
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measure. It must be robust and trustworthy in the results it provides, in order to focus on evaluating

different algorithms and learn about the problem [16].

For this project a test harness scheme was developed and applied for the above models. This

allowed for a huge variety of tests to be elaborated and the results subsequently analysed.

The developed test harness can be subdivided into four stages being:

1. Split the dataset into a Train and Test set.

2. Fit a candidate model on the training dataset.

3. Elaborate predictions on the test set using Walk-Forward Validation.

4. Saving the result for future analysis.

Finally, after finalising a platform to test each model, the optimum configuration for each

forecasting algorithm will also be evaluated. Configuration of an ML algorithm represents the

adjustment of hyper-parameters, such as: the number of epochs, batch size, number of hidden

layers, number of nodes per layer and even the number of inputs and outputs. However, in this case,

the configuration will only concern the number of input and output. Simply, it will be explored

which number of months to provide (input) and which number of months to forecast (output)

configuration that can actually provide the best forecast data. The settings will be evaluated with a

grid search.

4.2.4.1 Time Series data preparation: Dataset Split, Sliding Window and Normalisation

For the elaboration of the tests of this project each dataset was divided in a training and test

dataset. The training set is used to train each of the models and the test set will be to examine their

performance. For the test set the year 2019 was chosen, that is, each dataset exposed to this test

method is taken from it twelve final months corresponding to 2019. Recalling that each dataset

sample is interspersed with a monthly interval.

After setting the training dataset it is necessary to process the same, in order to convert what is

in time series format into a two-dimensional supervised learning format. The sliding window or lag

method is the basis for how any time series dataset can be turned into a supervised learning format

4.4. This technique utilises previous time steps as input variables and employs the next time step as

the output variable. The number of prior time steps is called the window width or size of the lag,

and even if it does not have a designation the number of time steps ahead to be forecasted can also

be varied.

Therefore, a sliding window can be created for many variants of the problem, as it can be

recreated using one or more variables, i.e. uni/multivariate, and also where the amount of timesteps

to be predicted can vary from single to several, i.e. uni/multistep.

For the aforementioned models modifying the data to the supervised learning format is not

sufficient, it will be necessary to make a shape change due to the input_shape parameter present

in the first hidden layer of all algorithms. As such for the CNN Multichannel, Vanilla LST M,
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TIME MEASURE X y
1 100 – 100
2 110 100 110
3 108 Ý 110 108
4 115 108 115
...

... 115
...

Table 4.4: Sliding Window Example [16]

LST M Encoder−Decoder and the CNN− LST M Encoder−Decoder must be organised in a

three dimensional way. The dimensions can be designated as:

– Samples: Each sequence (or row). A batch is comprised of one or several samples.

– Time Steps: One time step is a single point of observation in a sample. A single sample is

comprised of multiple time steps.

– Features: One feature is a single observation at a time step. One time step is comprised of

one or multiple features.

The desired input data structure is often summarised using following notation: [samples, timesteps, f eatures]

4.5 [16].

X1 X2 y (7,3,2) (7,1)
10 15 25 [[10 15]
20 25 45 [20 25]
30 35 65 Ý [30 35]] 65
40 45 85 [[20 25]
...

...
...

...
...

Table 4.5: Input data Structure Example [16]

However, as regards to the model ConvLST M Encoder−Decoder the data structure is done

differently according to the following notation: [samples, timesteps, rows, columns, f eatures],

[16], this is required because this algorithm was developed for reading two-dimensional spatial-

temporal data being essential to be adapted for use with time series, one dimensional, data. The

input data is split into subsequences where each subsequence has a fixed number of time steps,

although we must also specify the number of rows in each subsequence, which in this case is fixed

at 1 for 1D data.

Thus, the way to acquire results had to be adapted, for example, if the dataset consisted of data

with several attributes the number of features had to match the number of attributes.

Several tests were performed, however, while the routine of acquiring results with more than

one feature, i.e. multivariate, became imperative that the data be processed in order to normalise

them, following the the calculation (4.18). Normalisation is a rescaling of the data from the original

range so that all values are within the range of 0 and 1 or any other range, such as -1 and 1 which
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was the one applied in this project. It is useful, and even required in some machine learning

algorithms when your time series data has input values with differing scales [68].

Scaled_Value =
(

x−min(x)
max(x)−min(x)

)
· (new_max−new_min)+new_min (4.18)

4.2.4.2 Walk-Forward Validation

The Walk-forward validation approach is distinguished by making a forecast for each observation in

the test dataset one at a time and after each forecast is made for a time step in the test dataset, the true

observation for the forecast is added to the test dataset and made available to the model. Simpler

models can be refit with the observation prior to making the subsequent prediction. However

complex models, such as NN, are not refit given the computational cost. Nevertheless, the true

observation for the time step can then be used as part of the input for making the prediction on the

next time step [16].

1. Starting at the beginning of the time series, the minimum number of samples in the window

is used to train a model.

