1,125 research outputs found

    Performance analysis of text classification algorithms for PubMed articles

    Get PDF
    The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary developed by the US National Library of Medicine (NLM) for indexing articles in Pubmed Central (PMC) archive. The annotation process is a complex and time-consuming task relying on subjective manual assignment of MeSH concepts. Automating such tasks with machine learning may provide a more efficient way of organizing biomedical literature in a less ambiguous way. This research provides a case study which compares the performance of several different machine learning algorithms (Topic Modelling, Random Forest, Logistic Regression, Support Vector Classifiers, Multinomial Naive Bayes, Convolutional Neural Network and Long Short-Term Memory (LSTM)) in reproducing manually assigned MeSH annotations. Records for this study were retrieved from Pubmed using the E-utilities API to the Entrez system of databases at NCBI (National Centre for Biotechnology Information). The MeSH vocabulary is organised in a hierarchical structure and article abstracts labelled with a single MeSH term from the top second two layers were selected for training the machine learning models. Various strategies for text multiclass classification were considered. One was a Chi-square test for feature selection which identified words relevant to each MeSH label. The second approach used Named Entity Recognition (NER) to extract entities from the unstructured text and another approach relied on word embeddings able to capture latent knowledge from literature. At the start of the study text was tokenised using the Term Frequency Inverse Document Frequency (Tf-idf) technique and topic modelling performed with the objective to ascertain the correlation between assigned topics (unsupervised learning task) and MeSH terms in PubMed. Findings revealed the degree of coupling was low although significant. Of all of the classifier models trained, logistic regression on Tf-idf vectorised entities achieved highest accuracy. Performance varied across the different MeSH categories. In conclusion automated curation of articles by abstract may be possible for those target classes classified reliably and reproducibly

    Neural Representations of Concepts and Texts for Biomedical Information Retrieval

    Get PDF
    Information retrieval (IR) methods are an indispensable tool in the current landscape of exponentially increasing textual data, especially on the Web. A typical IR task involves fetching and ranking a set of documents (from a large corpus) in terms of relevance to a user\u27s query, which is often expressed as a short phrase. IR methods are the backbone of modern search engines where additional system-level aspects including fault tolerance, scale, user interfaces, and session maintenance are also addressed. In addition to fetching documents, modern search systems may also identify snippets within the documents that are potentially most relevant to the input query. Furthermore, current systems may also maintain preprocessed structured knowledge derived from textual data as so called knowledge graphs, so certain types of queries that are posed as questions can be parsed as such; a response can be an output of one or more named entities instead of a ranked list of documents (e.g., what diseases are associated with EGFR mutations? ). This refined setup is often termed as question answering (QA) in the IR and natural language processing (NLP) communities. In biomedicine and healthcare, specialized corpora are often at play including research articles by scientists, clinical notes generated by healthcare professionals, consumer forums for specific conditions (e.g., cancer survivors network), and clinical trial protocols (e.g., www.clinicaltrials.gov). Biomedical IR is specialized given the types of queries and the variations in the texts are different from that of general Web documents. For example, scientific articles are more formal with longer sentences but clinical notes tend to have less grammatical conformity and are rife with abbreviations. There is also a mismatch between the vocabulary of consumers and the lingo of domain experts and professionals. Queries are also different and can range from simple phrases (e.g., COVID-19 symptoms ) to more complex implicitly fielded queries (e.g., chemotherapy regimens for stage IV lung cancer patients with ALK mutations ). Hence, developing methods for different configurations (corpus, query type, user type) needs more deliberate attention in biomedical IR. Representations of documents and queries are at the core of IR methods and retrieval methodology involves coming up with these representations and matching queries with documents based on them. Traditional IR systems follow the approach of keyword based indexing of documents (the so called inverted index) and matching query phrases against the document index. It is not difficult to see that this keyword based matching ignores the semantics of texts (synonymy at the lexeme level and entailment at phrase/clause/sentence levels) and this has lead to dimensionality reduction methods such as latent semantic indexing that generally have scale-related concerns; such methods also do not address similarity at the sentence level. Since the resurgence of neural network methods in NLP, the IR field has also moved to incorporate advances in neural networks into current IR methods. This dissertation presents four specific methodological efforts toward improving biomedical IR. Neural methods always begin with dense embeddings for words and concepts to overcome the limitations of one-hot encoding in traditional NLP/IR. In the first effort, we present a new neural pre-training approach to jointly learn word and concept embeddings for downstream use in applications. In the second study, we present a joint neural model for two essential subtasks of information extraction (IE): named entity recognition (NER) and entity normalization (EN). Our method detects biomedical concept phrases in texts and links them to the corresponding semantic types and entity codes. These first two studies provide essential tools to model textual representations as compositions of both surface forms (lexical units) and high level concepts with potential downstream use in QA. In the third effort, we present a document reranking model that can help surface documents that are likely to contain answers (e.g, factoids, lists) to a question in a QA task. The model is essentially a sentence matching neural network that learns the relevance of a candidate answer sentence to the given question parametrized with a bilinear map. In the fourth effort, we present another document reranking approach that is tailored for precision medicine use-cases. It combines neural query-document matching and faceted text summarization. The main distinction of this effort from previous efforts is to pivot from a query manipulation setup to transforming candidate documents into pseudo-queries via neural text summarization. Overall, our contributions constitute nontrivial advances in biomedical IR using neural representations of concepts and texts

    Generating semantically enriched diagnostics for radiological images using machine learning

    Get PDF
    Development of Computer Aided Diagnostic (CAD) tools to aid radiologists in pathology detection and decision making relies considerably on manually annotated images. With the advancement of deep learning techniques for CAD development, these expert annotations no longer need to be hand-crafted, however, deep learning algorithms require large amounts of data in order to generalise well. One way in which to access large volumes of expert-annotated data is through radiological exams consisting of images and reports. Using past radiological exams obtained from hospital archiving systems has many advantages: they are expert annotations available in large quantities, covering a population-representative variety of pathologies, and they provide additional context to pathology diagnoses, such as anatomical location and severity. Learning to auto-generate such reports from images presents many challenges such as the difficulty in representing and generating long, unstructured textual information, accounting for spelling errors and repetition or redundancy, and the inconsistency across different annotators. In this thesis, the problem of learning to automate disease detection from radiological exams is approached from three directions. Firstly, a report generation model is developed such that it is conditioned on radiological image features. Secondly, a number of approaches are explored aimed at extracting diagnostic information from free-text reports. Finally, an alternative approach to image latent space learning from current state-of-the-art is developed that can be applied to accelerated image acquisition.Open Acces
    • …
    corecore