29,958 research outputs found

    Integration of perception and reasoning in fast neural modules

    Get PDF
    Artificial neural systems promise to integrate symbolic and sub-symbolic processing to achieve real time control of physical systems. Two potential alternatives exist. In one, neural nets can be used to front-end expert systems. The expert systems, in turn, are developed with varying degrees of parallelism, including their implementation in neural nets. In the other, rule-based reasoning and sensor data can be integrated within a single hybrid neural system. The hybrid system reacts as a unit to provide decisions (problem solutions) based on the simultaneous evaluation of data and rules. Discussed here is a model hybrid system based on the fuzzy cognitive map (FCM). The operation of the model is illustrated with the control of a hypothetical satellite that intelligently alters its attitude in space in response to an intersecting micrometeorite shower

    Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning

    Get PDF
    Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal

    Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning

    Get PDF
    Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap toward performing advanced reasoning tasks. In this position paper, we posit that neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal

    Abductive knowledge induction from raw data

    Get PDF
    For many reasoning-heavy tasks with raw inputs, it is challenging to design an appropriate end-to-end pipeline to formulate the problem-solving process. Some modern AI systems, e.g., Neuro-Symbolic Learning, divide the pipeline into sub-symbolic perception and symbolic reasoning, trying to utilise data-driven machine learning and knowledge-driven problem-solving simultaneously. However, these systems suffer from the exponential computational complexity caused by the interface between the two components, where the sub-symbolic learning model lacks direct supervision, and the symbolic model lacks accurate input facts. Hence, they usually focus on learning the sub-symbolic model with a complete symbolic knowledge base while avoiding a crucial problem: where does the knowledge come from? In this paper, we present Abductive Meta-Interpretive Learning (MetaAbd) that unites abduction and induction to learn neural networks and logic theories jointly from raw data. Experimental results demonstrate that MetaAbd not only outperforms the compared systems in predictive accuracy and data efficiency but also induces logic programs that can be re-used as background knowledge in subsequent learning tasks. To the best of our knowledge, MetaAbd is the first system that can jointly learn neural networks from scratch and induce recursive first-order logic theories with predicate invention

    LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and Reasoning

    Full text link
    Current high-performance semantic segmentation models are purely data-driven sub-symbolic approaches and blind to the structured nature of the visual world. This is in stark contrast to human cognition which abstracts visual perceptions at multiple levels and conducts symbolic reasoning with such structured abstraction. To fill these fundamental gaps, we devise LOGICSEG, a holistic visual semantic parser that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge. In particular, the semantic concepts of interest are structured as a hierarchy, from which a set of constraints are derived for describing the symbolic relations and formalized as first-order logic rules. After fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training. During inference, logical constraints are packaged into an iterative process and injected into the network in a form of several matrix multiplications, so as to achieve hierarchy-coherent prediction with logic reasoning. These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models. Extensive experiments over four datasets with various segmentation models and backbones verify the effectiveness and generality of LOGICSEG. We believe this study opens a new avenue for visual semantic parsing.Comment: ICCV 2023 (Oral). Code: https://github.com/lingorX/LogicSeg

    Neurosymbolic Reinforcement Learning and Planning: A Survey

    Full text link
    The area of Neurosymbolic Artificial Intelligence (Neurosymbolic AI) is rapidly developing and has become a popular research topic, encompassing sub-fields such as Neurosymbolic Deep Learning (Neurosymbolic DL) and Neurosymbolic Reinforcement Learning (Neurosymbolic RL). Compared to traditional learning methods, Neurosymbolic AI offers significant advantages by simplifying complexity and providing transparency and explainability. Reinforcement Learning(RL), a long-standing Artificial Intelligence(AI) concept that mimics human behavior using rewards and punishment, is a fundamental component of Neurosymbolic RL, a recent integration of the two fields that has yielded promising results. The aim of this paper is to contribute to the emerging field of Neurosymbolic RL by conducting a literature survey. Our evaluation focuses on the three components that constitute Neurosymbolic RL: neural, symbolic, and RL. We categorize works based on the role played by the neural and symbolic parts in RL, into three taxonomies:Learning for Reasoning, Reasoning for Learning and Learning-Reasoning. These categories are further divided into sub-categories based on their applications. Furthermore, we analyze the RL components of each research work, including the state space, action space, policy module, and RL algorithm. Additionally, we identify research opportunities and challenges in various applications within this dynamic field.Comment: 16 pages, 9 figures, IEEE Transactions on Artificial Intelligenc

    Relational Neural Machines

    Get PDF
    Deep learning has been shown to achieve impressive results in several tasks where a large amount of training data is available. However, deep learning solely focuses on the accuracy of the predictions, neglecting the reasoning process leading to a decision, which is a major issue in life-critical applications. Probabilistic logic reasoning allows to exploit both statistical regularities and specific domain expertise to perform reasoning under uncertainty, but its scalability and brittle integration with the layers processing the sensory data have greatly limited its applications. For these reasons, combining deep architectures and probabilistic logic reasoning is a fundamental goal towards the development of intelligent agents operating in complex environments. This paper presents Relational Neural Machines, a novel framework allowing to jointly train the parameters of the learners and of a First--Order Logic based reasoner. A Relational Neural Machine is able to recover both classical learning from supervised data in case of pure sub-symbolic learning, and Markov Logic Networks in case of pure symbolic reasoning, while allowing to jointly train and perform inference in hybrid learning tasks. Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems. The experiments show promising results in different relational tasks

    Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts

    Full text link
    Neuro-Symbolic (NeSy) predictive models hold the promise of improved compliance with given constraints, systematic generalization, and interpretability, as they allow to infer labels that are consistent with some prior knowledge by reasoning over high-level concepts extracted from sub-symbolic inputs. It was recently shown that NeSy predictors are affected by reasoning shortcuts: they can attain high accuracy but by leveraging concepts with unintended semantics, thus coming short of their promised advantages. Yet, a systematic characterization of reasoning shortcuts and of potential mitigation strategies is missing. This work fills this gap by characterizing them as unintended optima of the learning objective and identifying four key conditions behind their occurrence. Based on this, we derive several natural mitigation strategies, and analyze their efficacy both theoretically and empirically. Our analysis shows reasoning shortcuts are difficult to deal with, casting doubts on the trustworthiness and interpretability of existing NeSy solutions.Comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023
    corecore