2. The model makes a prediction for the next time step.

3. The prediction is stored for further evaluation against the known value.

4. The window is expanded to include the known value and the process is repeated.

Since this technique involves moving along the time series one-time step at a time, it is often

called Walk-Forward Testing or Walk-Forward Validation.

4.2.4.3 Grid Search

This dissertation incorporated a grid search strategy in order to explore the models and evaluate

various input and output configurations. Essentially, two lists were prepared, one with the input

number and one with the output number, and they were evaluated cyclically in the models already

presented.

The output list is fixed, that is, it is the same for all models. It lists the number of months

that must be foreseen in each timestep. The list is as follows [1,3,4,6,12], it means that certain

configurations will have to predict the following month, or the following three months, four months,

half a year and up to the total year. However, the list of inputs is not fixed, i.e., it is different given

the model and the way the data is organised to be trained. Differently to the output list, the input

list refers to the number of months provided to each algorithm in order to predict another quantity.

An example of a list provided to the model Vanilla LST M is as follows [3,6,9,12,18,24], which

means that the algorithm is given from three months to two years of data to provide a forecast.

Therefore the grid search performed all the configuration examples provided by the lists and

stored the results for further analysis. It is imperative to inform that each configuration was repeated
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five times due to the stochastic nature of the models. Which means that, given the same model

configuration and the same training dataset, a different internal set of weights will result each time

the model is trained that will in turn have performance vary.

4.3 Summary

For the development of this thesis, GSOD and teleconnection data, such as AO, NAO, PDO and

ICE cover, provided by NCEI were used. It was also essential the access to open source resources

for the project development, such as Tensorflow, Pandas, Numpy and Sklearn.

After the variables to be forecast are established: The monthly mean values of maximum and

daily mean temperatures (◦C) and the monthly total precipitation (mm), the proposed problem

to be solved was exposed to analysis. Some concepts and designations related to the data and

models have been clarified, it is known that the dataset is of an endogenous nature and presents

an organised structure and the model, or models, developed attempts to resolve a regression in a

dynamic order, they would be capable of performing forecasts with uni/multivariate datasets and

resolute predictions for one or more time steps (uni/multistep). Ultimately the input/output given

and extracted from the model would be months.

The data was subjected to a preparatory treatment in which the data was exposed to cleaning

techniques, unit conversion and identification for disposal of outliers. Subsequently the datasets

to be tested by the algorithms were created, as it would not be beneficial to put the GSOD or the

teleconnections dataset in its entirety. Taking advantage of the dataset creation, new features were

also imagined, such as the seasons, the month of each observation and the number of days that

rained more or than 1mm. The datasets were purposely created with fewer features thus providing a

way to combat the problem known as the "Dimensionality Curse".

In total, five deep learning models have been created for this project, being: Multi-Channel

CNN, Vanilla LSTM, Encoder-Decoder LSTM, CNN-LSTM Encoder-Decoder and ConvLSTM

Encoder-Decoder.

After discussing the preparation of the data and the models drawn up, it remains to be explained

how the tests were carried out.

Prior to initiating any test it is necessary to establish two parameters: the dataset (depending

on which variable to predict) and the assignment of an input/output configuration (i.e. how much

information (previous months) is available to the algorithm in order to predict information (months

to predict). The dataset is then divided into two datasets, training and validation. The training

dataset is exposed to a process that normalises and transforms the data, which is presented in a

time-series format, into a supervised learning format supported for either model. Following the

preparation of the data the model being tested is trained. Once the training is complete, the model

is required to predict the months of 2019 for later evaluation, and this process is done by walk

forward validation.
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Results

The variables to be predicted were already specified, in the previous chapter 4, as being: the monthly

mean values of maximum and daily mean temperatures (◦C) and the monthly total precipitation

(mm). However, even though the main objective is to research the best model, from the ones

displayed in 4.2.3, to predict the above variables in terms of accuracy and performance. It was also

imperative to analyse the following topics: the behaviour displayed by the models in relation to the

data that would be provided, i.e. to investigate how the overall performance of the models evolves

by varying the datasets provided; and what input/output configuration shows the best results, i.e.

for this case study, how many months could be predicted.

5.1 Process and Evaluation

This section will describe the test preparation process and also the various post-processing evaluation

formulas that the tests were exposed to.

Firstly the dataset to be provided is defined, it is prepared taking into account which variable

the model will predict. For each test a new dataset is designed in which the most recent one

contains more or different information than the prior, e.g. to predict the monthly mean of daily

mean temperature, TEMP, the first test can be run with a dataset containing only the information of

the daily mean temperature average, while for the second test the dataset will contain information

of the daily mean temperature average and the month to which it corresponds 5.1.

TEMP TEMP MON TEMP ICE
1979-01-31 13.839 13.839 1 13.839 15.41
1979-02-28 14.036 Ý 14.036 2 Ý 14.036 16.18
1979-03-31 13.839 13.839 3 13.839 16.34

...
...

...
...

...
...

