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CHAPTER 1

Introduction

The goal of natural language processing (NLP) is the modeling of human

language from a computational perspective. By modeling, we have in mind

building computational approaches that can learn, understand and gener-

ate natural language, just as we humans do. NLP largely relies on some

theory of human languages, and at the same time, it can contribute to the

understanding of the human language through its analyses. The main fo-

cus of NLP are difficult, real-life problems such as machine translation,

spoken dialogue, and analysis of vast amount of online data, for example

by mining social media for information about health or about attitude of

consumers towards products (Hirschberg and Manning, 2015). Whatever

the end application of NLP, analyses on several linguistic levels are usu-

ally required, including morphological, syntactic, semantic and pragmatic

levels. What makes these tasks hard (especially for the computer) is that

the ambiguity is prevalent in human language, and it often requires deep

knowledge about the world to be properly resolved.

The work presented in this thesis focuses on the lexical semantic part of

analysis. It addresses the question of how we can represent words so that

we can meaningfully compare them computationally and so that the rep-

resentations can be of value in solving practical NLP problems. The word

1



2 Chapter 1. Introduction

representations can be obtained in several ways; they can be crafted by hu-

mans or learned from corpora. The central idea common to the studies of

all types of word representations1 is generalization:

If the task is simply to remember accurately a set of unrelated

items, the generalization effects are harmful and are called

interference. But generalization is normally a helpful phe-

nomenon. It allows us to deal effectively with situations that

are similar but not identical to previously experienced situa-

tions.

This quote from Rumelhart et al. (1986) in “Parallel Distributed Process-

ing”, their seminal, cognitive-science oriented work on neural network

methods, captures well the very purpose of using word representations.

Although the kind of representations Rumelhart et al. discuss in their work

is defined to include only the distributed, i.e. dense low-dimensional rep-

resentations, we believe that the above description of generalization ap-

plies to the study of all types of word representations. In processing of

language, new, previously unseen situations constantly arise; this is true

even for models built on tremendously large amounts of textual data (we

expand on this in Chapter 2). Yet, with the aid of word representations, we

can make decisions in an unseen situation by relating it to a similar situa-

tion that was encountered previously. This is possible because word repre-

sentations allow us to generalize, i.e. relate similar words to each other.

All in all, we work with four distinct methods of obtaining word repre-

sentations. Each corresponds to a thesis chapter. A more precise diagram

of correspondences between the representation methods, NLP problems

and chapters can be found in Figure 4.1 on page 36. Although we explore

the methods mostly with different research questions and evaluation tasks

in mind, we gain an understanding of advantages and disadvantages of

each of these methods on a higher level as well. We mention these as the

discussion unfolds throughout the following chapters, and we reflect upon

1And in NLP more generally, see for example Daelemans and van den Bosch (2005).
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them succinctly in the concluding section. We now address the organiza-

tion of the thesis and the research questions more specifically.

The thesis is thematically organized in four parts. There are three parts

consisting of altogether four chapters in which we present empirical stud-

ies involving word representations. These main parts are preceded by

Part I, in which we lay the theoretical groundwork for the subsequent parts.

In each of the three parts, we deal with a different research question, and

work within distinct word representation frameworks. More concretely, in

Part II we are asking ourselves the following question:

Q1 Do word representations obtained from a human-built lexical inven-

tory effectively resolve the lexical sparseness problem in syntactic

parsing?

Compared to the parts that follow, the approach here is unique in that the

focus is not on learning word representations as these are already given,

but rather on how to apply the information in a purposeful way to a spe-

cific parser for Dutch. Part III that follows represents the largest unit of the

thesis. Here, we estimate the word representations from data, and specif-

ically study the role of syntax in learning, particularly in contrast to tech-

niques that rely on word sequences. The research question in this part is

therefore:

Q2 How can a syntax-based definition of word context lead to better

word representations?

