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Research Article

Deterministic learning enhanced
neutral network control
of unmanned helicopter

Yiming Jiang1, Chenguang Yang1,2, Shi-lu Dai1, and Beibei Ren3

Abstract
In this article, a neural network–based tracking controller is developed for an unmanned helicopter system with guar-
anteed global stability in the presence of uncertain system dynamics. Due to the coupling and modeling uncertainties of the
helicopter systems, neutral networks approximation techniques are employed to compensate the unknown dynamics of
each subsystem. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a
switching mechanism is also integrated into the control design, such that the resulted neural controller is always valid
without any concern on either initial conditions or range of state variables. In addition, deterministic learning is applied to
the neutral network learning control, such that the adaptive neutral networks are able to store the learned knowledge
that could be reused to construct neutral network controller with improved control performance. Simulation studies are
carried out on a helicopter model to illustrate the effectiveness of the proposed control design.
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Introduction

In the past decades, the unmanned aerial vehicles have been

widely studied since they provide a promising manner to

fulfill the increasing demands in both commercial and indus-

trial applications. Particularly, the research works of

unmanned helicopters have gained much attention since they

provide efficient solutions for many important tasks, such as

land surveillance, forest fire monitoring, traffic condition

assessment, and mineral exploration in a field of aerial

aspect.1–5 On the other hand, the controller design for heli-

copters faces a number of challenges, due to the inherited

features embedded in the helicopter dynamics, such as high

nonlinearity, strongly coupling, and uncertainties presented

in the helicopter dynamics.6 The aforementioned features

greatly increase the difficulty of the attitude and position

control of helicopter, and therefore, the controller design has

been focused by numerous researchers.7–12

To guarantee a safe and stable flight of the helicopters, a

large number of effective control schemes have been devel-

oped, for example, adaptive control,13,14 fuzzy control,

neural network (NN)-based intelligent control,15–17 sliding

mode control,18 backstepping control,19 robust control,20–22
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and so on. In the study by Chen and Yu,18 a terminal sliding

mode control with disturbance observer was employed to

estimate modeling uncertainties and external disturbances.

To deal with the uncertain external disturbances, modeling

uncertainties, a neural controller was designed for a 3-DOF

helicopter model.6

In practical applications, helicopter systems are typi-

cally difficult to be modeled accurately due to the presence

of unknown aerodynamical disturbances and the strongly

coupled dynamics, thus it may not be suitable to use model-

based control methods, which perform well when the sys-

tem dynamics is perfectly known.

When the control input of model-based feedback is

affected by the unknown disturbances and uncertainties,

the system performance may be degraded or even

unstable. Therefore, it is important for us to handle the

helicopters’ control in the presence of structural and para-

metric uncertainties, since little knowledge about helicop-

ter dynamics parameters is available. To deal with these

uncertainties, particularly, the unstructured model uncer-

tainties, the model-free control design approaches have

been extensively studied. One of the most widely

employed control methods is the NN-based intelligent

controller, which utilizes the powerful universal approx-

imation ability of NN to compensate for unknown

dynamics.23–32 In the work of Xu et al.,25 an NN tracking

control was employed to approximate the unknown hyper-

sonic flight vehicle dynamics. In the work of Cheng

et al.,26 an NN control was constructed to compensate the

complicated nonlinearity of the robot dynamics. In the

work of Ren et al.,33 an NN controller was employed to

control a large class of nonlinear systems with unknown

input hysteresis. The NN control has also been success-

fully developed in applications such as NN-based discrete

backstepping for hypersonic flight vehicle,34 adaptive NN

output feedback control for discrete-time nonlinear sys-

tems,35 and discrete-time output feedback NN control in

the presence of uncertain control directions.36

It should be noted that, although the control perfor-

mance can be well achieved without using the information

of system dynamics, the aforementioned NN control meth-

ods only ensure the semiglobally uniformly ultimately

boundedness (SGUUB) stability of the closed-loop signals,

due to the approximation of NN is only valid in a certain

compact set, the so-called NN’s approximation domain.

Therefore, the range of NN input should be within this

approximation domain. However, it is hard for us to pre-

cisely identify such a compact set beforehand, particularly

for the highly nonlinear complicated systems. When the

NN inputs not remain the compact set, the NN controller

could become invalid. As a result, the control performance

will be deteriorated and instability may even occur. There-

fore, it is necessary to design an NN controller with guar-

anteed global stability. To achieve globally uniformly

ultimately boundedness (GUUB) stability of strict-

feedback systems, a robust adaptive neural controller was

developed in the study by Huang.37 To ensure GUUB sta-

bility of hypersonic flight vehicle systems, an adaptive NN

control was proposed in the study by Xu et al.,25 where the

unknown dynamics is assumed to be in a strict-feedback

form.

It should be emphasized that conventional adaptive NN

control needs to adapt online the NN weights at the start of

a task, and the convergence of their optimal values is not

ensured.38 Even taking a same task, we still need to adapt

the NN weights in a new around with the initial values.