Table 5.1: Dataset for TEMP tests - Examples

Once a dataset is determined for testing it is performed by each model, discussed in 4.2.3, by

several input/output settings. The same configuration is executed five times to ascertain whether the

41
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configuration in question makes consistent or inconsistent predictions. Subsequently, once the test

is completely carried out, the resulting data is organised into tables that correspond to its in/out

setting 5.2.

IN-12-OUT-4 Repeat 0 Repeat 1 Repeat 2 Repeat 3 Repeat 4
...

...
...

...
...

Table 5.2: Organised table correponding with a 24 to 4 in/out setting - Example

Finally the resulting data will be exposed to post-processing methods in order to quantify the

performance of each in/out setting from model-to-model. The following three statistical measures

were explored in order to evaluate the models.

1. Coefficient of Determination, R2 Score

The coefficient of determination measures the degree of association among the observed and

predicted values. The calculation of the R2Score is illustrated in (5.1).

R2 =
∑

N
i=1
(
yi− ŷi

)2

∑
N
i=1
(
yi− ȳ

)2 (5.1)

Where ȳ is the mean taken over N data points, yi is the observed value, whereas the ŷi is the

forecasted value.

2. Sum of Squared Errors, SSE

Since the R2 Score measures an estimate of the relationship between movements of a depen-

dent variable based on an independent variable’s movements it is not enough to distinguish

between a good or a bad model. SSE is the measure of discrepancy between the observed and

forecasted data. A small SSE implies a tight fit of the model to the data. The computation of

SSE is depicted in (5.2).

SSE =
N

∑
i=1

(
yi− ŷi

)2 (5.2)

3. Persistence Index, PERS

The PERS formula is illustrated in (5.3).

PERS = 1− SSE
SSEre f erence

(5.3)

A value of PERS smaller or equal to 0 indicates that the model under evaluation performs

worse or no better than the reference. A PERS value of 1 is obtained when the model under

study provides exact estimates of observed values [33].
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5.1.1 Climate Normals

Climate Normals are three-decade averages of climatological variables including temperature

and precipitation. Climate normals are used for two principal purposes: 1) As a benchmark

against which recent or current observations can be compared, including providing a basis for

many anomaly based climate datasets; 2) Used, as a prediction of the conditions most likely to be

experienced in a given location.

In order to evaluate the results, the average value of the last three-decades was used as a

reference, e.g. if the variable to be predicted is the monthly total precipitation, PRCP, and the year

to be forecasted is 2019 the values resulting from these tests will have as reference the average

value of the last three-decades corresponding from the year 1989 to 2018 5.3.

PRCP
1 140.94
2 89.07
3 98.50
4 86.57
5 82.28
6 27.93
7 13.00
8 26.59
9 61.00
10 133.10
11 155.43
12 145.19

Table 5.3: Mean of the last 30 years (1989-2018), PRCP

Thus the reference point varies depending on the year that is proposed to be foreseen, i.e. if the

year to be foreseen by the models is 2005 the reference value for the last 30 years (1974-2004).

5.2 Temperature Results

In the presenting section the results of the monthly mean values of maximum and daily mean

temperatures will be presented. It is imperative to note that a significant part of the results

correspond to the 2019 forecast. Subsequently and for specific models, simulations were carried

out in order to forecast different years such as 1990, 1991 and 2018.

5.2.1 Monthly Mean of daily Mean Temperature, TEMP

The tests for the TEMP variable prediction were performed in a manner described in 5.1. Therefore,

four different datasets were elaborated keeping present in each one the TEMP feature. So the first

dataset is simple and consists of only the TEMP variable; the second contains the TEMP variable

and the corresponding month; the third instead of containing information about the month contains
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information about ICE cover; and finally the fourth dataset consists of the TEMP variable, ICE

cover and the season corresponding to each sample.

The obtained results correspond to attempts to predict the year 2019, so the reference values

will be the following 5.4.

2019 Average (1989-2018)
1 9.23 9.96
2 11.30 10.52
3 12.99 12.43
4 13.08 13.60
5 17.14 15.91
6 16.32 18.33
7 18.95 19.46
8 18.79 19.73
9 19.26 18.42
10 15.75 16.40
11 12.75 12.72
12 11.59 10.92

Table 5.4: Observed values of TEMP - 2019 and three-decadal average

The aforementioned reference values make it possible to establish the reference values for

the R2 Score and the SSE, the same being: R2 ≈ 0.932 and SSE ≈ 9.984. Henceforth the results

of each dataset for the TEMP forecast will be demonstrated in the appendix of this work in A.1.

It is important to note that the results correspond only to the best in/out configurations for each

model and for the statistical evaluation measures (R2, SSE and PERS) only the average value

corresponding to the five repetitions performed will be presented.

Starting with the results of the dataset that only contains the TEMP variable, presented in the

table A.1. The results from the best configuration/model of the TEMP dataset is displayed right

below the former referenced table in A.1.

Subsequently the results corresponding to the dataset containing information on TEMP and

the month are represented in the table A.2. The best configuration/model of the TEMP and month

dataset is displayed below the table in A.2.

