224 research outputs found

    Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Get PDF
    Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC) method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty

    Organization Learning Oriented Approach with Application to Discrete Flight Control

    Get PDF
    In nature and society, there exist many learning modes; thus, in this paper the goal is to incorporate features from the social organizations to improve the learning of intelligent systems. Inspired by future prediction, in the high level, the discrete dynamics is further written into the equivalent prediction model which can provide the bridge from now to the future. In the low level, the efficiency could be improved in way of group learning. The philosophy is integrated into discrete neural flight control where the cascade dynamics is written into the prediction form and the minimal-learning-parameter technique is designed for parameter learning. The effectiveness of the proposed method is verified with simulation

    Nonlinear Disturbance Observer-Based Adaptive Sliding Mode Control for a Generic Hypersonic Vehicle

    Get PDF
    In this paper, a new adaptive sliding mode control method is presented for the longitudinal model of a generic hypersonic vehicle subject to uncertainties and external disturbance. Firstly, an oriented-control model with mismatched uncertainties is built for a generic hypersonic vehicle. Secondly, the back-stepping technique is introduced to design a sliding mode controller with an adaptive law to adapt to the disturbance and uncertainty. Thirdly, a set of nonlinear disturbance observers are designed to estimate the lumped disturbance and compensate the sliding mode controller, and the stability of the proposed controller is analyzed by utilizing Lyapunov stability theory. Finally, simulation results show that the effectiveness of the proposed controller is validated by the nonlinear model and the proposed method exhibits promising robustness to mismatched uncertainties

    Deterministic learning enhanced neutral network control of unmanned helicopter

    Get PDF
    In this article, a neural network-based tracking controller is developed for an unmanned helicopter system with guaranteed global stability in the presence of uncertain system dynamics. Due to the coupling and modeling uncertainties of the helicopter systems, neutral networks approximation techniques are employed to compensate the unknown dynamics of each subsystem. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is also integrated into the control design, such that the resulted neural controller is always valid without any concern on either initial conditions or range of state variables. In addition, deterministic learning is applied to the neutral network learning control, such that the adaptive neutral networks are able to store the learned knowledge that could be reused to construct neutral network controller with improved control performance. Simulation studies are carried out on a helicopter model to illustrate the effectiveness of the proposed control design

    Observer-Based Nonlinear Dynamic Inversion Adaptive Control with State Constraints

    Get PDF
    Hypersonic vehicle research and development has grown recently in the aerospace industry due to the powerful potential of operating a vehicle that flies at substantially higher speeds than typical aircraft. From a guidance, navigation and control perspective, hypersonic vehicles are particularly interesting due both to inherent vehicle complexities as well as practical concerns that only arise at high Mach numbers. Challenges inherent to the vehicle include nonlinearities, a wide range of operating conditions, high elasticity, high temperatures and parametric uncertainty. Although these challenges have by no means fully been explored in the literature, in the realm of control theory, they are somewhat common. Hypersonic vehicle control is difficult however, because in addition to these more traditional complexities a control designer must also deal with problems very specific to flying at high speeds such as: inlet unstart, overcoming sensing deficiencies at high speeds and creating an implementable digital control framework for a plant with extremely fast dynamics. This dissertation develops three novel theoretical approaches for addressing these challenges through advances in the nonlinear dynamic inversion adaptive control technique. Although hypersonic vehicle control is the motivation and often the application that the control algorithms in this dissertation are tested on, several of the theoretical developments apply to a general class of nonlinear continuous time systems. First, in order to address the problem of inlet unstart, two state constraint mechanisms which integrate into the nonlinear dynamic inversion adaptive control framework are presented. These state constraining control laws require full state feedback and are capable of restricting the outputs of nonlinear systems containing parameter uncertainty to specific regions of the state-space. The first state constraint mechanism achieves this objective using sliding mode control and the second uses bounding functions to smoothly adjust the control and adaptive laws and drive the states toward the origin when constraints are approached. Stability is proven using Lyapunov analysis and these techniques are demonstrated in a nonlinear simulation of a hypersonic vehicle. Second, an observer-based feedback controller is developed that allows for a nonlinear system to track a reference trajectory with bounded errors and without measuring multiple states. Again, the technique used is nonlinear dynamic inversion adaptive control, but because of uncertainty in the system state, it is not assumed that the nonlinear control effectiveness matrix can be canceled perfectly. A nonlinear observer is implemented to estimate the values of the unknown states. This observer allows for the closed-loop stability of the system to be proven through Lyapunov analysis. It is shown that parametric uncertainty can successfully be accounted for using an adaptive mechanism and that all tracking and estimation errors are uniformly ultimately bounded. Finally, a sampled-data nonlinear dynamic inversion adaptive control architecture is introduced. Despite the prevalence of digital controllers in practice, a nonlinear dynamic inversion adaptive control scheme in a sampled-data setting has not previously been developed. The method presented in this dissertation has the capability of extending the benefits of nonlinear dynamic inversion adaptive control - robust control of nonlinear systems with respect to model uncertainty - to more practical platforms

    Aeronautical engineering: A continuing bibliography with indexes (supplement 293)

    Get PDF
    This bibliography lists 476 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 322)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 295)

    Get PDF
    This bibliography lists 581 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Sep. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    Get PDF
    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 308)

    Get PDF
    This bibliography lists 269 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore