84 research outputs found

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Information embedding and retrieval in 3D printed objects

    Get PDF
    Deep learning and convolutional neural networks have become the main tools of computer vision. These techniques are good at using supervised learning to learn complex representations from data. In particular, under limited settings, the image recognition model now performs better than the human baseline. However, computer vision science aims to build machines that can see. It requires the model to be able to extract more valuable information from images and videos than recognition. Generally, it is much more challenging to apply these deep learning models from recognition to other problems in computer vision. This thesis presents end-to-end deep learning architectures for a new computer vision field: watermark retrieval from 3D printed objects. As it is a new area, there is no state-of-the-art on many challenging benchmarks. Hence, we first define the problems and introduce the traditional approach, Local Binary Pattern method, to set our baseline for further study. Our neural networks seem useful but straightfor- ward, which outperform traditional approaches. What is more, these networks have good generalization. However, because our research field is new, the problems we face are not only various unpredictable parameters but also limited and low-quality training data. To address this, we make two observations: (i) we do not need to learn everything from scratch, we know a lot about the image segmentation area, and (ii) we cannot know everything from data, our models should be aware what key features they should learn. This thesis explores these ideas and even explore more. We show how to use end-to-end deep learning models to learn to retrieve watermark bumps and tackle covariates from a few training images data. Secondly, we introduce ideas from synthetic image data and domain randomization to augment training data and understand various covariates that may affect retrieve real-world 3D watermark bumps. We also show how the illumination in synthetic images data to effect and even improve retrieval accuracy for real-world recognization applications

    Generating Robust Adversarial Examples against Online Social Networks (OSNs)

    Full text link
    Online Social Networks (OSNs) have blossomed into prevailing transmission channels for images in the modern era. Adversarial examples (AEs) deliberately designed to mislead deep neural networks (DNNs) are found to be fragile against the inevitable lossy operations conducted by OSNs. As a result, the AEs would lose their attack capabilities after being transmitted over OSNs. In this work, we aim to design a new framework for generating robust AEs that can survive the OSN transmission; namely, the AEs before and after the OSN transmission both possess strong attack capabilities. To this end, we first propose a differentiable network termed SImulated OSN (SIO) to simulate the various operations conducted by an OSN. Specifically, the SIO network consists of two modules: 1) a differentiable JPEG layer for approximating the ubiquitous JPEG compression and 2) an encoder-decoder subnetwork for mimicking the remaining operations. Based upon the SIO network, we then formulate an optimization framework to generate robust AEs by enforcing model outputs with and without passing through the SIO to be both misled. Extensive experiments conducted over Facebook, WeChat and QQ demonstrate that our attack methods produce more robust AEs than existing approaches, especially under small distortion constraints; the performance gain in terms of Attack Success Rate (ASR) could be more than 60%. Furthermore, we build a public dataset containing more than 10,000 pairs of AEs processed by Facebook, WeChat or QQ, facilitating future research in the robust AEs generation. The dataset and code are available at https://github.com/csjunjun/RobustOSNAttack.git.Comment: 26 pages, 9 figure

    Media Forensics and DeepFakes: an overview

    Full text link
    With the rapid progress of recent years, techniques that generate and manipulate multimedia content can now guarantee a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. So-called deepfakes can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Potential abuses are limited only by human imagination. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes and, from the point of view of the forensic analyst, on modern data-driven forensic methods. The analysis will help to highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research

