523 research outputs found

    Quantity and Quality: Not a Zero-Sum Game

    Get PDF
    Quantification of existing theories is a great challenge but also a great chance for the study of language in the brain. While quantification is necessary for the development of precise theories, it demands new methods and new perspectives. In light of this, four complementary methods were introduced to provide a quantitative and computational account of the extended Argument Dependency Model from Bornkessel-Schlesewsky and Schlesewsky. First, a computational model of human language comprehension was introduced on the basis of dependency parsing. This model provided an initial comparison of two potential mechanisms for human language processing, the traditional "subject" strategy, based on grammatical relations, and the "actor" strategy based on prominence and adopted from the eADM. Initial results showed an advantage for the traditional subject" model in a restricted context; however, the "actor" model demonstrated behavior in a test run that was more similar to human behavior than that of the "subject" model. Next, a computational-quantitative implementation of the "actor" strategy as weighted feature comparison between memory units was used to compare it to other memory-based models from the literature on the basis of EEG data. The "actor" strategy clearly provided the best model, showing a better global fit as well as better match in all details. Building upon the success modeling EEG data, the feasibility of estimating free parameters from empirical data was demonstrated. Both the procedure for doing so and the necessary software were introduced and applied at the level of individual participants. Using empirically estimated parameters, the models from the previous EEG experiment were calculated again and yielded similar results, thus reinforcing the previous work. In a final experiment, the feasibility of analyzing EEG data from a naturalistic auditory stimulus was demonstrated, which conventional wisdom says is not possible. The analysis suggested a new perspective on the nature of event-related potentials (ERPs), which does not contradict existing theory yet nonetheless goes against previous intuition. Using this new perspective as a basis, a preliminary attempt at a parsimonious neurocomputational theory of cognitive ERP components was developed

    Predicate Matrix: an interoperable lexical knowledge base for predicates

    Get PDF
    183 p.La Matriz de Predicados (Predicate Matrix en inglés) es un nuevo recurso léxico-semántico resultado de la integración de múltiples fuentes de conocimiento, entre las cuales se encuentran FrameNet, VerbNet, PropBank y WordNet. La Matriz de Predicados proporciona un léxico extenso y robusto que permite mejorar la interoperabilidad entre los recursos semánticos mencionados anteriormente. La creación de la Matriz de Predicados se basa en la integración de Semlink y nuevos mappings obtenidos utilizando métodos automáticos que enlazan el conocimiento semántico a nivel léxico y de roles. Asimismo, hemos ampliado la Predicate Matrix para cubrir los predicados nominales (inglés, español) y predicados en otros idiomas (castellano, catalán y vasco). Como resultado, la Matriz de predicados proporciona un léxico multilingüe que permite el análisis semántico interoperable en múltiples idiomas

    Towards a Computational Model of Actor-Based Language Comprehension

    No full text
    Neurophysiological data from a range of typologically diverse languages provide evidence for a cross-linguistically valid, actor-based strategy of understanding sentence-level meaning. This strategy seeks to identify the participant primarily responsible for the state of affairs (the actor) as quickly and unambiguously as possible, thus resulting in competition for the actor role when there are multiple candidates. Due to its applicability across languages with vastly different characteristics, we have proposed that the actor strategy may derive from more basic cognitive or neurobiological organizational principles, though it is also shaped by distributional properties of the linguistic input (e.g. the morphosyntactic coding strategies for actors in a given language). Here, we describe an initial computational model of the actor strategy and how it interacts with language-specific properties. Specifically, we contrast two distance metrics derived from the output of the computational model (one weighted and one unweighted) as potential measures of the degree of competition for actorhood by testing how well they predict modulations of electrophysiological activity engendered by language processing. To this end, we present an EEG study on word order processing in German and use linear mixed-effects models to assess the effect of the various distance metrics. Our results show that a weighted metric, which takes into account the weighting of an actor-identifying feature in the language under consideration outperforms an unweighted distance measure. We conclude that actor competition effects cannot be reduced to feature overlap between multiple sentence participants and thereby to the notion of similarity-based interference, which is prominent in current memory-based models of language processing. Finally, we argue that, in addition to illuminating the underlying neurocognitive mechanisms of actor competition, the present model can form the basis for a more comprehensive, neurobiologically plausible computational model of constructing sentence-level meaning

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing

    Empirical studies on word representations

    Get PDF
    One of the most fundamental tasks in natural language processing is representing words with mathematical objects (such as vectors). The word representations, which are most often estimated from data, allow capturing the meaning of words. They enable comparing words according to their semantic similarity, and have been shown to work extremely well when included in complex real-world applications. A large part of our work deals with ways of estimating word representations directly from large quantities of text. Our methods exploit the idea that words which occur in similar contexts have a similar meaning. How we define the context is an important focus of our thesis. The context can consist of a number of words to the left and to the right of the word in question, but, as we show, obtaining context words via syntactic links (such as the link between the verb and its subject) often works better. We furthermore investigate word representations that accurately capture multiple meanings of a single word. We show that translation of a word in context contains information that can be used to disambiguate the meaning of that word
    corecore