The results of the third dataset, which includes the TEMP variable with the ICE cover variable,

are demonstrated in the chart A.3. The best configuration/model of the TEMP and Ice cover dataset

is shown below the referenced chart in A.3.

Finally the results of the fourth dataset, which includes the TEMP variable in conjunction with

the ICE cover and season variable, are presented in the table A.4. The best configuration/model of

the TEMP, Ice cover and season dataset is exhibited right after the former referenced chart in A.4.

For the particular case of the test with the dataset corresponding to TEMP and month, two more

simulations were performed, with the best model, in order to predict the year 1991 and 2018 with

the purpose of evaluating the generalisation capacity of the model and analyse its behaviour when

assigned the task of forecasting a different year, the result are presented on the table A.5. As can be
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expected since the task imposed on these simulations is to predict a different year from 2019 the

reference and assessment values are differing: for 1991 the R2 ≈ 0.938 and SSE ≈ 13.081; as for

the year 2018 R2 ≈ 0.945 and SSE ≈ 9.223. With the best forecast for each year presented below

the results in A.5.

To end the exposure of the TEMP variable results a summary will be displayed taking into

account the best results for each dataset. A table with the reference values for TEMP is displayed

first in 5.5, followed by the results summary 5.6.

Referenced Values - TEMP
Year R2 SSE
2019 0.932 9.984
2018 0.945 13.081
1991 0.938 9.223

Table 5.5: Reference Values (Climate Normals) of TEMP

Dataset Model IN/OUT Setting R2 SSE PERS
TEMP ConvLST M Enc−Dec IN-24/OUT-3 0.934 9.343 0.064
TEMP+MON ConvLST M Enc−Dec IN-24/OUT-6 0.938 10.795 -0.081
TEMP+ICE ConvLST M Enc−Dec IN-24/OUT-3 0.933 9.318 0.067
TEMP+SEASON+ICE ConvLST M Enc−Dec IN-24/OUT-3 0.930 10.179 -0.020

Table 5.6: Summary of the results of TEMP

5.2.2 Monthly Mean of the Maximum daily Temperature, MAX

Proceeding to the results of the monthly mean of the maximum daily temperature, MAX. The

reference values for this variable are R2 ≈ 0.868 and SSE ≈ 23.211. As previously mentioned,

the results available correspond only to the most effective in/out configuration evaluated with the

aforementioned measures. The results are available at the appendix of this dissertation A.1.

The only dataset used to predict the MAX is constituted with the MAX variable itself, the

month and season corresponding to each sample and the ICE cover. With the results available

in the board A.6, subsequently the best model is represented below the referenced table in A.6.

Similar to what was done for the TEMP and month dataset, this dataset will also be subjected to

two simulations, with the best model, in order to forecast the year 1990 and 2018. As previously

the reference values are changed according to the year to be foreseen: for 1990 R2 ≈ 0.850 and

SSE ≈ 41.425; and for 2018 R2 ≈ 0.881 and SSE ≈ 29.931. The results are available at A.7, A.7.

To terminate the exposure of the MAX variable results a summary will be displayed taking into

account the best results for each dataset. A table with the reference values for MAX is displayed

first in 5.7, followed by the results summary 5.8.
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Referenced Values - MAX
Year R2 SSE
2019 0.868 23.211
2018 0.881 29.931
1990 0.850 41.425

Table 5.7: Reference Values (Climate Normals) of MAX

Dataset Model IN/OUT Setting R2 SSE PERS
MAX+MON+SEA+ICE CNN−LST M Enc−Dec IN-24/OUT-3 0.871 24.503 -0.056

Table 5.8: Summary of the results of MAX

5.3 Precipitation Results

Throughout the following section the results of the total monthly precipitation, (PRCP), will be

reported. As before, a significant portion of the data to be demonstrated relates to the year 2019.

However, for some specific cases simulations have also been made in order to forecast the years

2005 and 2018.

As previously done, several datasets have been prepared with the purpose of predicting the

PRCP for each month of the year 2019. For this case the reference values are the following:

R2 ≈ 0.471 and SSE ≈ 59468.493.

The first dataset to be presented is the one containing only the PRCP variable, showing the

following behaviour in the table A.8. Being the best model represented in the couple of images A.8.

The second dataset to be tested is the one containing the PRCP variable with the corresponding

month. Its behaviour can be analysed in the board A.9, as the best performance model behaviour

in the couple images A.9. As for other future datasets, this dataset has been exposed to two more

simulations in order to forecast the year 2005 and 2018. The reference values for the year 2005 is

R2 ≈ 0.377 and SSE ≈ 58329.63; for 2018 the values are R2 ≈ 0.487 and SSE ≈ 44231.82. The

result of both simulations can be analyzed in the table A.10 and displayed the images A.10.

The third datatset in the line comprises the PRCP variable, the month and the number of days

per month on which the total precipitation value was greater than or equal to 1mm. Its behaviour

can be evaluated on the chart A.11 and the best accurate model for 2019 can be examined in the

images A.11. For this dataset, tests were also carried out in order to predict the years 2005 and

2018 and the following results were obtained presented on the table A.12 being the best models of

both years represented in the images A.12.