Therefore, the idea that achieves the convergence of the

estimated parameters, while utilizing the knowledge to

improve the control performance, the so-called determi-

nistic learning, is proposed in the study by Wang and

Hill.39 Using the deterministic learning method, we can

store the weight information of radical basis function neu-

tral network (RBFNN) in a constant form and then obtain

the fundamental information of dynamical patterns.39 On

the other hand, it is important to ensure the convergence of

the estimate parameters in deterministic learning. To

guarantee parameter convergence of dynamical identifi-

cation process, persistent excitation (PE) condition should

be satisfied.38 Using deterministic learning theory, we can

accumulate dynamics of fundamental knowledge-based-

on-system, store, and represent it by constant RBF

networks when tracking a periodic-like reference trajec-

tory.39 The deterministic learning theory is employed in

various applications, such as dynamical pattern recogni-

tion, marine surface vessels learning control, and oscilla-

tion faults diagnosis.24

Inspired by the aforementioned works, in this article, we

propose an NN control enhanced by deterministic learning

techniques for the helicopter systems, and special mechan-

ism is embedded in the control design to ensure global

stability of the NN control.

Model dynamics and preliminaries

Helicopter dynamics

The dynamic equation of a helicopter could be described in

Lagrangian form as follows

MðqÞ€qþ Dðq; _qÞ _qþ GðqÞ þ Hð _qÞ ¼ C� (1)

where q ¼ ½q1; q2; q3�T , with q1, q2, and q3 represent the

position of the altitude, position of the yaw angular, and

position of main rotor of the helicopter, respectively.

MðqÞ 2 R3�3 is the inertia matrix, Dðq; _qÞ _q 2 R3 represents

the vector of the Coriolis and centrifugal forces, GðqÞ 2 R3

stands for the gravity term, Hð _qÞ 2 R3 represents the fric-

tion force, � ¼ ½� 1; � 2� is the input of the controller, and

C 2 R3�2 is a matrix with respect to the control coefficients.
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To facilitate the controller design of the helicopter

and better exploit helicopter’s physical properties, we

use the assumption that the unknown dynamical para-

meters and structure of helicopter system can be

described as follows

MðqÞ ¼
m11 0 0

0 m22ðq3Þ m23

0 m23 m33

2
664

3
775

Dðq; _qÞ ¼
0 0 0

0 d22ðq3; _q3Þ d23ðq3; _q2Þ
0 d32ðq3; _q2Þ 0

2
664

3
775

GðqÞ ¼
g1

0

g3

2
664

3
775 Hð _qÞ ¼

h1ð _q3Þ
0

h3ð _q3Þ

2
664

3
775

Cð _qÞ ¼
c11ð _q3Þ 0

0 c22ð _q3Þ
c31ð _q3Þ 0

2
664

3
775

(2)

where m11, m23, m33, g1, and g3 are unknown con-

stants, m22ðq3Þ, h1ð _q3Þ, h3ð _q3Þ, d22ðq3; _q3Þ, d32ðq3; _q2Þ,
d23ðq3; _q2Þ, c11ð _q3Þ, c31ð _q3Þ, and c22ð _q3Þ are unknown

functions. The following properties of the helicopter

dynamic are employed to facilitate the controller design.

Property 1. The terms m12 and m13 in MðqÞ could be set to

zero entries, and M is a positive definite inertia matrix and
_M � 2D is a skew-symmetric matrix, that is12

vT ð _M � 2DÞv ¼ 0 8v 2 R3 (3)

Property 2. The terms m11,
m22ðq3Þm33�m2

23

m33
,

m22ðq3Þm33�m2
23

m22

are positive definite. The following equality holds for

_m22ðq3Þ � 2d22ðq3; _q3Þ ¼ 0.12

Additionally, the following assumptions are employed

to simplify the design of the controller.

Assumption 1. The reference position trajectories of the atti-

tude and yaw angle q1dðtÞ and q2dðtÞ and the time deriva-

tives of them, _q1dðtÞ, _q2dðtÞ, are bounded and continuously

differentiable up to third order for all t > 0.

Assumption 2. The control input and state variables of the

helicopter system q, _q, and €q are all available. The terms c11

and c22 are bounded, such that j _c11ð _q3Þj � �c11ð _q3; €q3Þ,
j _c22ð _q3Þj � �c22ð _q3; €q3Þ, where �c11 and �c22 are known pos-

itive functions.

In the dynamics of the helicopter, as seen from equations

(1) and (2), the €q1 and €q2 are coupled, which greatly

increase the difficulty of the control design based on

equation (1) directly. In order to simplify the system

description and further develop controller for the helicop-

ter, we decompose the systems (1) and (2) into three sub-

systems as follows

c11ð _q3Þ� 1 ¼ m11 €q1 þ h1ð _q3Þ þ g1 (4)

c22ð _q3Þ� 2 ¼
m22ðq3Þm33 � m2

23

m33

0
@

1
A€q2 þ d23ðq3; _q2Þ _q3

þd22ðq3; _q3Þ _q2 þ
m23

m33

�
� d32ðq3; _q2Þ _q2 � g3 � h3ð _q3Þ

�

þm23

m33

c31ð _q3Þ� 1

(5)

c31ð _q3Þ� 1 ¼
m22ðq3Þm33 � m2

23

m22ðq3Þ

0
@

1
A€q3 þ d32ðq3; _q2Þ _q2

þm23ð�d22ðq3; _q3Þ _q2 þ c22ð _q3Þ� 2 � d23ðq3; _q2Þ _q3Þ
þ m23

m22ðq3Þ
ð�d22ðq3; _q3Þ _q2 þ c22ð _q3Þ� 2 � d23ðq3; _q2Þ _q3Þ

þh3ð _q3Þ þ g3

(6)

After the aforementioned manipulations, we can per-

form system analysis and develop controllers for the

subsystems.