    MĂ©thodes de tatouage robuste pour la protection de l imagerie numerique 3D

    Get PDF
    La multiplication des contenus stéréoscopique augmente les risques de piratage numérique. La solution technologique par tatouage relève ce défi. En pratique, le défi d une approche de tatouage est d'atteindre l équilibre fonctionnel entre la transparence, la robustesse, la quantité d information insérée et le coût de calcul. Tandis que la capture et l'affichage du contenu 3D ne sont fondées que sur les deux vues gauche/droite, des représentations alternatives, comme les cartes de disparité devrait également être envisagée lors de la transmission/stockage. Une étude spécifique sur le domaine d insertion optimale devient alors nécessaire. Cette thèse aborde les défis mentionnés ci-dessus. Tout d'abord, une nouvelle carte de disparité (3D video-New Three Step Search- 3DV-SNSL) est développée. Les performances des 3DV-NTSS ont été évaluées en termes de qualité visuelle de l'image reconstruite et coût de calcul. En comparaison avec l'état de l'art (NTSS et FS-MPEG) des gains moyens de 2dB en PSNR et 0,1 en SSIM sont obtenus. Le coût de calcul est réduit par un facteur moyen entre 1,3 et 13. Deuxièmement, une étude comparative sur les principales classes héritées des méthodes de tatouage 2D et de leurs domaines d'insertion optimales connexes est effectuée. Quatre méthodes d'insertion appartenant aux familles SS, SI et hybride (Fast-IProtect) sont considérées. Les expériences ont mis en évidence que Fast-IProtect effectué dans la nouvelle carte de disparité (3DV-NTSS) serait suffisamment générique afin de servir une grande variété d'applications. La pertinence statistique des résultats est donnée par les limites de confiance de 95% et leurs erreurs relatives inférieurs er <0.1The explosion in stereoscopic video distribution increases the concerns over its copyright protection. Watermarking can be considered as the most flexible property right protection technology. The watermarking applicative issue is to reach the trade-off between the properties of transparency, robustness, data payload and computational cost. While the capturing and displaying of the 3D content are solely based on the two left/right views, some alternative representations, like the disparity maps should also be considered during transmission/storage. A specific study on the optimal (with respect to the above-mentioned properties) insertion domain is also required. The present thesis tackles the above-mentioned challenges. First, a new disparity map (3D video-New Three Step Search - 3DV-NTSS) is designed. The performances of the 3DV-NTSS were evaluated in terms of visual quality of the reconstructed image and computational cost. When compared with state of the art methods (NTSS and FS-MPEG) average gains of 2dB in PSNR and 0.1 in SSIM are obtained. The computational cost is reduced by average factors between 1.3 and 13. Second, a comparative study on the main classes of 2D inherited watermarking methods and on their related optimal insertion domains is carried out. Four insertion methods are considered; they belong to the SS, SI and hybrid (Fast-IProtect) families. The experiments brought to light that the Fast-IProtect performed in the new disparity map domain (3DV-NTSS) would be generic enough so as to serve a large variety of applications. The statistical relevance of the results is given by the 95% confidence limits and their underlying relative errors lower than er<0.1EVRY-INT (912282302) / SudocSudocFranceF

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method

    Visually Adversarial Attacks and Defenses in the Physical World: A Survey

    Full text link
    Although Deep Neural Networks (DNNs) have been widely applied in various real-world scenarios, they are vulnerable to adversarial examples. The current adversarial attacks in computer vision can be divided into digital attacks and physical attacks according to their different attack forms. Compared with digital attacks, which generate perturbations in the digital pixels, physical attacks are more practical in the real world. Owing to the serious security problem caused by physically adversarial examples, many works have been proposed to evaluate the physically adversarial robustness of DNNs in the past years. In this paper, we summarize a survey versus the current physically adversarial attacks and physically adversarial defenses in computer vision. To establish a taxonomy, we organize the current physical attacks from attack tasks, attack forms, and attack methods, respectively. Thus, readers can have a systematic knowledge of this topic from different aspects. For the physical defenses, we establish the taxonomy from pre-processing, in-processing, and post-processing for the DNN models to achieve full coverage of the adversarial defenses. Based on the above survey, we finally discuss the challenges of this research field and further outlook on the future direction

    The dynamics of complex systems. Studies and applications in computer science and biology

    Get PDF
    Our research has focused on the study of complex dynamics and on their use in both information security and bioinformatics. Our first work has been on chaotic discrete dynamical systems, and links have been established between these dynamics on the one hand, and either random or complex behaviors. Applications on information security are on the pseudorandom numbers generation, hash functions, informationhiding, and on security aspects on wireless sensor networks. On the bioinformatics level, we have applied our studies of complex systems to theevolution of genomes and to protein folding
    • …
    corecore