Afterwards the dataset which is incorporated with the variable PRCP, 1mm, month and season

is put to the test and can be examined on the chart A.13, while the best performance model can be

visualised here A.13. As with the previous dataset this one was also exposed to tests in order to

forecast the years 2005 and 2018. The performance for each year can be analysed on the chart A.14

being the best models of both years shown in A.14.
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The following dataset was the first interaction that history data had with data from a teleconnec-

tion. This contained only the PRCP variable and NAO index data. Its performance evaluated in the

table A.15, while the best performing model can be examined in A.15.

Finally, the dataset consisting of the variable PRCP, 1mm, season and NAO is evaluated. Its

performance can be analyzed on the chart A.16, and the best performing model available in A.16.

As previously done a summary of the former PRCP results will be displayed taking into account

the best results for each dataset. A table with the reference values for PRCP is displayed first in 5.9,

followed by the results summary 5.10.

Referenced Values - PRCP
Year R2 SSE
2019 0.471 59468.493
2018 0.487 44231.82
2005 0.377 58329.63

Table 5.9: Reference Values (Climate Normals) of PRCP

Dataset Model IN/OUT Setting R2 SSE PERS
PRCP Vanilla LST M IN-3/OUT-3 0.619 49109.29 0.174
PRCP+MON Enc−Dec LST M IN-9/OUT-3 0.545 54573.18 0.082
PRCP+1mm+MON Enc−Dec LST M IN-9/OUT-3 0.561 52350.68 0.120
PRCP+1mm+MON+SEA ConvLST M Enc−Dec IN-6/OUT-3 0.611 54390.8 0.085
PRCP+NAO Enc−Dec LST M IN-6/OUT-12 0.451 74188.25 -0.248
PRCP+1mm+SEA+NAO CNN−LST M Enc−Dec IN-24/OUT-6 0.454 59418.54 0

Table 5.10: Summary of the results of PRCP

5.4 Summary

Throughout this chapter it was made explicit how the results were acquired, how they were

evaluated in terms of performance and accuracy, ending with the disclosure of the results in relation

to temperature and precipitation. The results are separated by dateset, analysed from model to

model being traversed by a series of configurations in/out and evaluated by the coefficient of

determination, or R2 Score, the sum of squared errors, or SSE, and the persistence index, or PERS.
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Chapter 6

Discussion

In the course of this chapter, commentary on the results presented in 5.2 and 5.3, available at A.1

and A.2 will be presented.

6.1 Temperature Results

Prior to starting the discussion on the values obtained regarding the monthly mean of daily mean

temperature, TEMP, and maximum daily temperature, MAX, it is essential to recall the reference

values of each one for the year 2019, being for the TEMP: R2 ≈ 0.932 and SSE ≈ 9.984, whereas

for the MAX: R2 ≈ 0.868 and SSE ≈ 23.211.

Following a brief analysis of the results, it should first be noted that, clearly, only the indication

of R2 is not sufficient to discriminate between a good and a bad model, since, even if, for certain

examples the R2 value is acceptable compared to the reference value, the same cannot be stated for

the value of SSE and PERS which measures the discrepancy between the forecasted and reference

data, while the R2 measures the degree of association among the reference and predicted values.

The exposed datasets have been prepared with precision. The variables selected to accompany

the variable to be predicted (TEMP and MAX) were not assigned randomly. These were exposed to

an analysis method that mathematically quantified the degree of correlation that they exhibited with

the variable to be predicted, and were also selected according to statements in the literature. So it

would only be natural to assume that the results from these dateset were to be acceptable, however,

this is not necessarily the case for all instances. There are cases where the opposite occurs, that is,

the performance of the models decreases.

As more information is made available, the models show a general improvement in performance,

it is sufficient to analyse the differences between the results presents on the tables A.1 and A.2.

Nevertheless, it is reported that the inclusion of a larger amount of information worsens the

performance being examples of this presented on the charts A.3 and A.4. The reason why these

examples performed poorly in relation to the benchmarks is not clear when examining each

one individually, so two questions arise: was the limit of information reached, i.e. has the

maximum dimensionality allowed by the models been reached and is that the reason of the declining
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performance ("dimensionality curse"); or are some of the allegedly correlated variables the source

of the problem, i.e, is the inclusion of some of these variables, e.g. the ICE cover, benefiting the

performance of the models, or is it simply providing sources of noise.

By paying more attention to cases represented on the boards A.2 and A.3 it becomes clear that

the cause of general model performance discrepancy is due to the ICE cover variable. The issue of

dimensionality is not applicable in these example, since both datasets have the same dimension

containing both two features. Considering that the supposed main cause for poor performance

of certain models is due to the fact of the ICE cover variable presence in the dataset clarifies the

performance presented on the charts A.4 and A.6.

Even with the diversity of results made available it became clear that with the exclusive use

of history it was possible to develop some instances that exceed the reference value, which is the

average of the last three decades, for 2019. Such instances can be analysed in the tables A.2 and

surprisingly in the chart A.3.