Preliminaries

Radical basis function. In this article, we use the RBFNNs

to approximate an unknown continuous function f ðZÞ as

follows7

fnnðZÞ ¼
XN

i¼1

wisiðZÞ ¼ W T SðZÞ (7)

where Z 2 �Z � Rm is the input vector, W T 2 RN is the

vector of NN weight, N is the number of NN nodes,

SðZÞ ¼ ½s1; s2; . . . ; sN �T is the regressor vector, and sið�Þ
is an RBF. The most commonly used Gaussian RBFs are

implemented as follows

siðk Z � �i kÞ ¼ exp
�ðZ � �iÞT ðZ � �iÞ

#2
i

" #
(8)

and �iði ¼ 1; . . . ;NÞ are distinct points with

�i ¼ ½�i1; �i2; . . . ; �iq�T being the receptive field center

and #i is the width of the receptive field. It has been proven

that with sufficiently large number of nodes, RBFNN (7)

could approximate any continuous function f ðZÞ with arbi-

trary accuracy over a compact set �Z as

f ðZÞ ¼ W �T SðZÞ þ "ðZÞ; 8Z 2 �Z (9)

Jiang et al. 3



where W � is the ideal constant weight vector, and "ðZÞ is

the NN construction error. There exists an ideal weight

vector W � such that j"ðZÞj < "� with constant "� > 0 for

all Z 2 �Z . W � represents the value of W that could mini-

mize j"ðZÞj8Z 2 �Z , that is

W � :¼ arg min
W2RN

f sup
Z2�Z

jf ðZÞ �W T SðZÞjg (10)

Note that the ideal weight vector W � is only used for

analytical purposes. For real applications, we use the esti-

mation Ŵ .

Spatially localized approximation. The spatially localized

approximation (SLA) of a localized RBF means that for

any bounded trajectory remaining in a compact set, an

unknown continuous function f ðzÞ can be approximated

by a limited number of RBFs and neural nodes in a local

region close nearby the trajectory,38 that is

f ðzÞ ¼ W �T
� S�ðzÞ þ "�ðZÞ (11)

where S�ðzÞ ¼ ½z1; z2; . . . ; z��
T 2 R

N�, and N� < N ,

pi > & with & is a small positive constant, "� is the con-

struction error.

Lemma 1. (Partial PE condition). Consider that the trajectory

zðtÞ is periodic or recurrent and remain in the compact set

�, zðtÞ is continuous and _zðtÞ is assumed to be bounded, and

the centers of the localized RBF W T

� S�ðzÞ placed on a

regular lattice (which means that the centers of NN could

cover the compact set �), then the subvector S�ðzðtÞÞ satis-

fies the PE condition.40

Remark 1. For the adaptive control and identification of

the nonlinear system, the satisfaction of PE condition

could ensure the convergence of the estimated para-

meters, and we can then reuse them in the learning

control system without readaptation. However, the priori

verification of the PE condition is difficult for identifi-

cation of the nonlinear system. Based on the result of

partial PE condition given in the literature,40 the loca-

lized RBFNN can be applied in the learning system by

utilizing its function approximation ability, linear-in-

parameter form, spatially localized ability, and the satis-

faction of PE condition. The ‘‘partial’’ PE condition also

means that the NN input trajectory does not need to visit

all the centers of the regular lattice PE condition that

hold for W�T S�ðzÞ as long as zðtÞ is periodic like and

stays within the regular lattice.

Useful function and key lemma. Definition 1. Let us define a set

of switching functions vð�Þ as

vðzÞ ¼
Yn

i¼1

uiðziÞ (12)

where

�iðziÞ ¼

1 if jzij <¼ ri1

r2
i2 � z2

i

r2
i2 � r2

i1

e

z2
i
�r2

i1

$ðr2
i2
�r2

i1
Þ

� �2

if ri1 > jzij 	 ri2

0 elsewhere

8>>>>>>>>><
>>>>>>>>>:

(13)

where z ¼ ½z1; z2; . . . ; zn�T , ri1; ri2 are positive constants

satisfying that ri1 > ri2, and $ is a designed constant with

$ > 0.

Lemma 2. The following inequality holds for any ! > 0 and

f 2 R25,37:

0 � jf j � f tanh
f

!

� �
� �! (14)

where � is a constant with � ¼ 0:2785 (satisfying

� ¼ e�ð�þ1Þ).

Controller design

Problem formulation

For a helicopter system with q1ðtÞ and q2ðtÞ being the

altitude position and yaw angular, respectively, and q3ðtÞ
the main rotor angular, our control goal is to develop an

adaptive NN controller to ensure that (i) the altitude posi-

tion q1ðtÞ and yaw angular q2ðtÞ of the helicopter could

track a predefined trajectories q1d and q2d , while ensuring

the tracking errors fall into a small neighborhood around

zero; (ii) guarantee the stability and boundedness of the rate

of main rotor angular _q3ðtÞ; (iii) all the signals in the heli-

copter system remain GUUB.

Adaptive NN learning control design

To achieve the aforementioned control goals, we first

defined the residual tracking errors for the helicopter sub-

systems as

ei ¼ qi � qid

si ¼ _ei þ giei (15)

where gi is a selected positive constant, i ¼ 1; 2. In terms of

the results in the study by Lewis et al.,41 if the filtering error

si is bounded, we can obtain the boundedness of the track-

ing errors ei and _ei. Then, the following auxiliary reference

signals are designed as

_qir ¼ �giei þ _qid
€qir ¼ �gi _ei þ €qid (16)

where _qid and €qid are reference trajectories of the velocity

and acceleration, respectively.
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q1 subsystem

Using the definition of _q1r, _q1r, and s1, the subsystem for €q1

can be rewritten as

m11

c11ð _q3Þ
_s1 ¼ � 1 � 1

c11ð _q3Þ
½m11 €q1r þ h1ð _q3Þ þ g1� (17)

Then, let us consider the following Lyapunov function

Vs1
for the q1 subsystem as

Vs1
¼ m11

2c11ð _q3Þ
s2

1 (18)

Since the velocity of the main rotor _q3 should satisfy

_q2
3 	 g0 > 0 to overcome the gravity and lift the helicopter

up, thus c11ð _q3Þ ¼ c1 _q2
3 > 0, therefore Vs1 	 0 is a Lyapu-

nov candidate. Differentiate Vs1 with respect to time gives

_V s1 ¼ m11s1

c11ð _q3Þ
_s1 �

m11s2
1

2

_c11ð _q3Þ
c2

11ð _q3Þ

¼ s1 � 1 � 1

c11ð _q3Þ
½h1ð _q3Þ þ m11 €q1r þ g1�

0
@

1
A

�m11s2
1

2

_c11ð _q3Þ
c2

11ð _q3Þ

(19)

Let us define an auxiliary function f1 for the V1 as

f1ðz1Þ ¼ � 1

c11ð _q3Þ

�
m11 €q1r þ h1ð _q3Þ þ g1

þm11s1

2

�c11ð _q3; €q3Þ
c11ð _q3Þ

Þ
(20)

where z1 ¼ ½q1; _q1; q1d ; _q1d ; €q1d ; _q3; €q3�T 2 R7 and

�c11ð _q3; €q3Þ is a positive function with respect to _q3 and €q3

and satisfies that j _c11ð _q3Þj � �c11ð _q3; €q3Þ.
Substituting equation (20) into equation (19), we can

rewrite equation (19) as

_V s1 ¼ s1ð� 1 þ f1Þ �
m11s2

1

2c2
11ð _q3Þ

�
�c11ð _q3; €q3Þ þ _c11ð _q3Þ

�
(21)

In term of assumption 2, we find that

�c11ð _q3; €q3Þ þ _c11ð _q3Þ > 0 (22)

The combination of equations (21) and (22) yields

_V s1 � s1ð� 1 þ f1Þ (23)

Using the universal approximation property of RBFNN

as mentioned in lemma 1, we can approximate the unknown

function f1ðz1Þ by an RBFNN in the compact set �1 as

f1ðz1Þ ¼ W �
1

T S1ðz1Þ þ "1 (24)

where W �
1 2 RL1 is the optimal NN weight vector, L1 is the

number of NN nodes, S1ðz1Þ 2 RL1 is the basis function

vector, and "1 2 R is the NN construction error. It should

be noted that W �
1 is an unknown constant vector, and it

would be estimated by Ŵ 1, which is the estimation of W �
1 .

Using the RBFNN control in equation (24), we can

develop the global NN control input � 1 for the q1 subsys-

tem as follows

� 1 ¼ �k1s1 � v1ðz1Þ�a1 � ð1� v1ðz1ÞÞ�b1 (25)

where k1 is designed positive constant and v1ð�Þ is a switch-

ing function as defined in equation (13)

�a1 ¼ f̂ 1ðz1Þ ¼ Ŵ
T

1 S1ðz1Þ
�b1 ¼ f U

1 tanh
s1f U

1 ðz1Þ
!1

� �
(26)

where f̂ 1 is the estimate of f1, and we assume that f1 is

bounded by known nonnegative smooth function f U
1 with

jf1ðz1Þj � f U ðz1Þ, and !1 is a positive parameter.

The NN weight adaptive law is designed as

_̂
W i ¼ ��1ðs1v1ðz1ÞS1ðz1Þ � �1Ŵ 1Þ (27)

where �1 is a positive definitive matrix and �1 is a positive

constant.

Remark 2. The controller proposed in equation (25) consists

of an adaptive NN controller �a1 and an extra robust con-

troller �b1 combining with a smooth switching function

v1ðz1Þ. As seen from Figure 1, when the tracking runs in

the NN active domain �1, the term �a1 plays a decisive

role, implying that the controller turns into a pure adaptive

NN control. Once the NN runs out of the �2, the extra

robust term �b1 will take charge of the control and pull the

state back to �2. If the NN runs in the domain between the

�2 and �1, the switching mechanism will work and pull the

state to compact set �1.

Then, let us consider the Lyapunov function V1

V1 ¼ Vs1 þ 1

2
~W

T

1 ��1
1

~W 1 (28)

Figure 1. Global tracking.