In order to analyse the generalisation capacity and better evaluate the accuracy of the models,

two more simulations were performed in order to predict two different years. The results of these

simulations can be viewed on the charts A.5 and A.6. The results indicated above refer to the year:

1990, 1991 and 2018; and with different variables to be predicted: TEMP and MAX; then the

reference values are: for TEMP, 1991 R2 ≈ 0.938 and SSE ≈ 13.081; for TEMP, 2018 R2 ≈ 0.945

and SSE ≈ 9.223; for MAX, 1990 R2 ≈ 0.850 and SSE ≈ 41.425; and for MAX, 2018 R2 ≈ 0.881

and SSE ≈ 29.931. When analysing both cases it becomes clear that the models predict relatively

well the year 1990 and 1991, however for 2018 forecast both models show a poor performance. It

is necessary, however, to point out that for these simulations the selected models were those that

quantitatively presented a better performance but nothing prevented that another model already

trained could not impose better results.

6.2 Precipitation Results

As previously conducted before initiating the discussion on the total monthly precipitation, PRCP,

results it is necessary to recall the reference values for the year 2019: R2 ≈ 0.471 and SSE ≈
59468.493.

Exactly as previously verified, by quickly analysing the results it can be said that the value of

R2 is still not enough to distinguish a good from a bad model.

It can also be verified, as previously mentioned, as more information is made available the

overall accuracy and performance of the models increases. This can be assessed by analysing the

following charts A.8, A.9, A.11 and A.13.

However, occasionally the increase in information does not benefit the performance of the

models and can even deteriorate it. It depends on the variables that are arranged for the model.

These occurrences can be witnessed in the tables A.15 and A.16. In both occurrences it is evident

that the variable NAO degrades the accuracy and performance of the models.
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As previously, it became clear that with the exclusive use of history it was possible to develop

models that exceed the reference value for 2019. Such instances are presented on the board A.8,

A.9, A.11 and A.13.

Since the results for the 2019 forecast were quite acceptable, simulations were also prepared

for each of the above mentioned dateset to forecast 2005 and 2018. The reference values for 2005

and 2018 are as follows: 2005, R2 ≈ 0.377 and SSE ≈ 58329.63 and for 2018, R2 ≈ 0.487 and

SSE ≈ 44231.82. The results of the simulations are available at the table A.10, A.12 and A.14.

When analysing the three available examples, it is found that, exactly as before for TEMP and

MAX, the forecast for 2018 is substantially weaker, even so the forecast for 2005 for each of the

examples presents acceptable results.
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Chapter 7

Conclusion

Considering the enormous influence that weather forecasts have on the life of each individual and

their enormous impact on countries where the economy is based on agriculture and tourism, it is

crucial that these forecasts are as accurate as possible. Therefore the study of the atmosphere is

something that will continue to be developed as more data is made available and with its evolution

more and better forecasting models are going to be created.

The main objective of this dissertation was to develop a Machine Learning algorithm capable

of emulating climate variability so that it could be possible to extract forecasting results as good

or better than traditional forecasting models being these statistical or conditioned by physical

equations of the atmosphere. A further objective of this thesis is to contribute to the continuous

study of the atmosphere and to provide aspects that may assist in the development of predictive

models.

This project was started with the selection of data to be utilised throughout this thesis, these

were the GSOD reports and data regarding teleconnections. Following their selection, the data was

processed and several datasets were prepared. These datasets would later be provided to the various

deep learning models developed, being the same designated as: Multi-Channel CNN, Vanilla LSTM,

Encoder-Decoder LSTM, CNN-LSTM Encoder-Decoder and ConvLSTM Encoder-Decoder. The

tests were carried out by dataset, each model would be evaluated taking into account the in/out

configuration imposed on to it. The results were evaluated by the following statistical measurements:

Coefficient of Determination, R2 Score; Sum of Squared Errors, SSE; and the Persistence Index,

PERS.

Following the analysis of the results, the following conclusions were established.

It has been witnessed that the numerical values of teleconnections cannot be used in isolation

because instead of improving the performance of the models they do exact opposite. This means

that indeces such as NAO do not benefit this mode of forecasting, i.e. even if it is proven in

the literature that NAO improves the performance of global climate models (models of global

circulation) the same does not apply for the type of forecasting elaborated throughout this project.

Furthermore, it is imperative to point out that the method of behaviour of this type of models

is not linear. In other words, for certain variables that proved to be correlated with the predicted
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variable, these did not show improvements in the models’ performance and, in some cases, could

make them even worse. This was the case for the ICE cover variable.

However, in conclusion, it has been proven that it is possible to make predictions of the state of

the atmosphere with deep learning techniques using only historical data.

7.1 Future Work

Upon completion of this study, several possibilities for future work were considered such as:

1. Development of more tests with different datasets, because it has been proven that deep

learning models can find correlations with several variables.

2. Perform tests covering more years and perform tests with data from different locations.

3. Cover a larger area so as not to be dependent on data from the same station and have access

to more data.