Jiang et al. 5



where ~W 1 ¼ W �
1 � Ŵ 1. Differentiating equation (28) with

respect to time, we have

_V 1 � s1ð� 1 þ f1Þ þ ~W
T

1 ��1
1

_̂
W 1 (29)

Substituting the control law (25) and the NN adaptive

law (27) in equation (29), we have

_V 1 � �k1s2
1 þ s1

�
� v1ðz1Þ�a1 � ð1� v1ðz1ÞÞ�b1 þ f1

�
� ~W

T

1

�
s1v1ðz1ÞS1ðz1Þ � �1Ŵ 1

�
� �k1s2

1 þ s1v1ðz1Þ
�

f1 � Ŵ 1S1ðz1Þ
�

þ ð1� v1ðz1Þ s1f1 � s1f U
1 tanh

s1f U
1 ðz1Þ
!1

� �� �

� ~W
T

1

�
s1v1ðz1ÞS1ðz1Þ � �1Ŵ 1

�
� �k1s2

1 þ v1ðz1Þs1"1

þ ð1� v1ðz1Þ s1f1 � s1f U
1 tanh

s1f U
1 ðz1Þ
!1

� �� �

þ �1
~W

T

1 ðW �
1 � ~W 1Þ

(30)

Note that the following inequalities holds in term of

lemma 2

jf U
1 s1j � f U

1 s1 tanh
f U
1 s1

!1

� �
� �!1 (31)

The following relation can be easily obtained according

to the Young’s inequality

~W 1
T ðW �

1 � ~W 1Þ � � 1

2
jj ~W 1jj2 þ 1

2
jjW1

�jj2

s1"1 �
1

2
s2

1 þ
1

2
"2

1 (32)

Substituting equations (31) and (32) into equation (30),

we can deduce that

_V 1 � �ðk1 � 1

2
Þs2

1 �
1

2
�1k ~W 1k2

þ 1

2
�1kW1

�k2 þ �!1 þ 1

2
"2

1

¼ ��1V1 þ �1

(33)

where �1 ¼ min
ðk1�1

2
Þ�c11

m11
; �1

	maxð��1
1
Þ

� �
, �1 ¼ 1

2
"2

1 þ 1
2
�1

jjW �
1 jj

2 þ �!1. Then, according to the Lyapunov theorem

and in terms of equation (33), we can obtain that s1 con-

verges to a small residual set around zero by

�s1
¼ s1 : js1j �

�1

�1

� 	
(34)

q2 subsystem

Considering the q2 subsystem in equation (5), similar to the

analysis of q1 subsystem, let us define a Lyapunov candi-

date for the q2 subsystem as

V2 ¼ � 1

2c22ð _q3Þ
m22ðq3Þm33 � m2

23

m33

s2
2 þ

1

2
~W 2

T ��1
2

~W 2

(35)

According to property 3, and since c22ð _q3Þ is negative, we

can obtain that V2 	 0 is a valid Lyapunov candidate. Taking

the deviation of equation (35) with respect to time, we have

_V 2 ¼ � d

dt

m22ðq3Þm33 � m2
23

m33c22ð _q3Þ

� �
s2

2 þ ~W 2
T ��1

2
_̂

W 2

� 1

c22ð _q3Þ
m22ðq3Þm33 � m2

33

m33

s2 _s2

(36)

Using the definition of _q1r, _q1r, and s1, we can obtain

that _q2 ¼ _q2r þ s2, €q2 ¼ €q2r þ _s2. Then, the q2 subsystem

can be rewritten as

� m22ðq3Þm33�m2
23

m33

0
@

1
A _s2 ¼

�c22ð _q3Þ� 2þ
m22ðq3Þm33�m2

23

m33

0
@

1
A€q2r þ d22ðq3; _q3Þ _q2r

þd23ðq3; _q2Þ _q3þ
m23

m33

�
� d32ðq3; _q2Þ _q2� g3� h3ð _qÞ

�
þd22ðq3; _q3Þs2þm23

m33

c31ð _q3Þ� 1

(37)

Substituting equation (37) into equation (36), we have

_V 2 ¼ �� 2s2 � d

dt

m22ðq3Þm33 � m2
23

m33c22ð _q3Þ
s2

2 þ ~W 2
T ��1

2
_̂

W 2

þ 1

c22ð _q3Þ
m22ðq3Þm33 � m2

23

m33

0
@

1
A€q2rs2

þ 1

c22ð _q3Þ
s2

�
d23ðq3 ; _q2Þ _q3 þ d22ðq3 ; _q3Þ _q2r

�

þ 1

c22ð _q3Þ
m23

m33

s2

�
� d32ðq3 ; _q2Þ _q2 � g3 � h3ð _qÞ

�

þs2
1

c22ð _q3Þ
d22ðq3; _q3Þs2 þ m23

m33

c31ð _q3Þ� 1

0
@

1
A

(38)

Let us design an auxiliary function f2ðz2Þ as follows

f2ðz2Þ ¼ 1

c22ð _q3Þ

 
m22ðq3Þc33 � m2

23

m33

€q2r þ d22ðq3; _q3Þ _q2r

þm23

m33

ðc31ð _q3Þ� 1 þ d23ðq3; _q3Þ _q3 � d32ðq3; _q2Þ _q2

�g3 � h3ð _q3ÞÞ þ
1

2
s2

2

m22ðq3Þm33 � m2
23

m33

�c22ð _q3; €q3Þ
c22ð _q3Þ

!

(39)
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where z2 ¼ ½� 1; q2; _q2; q2d ; _q2d ; €q2d ; q3; _q3; €q3�T . Note that

the following inequality exists in term of assumption 2

�c22ð _q3; €q3Þ þ _c22ð _q3Þ > 0 (40)

Then, substituting equations (39) and (40) into equation

(38), and using property 3, we can obtain that

V2 � �s2ð� 2 � f2Þ þ 1

2
~W

T

1 ��1
1

~W 1 (41)

Using the approximation ability of RBFNN, the

unknown system dynamics f2ðz2Þ can be formulated as

f2ðz2Þ ¼ W �T
2 S2ðz2Þ þ "2 (42)

where W �
2 2 RL2 is the optimal NN weight vector, L2 is the

number of NN nodes, S2ðz2Þ 2 RL2 is the basis function

vector, and "2 2 R is the NN construction error.