4. Optimisation of models already created from an optimisation algorithm, such as Bayesian

5. Possible development of other architectures for the models, such as the adoption of "GRU"

cell instead of "LSTM" and "Swish" activation function instead of "ReLU"

6. Applications of more complex pre-processing methods, e.g. wavelet decomposition.



Appendix A

Results

A number of graphics corresponding to the results which did not prove necessary to be included in

the main text will be available in an attachment

A.1 Temperature Results

A.1.1 Monthly Mean of daily Mean Temperature, TEMP

TEMP

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-12/OUT-3 0.911 13.713 -0.374

Vanilla LST M IN-9/OUT-6 0.913 13.638 -0.366

Encoder−Decoder LST M IN-6/OUT-4 0.920 24.364 -1.440

ConvLST M Encoder−Decoder IN-24/OUT-3 0.934 9.343 0.064
Table A.1: Results from the TEMP dataset

Figure A.1: Result of In-24/Out-3, ConvLST M Encoder−Decoder, TEMP
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TEMP + Month

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-24/OUT-6 0.932 10.821 -0.084

Vanilla LST M IN-9/OUT-12 0.918 14.338 -0.436

Encoder−Decoder LST M IN-12/OUT-4 0.934 11.772 -0.179

CNN−LST M Encoder−Decoder IN-24/OUT-1 0.923 11.968 -0.199

ConvLST M Encoder−Decoder IN-24/OUT-6 0.938 10.795 -0.081
Table A.2: Results from the TEMP + Month dataset

Figure A.2: Result of In-24/Out-6, ConvLST M Encoder−Decoder, TEMP + Month
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TEMP + ICE

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-24/OUT-1 0.909 19.231 -0.926

Vanilla LST M IN-18/OUT-12 0.917 11.942 -0.196

Encoder−Decoder LST M IN-9/OUT-12 0.908 13.550 -0.357

CNN−LST M Encoder−Decoder IN-24/OUT-12 0.929 13.814 -0.384

ConvLST M Encoder−Decoder IN-24/OUT-3 0.933 9.318 0.067
Table A.3: Results from the TEMP + ICE cover dataset

Figure A.3: Result of In-24/Out-3, ConvLST M Encoder−Decoder, TEMP + ICE cover
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TEMP + SEASON + ICE

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-18/OUT-6 0.923 14.916 -0.494

Vanilla LST M IN-6/OUT-12 0.920 12.553 -0.257

Encoder−Decoder LST M IN-3/OUT-12 0.921 12.822 -0.284

CNN−LST M Encoder−Decoder IN-24/OUT-3 0.924 13.340 -0.336

ConvLST M Encoder−Decoder IN-24/OUT-3 0.930 10.179 -0.020
Table A.4: Results from the TEMP + Season + ICE cover dataset

Figure A.4: Result of In-24/Out-3, ConvLST M Encoder−Decoder, TEMP + Season + ICE
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TEMP + Month

Model IN/OUT Setting Rˆ2 SSE PERS

1991 ConvLST M Encoder−Decoder IN-24/OUT-6 0.949 10.852 0.170

2018 ConvLST M Encoder−Decoder IN-24/OUT-6 0.935 10.982 -0.191
Table A.5: Result of the year 1991 and 2018, TEMP + Month

Figure A.5: Result of In-24/Out-6, ConvLST M Encoder−Decoder, TEMP + Month. 1991(top)
and 2018(below)
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A.1.2 Monthly Mean of the Maximum daily Temperature, MAX

MAX + Month + SEASON + ICE

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-9/OUT-3 0.860 32.116 -0.384

Vanilla LST M IN-12/OUT-6 0.820 29.868 -0.287

Encoder−Decoder LST M IN-9/OUT-6 0.801 32.894 -0.417

CNN−LST M Encoder−Decoder IN-24/OUT-3 0.871 24.503 -0.056

ConvLST M Encoder−Decoder IN-24/OUT-4 0.835 25.007 -0.077
Table A.6: Results from the MAX + Month + Season + ICE cover dataset

Figure A.6: Result of In-24/Out-3, CNN−LST M Encoder−Decoder, TEMP + Month + Season
+ ICE
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MAX+MON+SEA+ICE

Model IN/OUT Setting Rˆ2 SSE PERS

1990 CNN−LST M Enc−Dec IN-24/OUT-3 0.929 37.732 0.089

2018 CNN−LST M Enc−Dec IN-24/OUT-3 0.810 40.914 -0.367
Table A.7: Result of the year 1990 and 2018, MAX + Month + SEASON + ICE

Figure A.7: Result of In-24/Out-3, CNN−LST M Encoder−Decoder, MAX + Month + SEASON
+ ICE. 1990(top) and 2018(below)
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A.2 Precipitation Results

PRCP

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-9/OUT-3 0.242 191634.8 -2.222

Vanilla LST M IN-3/OUT-3 0.619 49109.29 0.174

Encoder−Decoder LST M IN-6/OUT-4 0.482 58475.11 0.017

ConvLST M Encoder−Decoder IN-18/OUT-4 0.293 189463.5 -2.186
Table A.8: Results from the PRCP dataset