Then, the global NN controller for q2 subsystem is

designed as follows

� 2 ¼ k2r2 þ v2ðz2Þ�2a þ ð1� v2ðz2ÞÞ�2b (43)

where k2 is a selected positive gain, and v2ð�Þ has been

defined in equation (13)

�a2 ¼ f̂ 2ðz2Þ ¼ Ŵ
T

2 S2ðz2Þ
�b2 ¼ f U

2 tanh
s2f U

2 ðz2Þ
!2

� �
(44)

where f̂ 2 is the estimate of f2, and f2 is bounded by known

nonnegative smooth function f U
2 with jf2ðz2Þj � f U ðz2Þ, !2

is a positive parameter.

The NN weight adaptive law is designed as

_̂
W 2 ¼ ��2ðs2v2ðz2ÞS2ðz2Þ � �2Ŵ 2Þ (45)

where �1 is a positive definitive matrix and �1 is a positive

constant.

Substituting equations (43) to (45) into equation (41),

and similar to the analysis in subsection ‘‘Problem formu-

lation,’’ we can obtain that

_V 2 � ��2V2 þ �2 (46)

where �1 ¼ min½ðk2 � 1
2
Þ; ð �2

	maxð��1
2
ÞÞ�, �2 ¼ 1

2
"2

2 þ 1
2
�2

jjW �
2 jj

2 þ �!2. Then, according to the Lyapunov theorem,

we can obtain that s2 converges to a small residual set

around zero by

�s2
¼ s2 : js2j �

�2

�2

� 	
(47)

q3 subsystem

In this subsection, we will investigate the stability of q3

subsystem. In practice, the velocity of the main rotor _q3

should satisfy _q2
3 	 g0 > 0 to overcome the gravity and lift

the helicopter up. From systems (4) to (6) with control laws

(25) and (43), we can rewrite q3 subsystem as follows

_
 ¼ f ð
; u; �; Þ (48)

where 
 ¼ ½q3; _q3�T , u ¼ ½� 1; � 2�T , and � ¼ ½q1; _q1; q2; _q2�T .

Then, the zero dynamics of equation (48) can be obtained as

_
 ¼ f ð
; u�ð0; 
Þ; 0Þ (49)

with u� ¼ ½��1; ��2�. Assume that system (48) is hyperboli-

cally minimum phase, which means that the system zero

dynamics (49) is exponentially stable. We also employ the

assumption that the reference signals are all bounded and u

is the control input with respect to � and 
. Assume that the

function f ð�; 
; uÞ satisfies that

jjf ð�; 
; uÞ � f ð0; 
; u�ð0; 
ÞÞjj � P�jj�jj þ Pf (50)

where P� and Pf are constants. Then, the stability of q3

subsystem is hold according to the following lemma.

Lemma 3. For the system _
 ¼ f ð�; 
; uÞ as defined in equa-

tion (48), under assumptions 1 and 2, there exist positive

constants P
 and T0, such that12

jj
ðtÞjj � L
; 8t > T0 (51)

Stability analysis

Theorem 1. Consider the subsystems of helicopter dynamic

in (4) (5) (6) with the tracking errors (15) under assump-

tions 1 and 2, employ the global NN controllers (25) and

(43) with the NN weight adaptive laws in equations (27)

and (45), then we have (i) all the signals remain GUUB and

(ii) the tracking errors e1 and e2 converge to a small neigh-

borhood of zero.

Proof. From the previous analysis, we find that Ŵ 1, Ŵ 2, � 1,

and � 2 are bounded and the filtered tracking errors s1 and s2

converge to a small compact set around zero, respectively.

Then, substituting equation (15) into equations (33) and

(46), we have

��i � _ei þ giei � �i i ¼ 1; 2 (52)

where �i ¼
�

i

�
i

. The solution of the inequalities can be

derived as follows

eið0Þe�gi
t � �i

gi

ð1� e�gi tÞ � ei � eið0Þe�git

þ�i

gi

ð1� e�gi tÞ
(53)

Then with t!1, we can obtain that

jeij �
�i

gi

(54)

Then, let us investigate the boundedness of the closed-

loop signals of the helicopter system. For the states variable

qi and _qi ði ¼ 1; 2Þ, since ei is bound, and qid and _qid are

bounded in terms of assumption 1, we find that q1, _q1, q2,

and _q2 are bounded. Then, the boundedness of q3 and _q3

can be obtained in terms of lemma 3. Hence, we can deduce
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that all the closed-loop signals of the system are GUUB. In

addition, the tracking errors e1 and e2 are also bounded by

appropriately choosing the control gains k1, k2, g1, and g2.

This completes the proof.

Remark 3. The designed control gains k1 and k2 in the

controller should be chosen simply as positive constants,

satisfying that k1 >
1
2

and k2 >
1
2
, while 	1 and 	2 should be

chosen as positive constants. The gains in the NN adaptive

laws �1 and �2 should be positive. If the gains k1, k2, �1,

and �2 are chosen to be relatively large, while the �1 and �2

chosen to be relatively small, then the amplitude of tracking

error could be made smaller.

Knowledge-reused NN control design

In this section, we will show that the adaptive NN control-

lers (25) and (43) with NN weight adaptations (27) and (45)

are able to achieve knowledge expression, acquisition, and

storage of uncertain system dynamics f1 and f2 in the

steady-state control process. Then, the learned constant

NN weights can be reused in the design of neural learning

control to improve the control performance.