Figure A.8: Result of In-3/Out-3, Vanilla LST M, PRCP
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PRCP + Month

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-24/OUT-12 0.393 66062.79 -0.111

Vanilla LST M IN-9/OUT-3 0.486 58475.5 0.017

Encoder−Decoder LST M IN-9/OUT-3 0.545 54573.18 0.082

CNN−LST M Encoder−Decoder IN-24/OUT-3 0.485 61231.71 -0.030

ConvLST M Encoder−Decoder IN-24/OUT-3 0.507 56115.9 0.056
Table A.9: Results from the PRCP + Month dataset

Figure A.9: Result of In-9/Out-3, Encoder−Decoder LST M, PRCP + Month
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PRCP + Month

Model IN/OUT Setting Rˆ2 SSE PERS

2005 Encoder−Decoder LST M IN-9/OUT-3 0.491 43104.71 0.261

2018 Encoder−Decoder LST M IN-9/OUT-3 0.460 56011.65 -0.266
Table A.10: Result of the year 2005 and 2018, PRCP + Month

Figure A.10: Result of In-9/Out-3, Encoder−Decoder LST M, PRCP + Month. 2005(top) and
2018(below)
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PRCP + 1mm + Month

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-24/OUT-6 0.389 67951.55 -0.143

Vanilla LST M IN-6/OUT-6 0.486 56203.79 0.055

Encoder−Decoder LST M IN-9/OUT-3 0.561 52350.68 0.120

CNN−LST M Encoder−Decoder IN-6/OUT-6 0.552 50555.25 0.150

ConvLST M Encoder−Decoder IN-9/OUT-3 0.539 52753.79 0.113
Table A.11: Results from the PRCP + 1mm + Month dataset

Figure A.11: Result of In-9/Out-3, Encoder−Decoder LST M, PRCP + 1mm + Month
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PRCP+1mm+Month

Model IN/OUT Setting Rˆ2 SSE PERS

2005 Encoder−Decoder LST M IN-9/OUT-3 0.479 33889.58 0.419

2018 Encoder−Decoder LST M IN-9/OUT-3 0.432 56546.07 -0.278
Table A.12: Result of the year 2005 and 2018, PRCP + 1mm + Month

Figure A.12: Result of In-9/Out-3, Encoder−Decoder LST M, PRCP + 1mm + Month. 2005(top)
and 2018(below)
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PRCP+1mm+MON+SEA

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-24/OUT-3 0.583 47113.02 0.208

Vanilla LST M IN-24/OUT-3 0.492 66366.3 -0.116

Encoder−Decoder LST M IN-12/OUT-3 0.564 58601.65 0.015

CNN−LST M Encoder−Decoder IN-24/OUT-3 0.536 52236.02 0.122

ConvLST M Encoder−Decoder IN-6/OUT-3 0.611 54390.8 0.085
Table A.13: Results from the PRCP + 1mm + Month + Season dataset

Figure A.13: Result of In-6/Out-3, ConvLST M Encoder−Decoder, PRCP + 1mm + Month +
Season
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PRCP+1mm+MON+SEA

Model IN/OUT Setting Rˆ2 SSE PERS

2005 ConvLST M Encoder−Decoder IN-6/OUT-3 0.447 50517.05 0.134

2018 ConvLST M Encoder−Decoder IN-6/OUT-3 0.452 49478.85 -0.119
Table A.14: Result of the year 2005 and 2018, PRCP + 1mm + Season

Figure A.14: Result of In-6/Out-3, ConvLST M Encoder−Decoder, PRCP + 1mm + Month +
Season. 2005(top) and 2018(below)
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PRCP+NAO

Model IN/OUT Setting R2 SSE PERS

Multi− channel CNN IN-6/OUT-1 0.183 90301.06 -0.518

Vanilla LST M IN-12/OUT-1 0.312 78622.05 -0.322

Encoder−Decoder LST M IN-6/OUT-12 0.451 74188.25 -0.248

CNN−LST M Encoder−Decoder IN-12/OUT-12 0.450 81715.07 -0.374

ConvLST M Encoder−Decoder IN-8/OUT-3 0.333 156644 -1.634
Table A.15: Results from the PRCP + NAO dataset

Figure A.15: Result of In-6/Out-12, Encoder−Decoder LST M, PRCP + NAO
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PRCP+1mm+SEA+NAO

Model IN/OUT Setting R2 SSE PERS

Vanilla LST M IN-6/OUT-3 0.403 71074.42 -0.195

Encoder−Decoder LST M IN-12/OUT-3 0.427 67472.63 -0.135

CNN−LST M Encoder−Decoder IN-24/OUT-6 0.454 59418.54 0

ConvLST M Encoder−Decoder IN-24/OUT-3 0.429 66348.26 -0.116
Table A.16: Results from the PRCP + 1mm + Season + NAO dataset

Figure A.16: Result of In-24/Out-6, CNN−LST M Encoder−Decoder, PRCP + 1mm + Season +
NAO
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