To achieve an accurate estimation of the converged NN

weight, we will show that the inputs of NN, W T
1 S1, W T

2 S2,

are recurrent orbit. According to Theorem 1, we have

shown that tracking error ei ði ¼ 1; 2Þ converges to a small

neighborhood around zero. Since ei ¼ qi � qid and qid is a

recurrent orbit, thus qi is recurrent orbit. It has also been

proven that the filtered error si falls into a small neighbor-

hood of zero, and gi is a bounded parameter; from equation

(15), we know that _qi is also recurrent orbit. Therefore, the

input of RBFNN, W T
i Si, is the recurrent signal and the

regressor subvectors, S
i�ðziÞ, satisfy the PE condition.

Then, the results of NN learning ability can be formulated

by the theorem below.

Theorem 2. Considering the helicopter system defined in

equations (4) to (6), the filtered tracking errors in equation

(15), and the NN adaptation law (27) and (45), for any

recurrent orbit �i, and initial conditions Ŵ ið0Þ ¼ 0, we

have that the NN weight estimate converges to small neigh-

borhoods of its optimal value W �
i along �iðziðtÞÞðt	TiÞ, and

the system dynamics fiðziÞ could be approximated accu-

rately by either Ŵ
T

i SiðziÞ or �W
T

i SiðziÞ to the desired error

level �"i as

fi ¼ Ŵ
T

i SiðziÞ þ "iðziÞ ¼ �W
T

i SiðziÞ þ �"iðziÞ (55)

where "iðziÞ is close to "i in the steady-state process and �W i

is defined as

�W i ¼ 1

tci � tbi

Z tci

tbi

Ŵ iðrÞdr (56)

where tci > tbi > T1 denotes the time segment in the

steady stage.

Proof. According to Theorem 1, we have that in the steady

stage, the system states q1, q2, _q1, _q2 and tracking errors q1

and q2 subsystems can converge to small compacts. There-

fore, it is reasonable for us to employ the assumption that

the inputs of the NN W1S1 and W2S2 would remain in a

compact set after the transient stage. Hence, the NNs con-

troller �a1 and �a2 are always valid at the steady stage, and

the controller can be rewritten as follows

� 1 ¼ �k1s1 � Ŵ
T

1 S1

� 2 ¼ k2s2 þ Ŵ
T

2 S2 (57)

Let us employ the SLA ability of RBFNNs with the

controller (57), then the q1 and q2 subsystems could be

rewritten as follows:

 i _si ¼ �kisi � ~W
T

i�S
i�ðziÞ þ "i

_~W
i� ¼ ��iðsiSi�ðziÞ � �iŴ i�Þ (58)

where  1 ¼ c11ð _q3Þ
m11

and  2 ¼ � m33c22ð _q3Þ
m22ðq3Þm33�m2

23

. Since c11ð _q3Þ,
m11, m33, and m22ðq3Þm33 � m2

23 are positive and c22ð _q3Þ is

negative, we can obtain that  1 and  2 are positive. By

defining _’si ¼ si

 i

, equation (58) can be rewritten in linear

time-varying form as

_’si

_~W
i�

" #
¼

A11ðtÞ ST

i�ðziÞ

A21ðtÞ 0

" #
’si

~W
i�

" #
þ

"i

�i�iŴ i�

" #

(59)

where A11ðtÞ ¼ �ki i �
_ i

 
i

and A21 ¼ ��i iSiðziÞ. Let

PðtÞ ¼  i > 0, we have _PðtÞ þ PðtÞA11ðtÞ þ AT
11ðtÞPðtÞ ¼

�2ki 
2
i � _ i.

Then, following the proof as in the work of Dai et al.38

and Wang and Hill,40 we can obtain that the NN weights

estimate error ~W
i� could exponentially converge to zero.

Therefore, Ŵ i can converge to a small neighborhood nearby

the optimal NN weight W �
i . This completes the proof.c

Then, we can reuse the constant weight of RBFNN

WiSiðziÞ to reconstruct the static NN controller to achieve

the improvement of control of the helicopter system when

tracking a similar trajectory. The NN controller with

learned knowledge is designed using the constant NN

weight and without the NN weight updated law as

� 1 ¼ �k1s1 � v1ðz1Þ��a1 � ð1� v1ðz1ÞÞ�b1

� 2 ¼ k2s2 þ v2ðz2Þ��a2 þ ð1� v2ðz2ÞÞ�b2

(60)

where ��a1 ¼ �W
T

1 S1 and ��a2 ¼ �W
T

2 S2. W1 and W2 are the con-

stant NN weight vectors that are obtained from equation (56).

Subsequently, we can apply the developed neural learn-

ing controller with the stored knowledge to control the

helicopter with improved control performance.

Simulation studies

In this section, simulation studies are carried out to illus-

trate the effectiveness of the proposed global NN control
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algorithms (25) and (43). In the simulation, the helicopter

dynamics and parameters are described using the Vario

model42

MðqÞ€qþ Dðq; _qÞ _qþ Hð _qÞ þ GðqÞ ¼ C� (61)

with

MðqÞ ¼
7:5 0 0

0 m22 0:108

0 0:108 0:4993

2
664

3
775

Dðq; _qÞ ¼
0 0 00

d22 d23

0 d32 0

2
664

3
775

Hð _qÞ ¼

�0:60 _q3

0

�0:0001206 _q2
3

2
664

3
775

Cð _qÞ ¼
3:41 _q2

3 0

0 �0:153 _q2
3

12:01 _q3 þ 105 0

2
664

3
775

GðqÞ ¼
�77:259

0

�2:642

2
664

3
775

(62)

with the term chosen to be d22 ¼ 0:00062 sinð�8:29q3Þ _q3,

d23 ¼ d23 ¼ 0:00062 sinð�8:29q3Þ _q2,

m22 ¼ 0:43þ 0:0003cos2ð�4:143q3Þ.
The helicopter is commanded to follow the reference

trajectory as follows

q1d ¼
(

�0:2 0 � t � 6s

0:1cosð0:1ðt � 6ÞÞ � 0:3 6 < t � 78s

q2d ¼

0 t < 6s; 30 � t < 42; 66 � t < 78

1� expð�ðt � 6Þ2=50Þ 6 � t < 12s

0:51 12 � t < 24s 48 � t < 60s

expð�ðt � 24Þ2=50Þ � 0:49 24 � t < 30

1� expð�ðt � 42Þ2=50Þ 42 � t < 48s

expð�ðt � 60Þ2=50Þ � 0:49 60 � t < 66

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(63)

In terms of the zero dynamics as mentioned in section

‘‘q3 subsystem’’, let s1, s2, ~W
T

1 , ~W
T

2 , "T
1 , and "T

2 are all zero,

and the desired trajectories can be obtained as

€q3 ¼
1

m33

c31ð _qÞ
c11ð _qÞ

ðm1ð _qÞ þ g1Þ � h3ð _qÞ � g3

� �
(64)

By linearizing equation (64) and substituting equation

(62) into equation (64), and using the assumption that the

acceleration of angular is zero, we can obtain that the equi-

librium point of dynamics equation is close to _q�3 ¼ �124

and its eigenvalue is negative, which demonstrate that the

helicopter dynamics has observed a stable behavior.

For the global NN control laws and adaptation laws with

the input vectors z1 ¼ ½q1; _q1; _q3; €q3; q1d ; _q1d ; €q1d �, z2 ¼ ½� 1;
q2; _q2; _q2d ; €q2d ; q2d ; q3; _q3; €q3�T , we employ totally 2187

nodes for W1S1ðz1Þ and 19,683 nodes for W2S2ðz2Þ, the cen-

ters of S1 are evenly spaced in, ½�1:05; 1:05� � ½�0:1; 0:1��
½�100:0;�50:0� � ½�30:0; 30:0� � ½�1:05; 1:05� �½�0:1;
0:1� � ½�0:01; 0:01� and centers of S2 are evenly spaced in

½�0:005; 0:005� � ½�10:0; 10:0� �½�40000; 0:0� � ½�10:0;
10:0� �½�1:05; 1:05� � ½�0:01; 0:01� �½�1:05; 1:05��
½�100:0;�50:0� �½�20:0; 50:0�, respectively. The widths

are chosen as #1 ¼ 1 and #2 ¼ 1. The control gains and

design parameters are selected to be k1 ¼ 1:0, k2 ¼ 1:0,

g1 ¼ 1:0, and g2 ¼ 1:0. The initial states are set as

q1ð0Þ ¼ �0:15, q2ð0Þ ¼ �
, q3ð0Þ ¼ �
, _q1ð0Þ ¼ 0 and

_q2ð0Þ ¼ 0, _q3ð0Þ ¼ �120, Ŵ 1ð0Þ ¼ 0, Ŵ 2ð0Þ ¼ 0.

The simulation results are shown in Figures 2 to 7.

The tracking performance of the helicopter attitude posi-

tion q1 and the yaw angle q2 is depicted in Figures 2 and 3.

We see clearly that q1, q2, _q1, and _q2 could effectively

follow the reference trajectories with a good steady-state

performance. This implies that the proposed controller can

achieve a good tracking performance in the presence of

unknown dynamics. The performance of tracking errors

e1 and e2 is shown in Figures 4 and 5. As shown in the

figures, using the proposed global RBFNN controller, the

t (s)

0 10 20 30 40 50 60 70

q 1
 (

m
)

–0.4

–0.35

–0.3

–0.25

–0.2

–0.15

q
1

q
1d

Figure 2. Tracking performance of q1.
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0

1

2

q
2

q
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Figure 3. Tracking performance of q2.
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tracking errors converge to a small value close to zero with

fast converge rate and good steady-state performance. A

comparative simulation study is performed based on a

model-based controller. From Figures 4 and 5, we can see

that the proposed RBFNN controller is better than the

model-based controller. Additionally, Figure 8 indicates

that the speed of the main rotor angular is stable. Figures

6 and 7 illustrate that the control inputs � 1 and � 2 are

bounded. The simulation results illustrate that our proposed

global RBFNN controller can ensure the helicopter to

effectively track a predefined trajectory and guarantee the

tracking error converge to a small neighborhood near zero.

Conclusion

This article investigates the NN control for an unmanned

helicopter in the presence of unknown system dynamics.

NN control is constructed to compensate the unknown

dynamics of each subsystem of the helicopter. A switching

mechanism is also integrated into the control design to

extend the SGUUB to GUUB, such that the resulted neural

controller is always valid without any concern on either

initial conditions or range of state variables. Deterministic

learning technique is applied to improve control perfor-

mance, with the storage of the learned knowledge of the

adaptive neural learning control. Simulation studies have

shown the validity and effectiveness of proposed control

design based on the helicopter models.
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