We examine two ways of incorporating syntactic information into models

of word representations: the first is to include only bare syntactic struc-

tures, thereby transforming the linear definition of context predominant in

distributional learning (Chapter 6); the second includes the syntactic struc-

ture together with syntactic functions (labels), in line with a hypothesis that

word contexts play different roles depending on their syntactic functions

(Chapter 7). In these chapters, two different approaches are used to in-

duce word representations, namely word clusters and latent-variable mod-

els, which lead to word representations with quite different characteristics,
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although the approaches themselves are theoretically related, and the sec-

ond can be seen as an extension of the first. Along the way, we also examine

the distinction between generic representations (one per word type) and

context-dependent, multi-sense representations, which can represent each

textual occurrence of the same word type differently. In Part IV, we go on

to propose a method for learning multi-sense representations in the word

embedding framework. The main emphasis in this part can be phrased as:

Q3 Can bilingual, parallel corpora be employed for better multi-sense

word representations?

Thus, we use supervisory signal available from parallel corpora (transla-

tions) in building a sense predictor for a given language, and use that pre-

dictor in the learning of multi-sense word embeddings for the same lan-

guage. Just as in the previous part, these representations have the potential

to assign distinct word representations depending on the context. Com-

pared to other parts of the thesis in which word representations are stud-

ied only monolingually involving either English or Dutch, we approach

the representation learning in Part IV from a multilingual perspective.

Chapter guide

Chapter 2 lays the background on lexical semantics with a focus on distri-

butional definition of meaning and polysemy. We motivate the use of word

representations through discussion and illustration of lexical sparseness.

We introduce representation learning from a theoretical standpoint, and

position the word representation learning in the larger endeavor of super-

vised machine learning. Chapter 3 introduces the various frameworks for

learning word representations, but limiting the overview only to those four

used in this thesis. Chapter 4 presents an overview of intrinsic and extrin-

sic applications intended to measure the quality of word representations.

Similarly, we focus only on those employed in the thesis. We introduce

each application including an example, describe the available datasets and

motivate the use of word representations in that application.
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Chapter 5 presents an empirical study of lexical sparseness Q1in a syn-

tactic parser for Dutch. We address the issue specifically by altering the

parsing component that relies on bilexical preferences for disambiguation.

The concept classes obtained from a Dutch wordnet are applied at different

levels of generality, and the effect on the parser’s accuracy is measured.

Q2Chapter 6 deals with distributional learning of word representations

with a word clustering approach. We take the well-known Brown cluster-

ing algorithm and adapt its sequential nature to work with dependency

structures obtained with a parser. We investigate the quality of the re-

defined algorithm by evaluating against human-built wordnet classes for

Dutch and English. We find the approach to work especially well for Dutch,

with the advantages observed across different possible parametrizations of

the clustering method. In Chapter 7, we include syntactic functions as an

additional source of information available to the model. We use variants

of sequential and tree-structured hidden Markov models to induce word

representations. We discuss how such models—in contrast to the previous

chapter—provide context-sensitive representations through a soft relation-

ship between a word type and its semantic class(es). We explore the mod-

els’ flexibility regarding inference and decoding. We evaluate the mod-

els extrinsically and show that the model with syntactic functions—when

compared to other hidden Markov models, the clustering representations

from the previous chapter, as well as word embeddings—is advantageous

mostly for Dutch, but not for English.

Q3Chapter 8 builds on a well-known embedding model to account for pol-

ysemy and situate the learning in a multilingual context. We present an

autoencoding architecture which jointly captures latent sense distribution

and learns the parameters of the embedding model. We use word-aligned

parallel corpora as a signal that can help to estimate a more reliable sense

predictor in our model. We find that our approach is beneficial on tasks

measuring various kinds of semantic similarity. On an extrinsic POS tag-

ging task, we obtain mixed results. We also examine the effect of the iden-

tity and the family of the second language used in learning.
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Publications

This thesis is based on the following publications:

• Šuster, S. and van Noord, G. (2013). Semantic mapping for lexical

sparseness reduction in parsing. In ESSLLI’13 Workshop on Extrinsic

Parse Improvement.

• Šuster, S. and van Noord, G. (2014). From neighborhood to parent-

hood: the advantages of dependency representation over bigrams in

Brown clustering. In COLING.

• Šuster, S., van Noord, G., and Titov, I. (2015). Word representations,

tree models and syntactic functions. arXiv preprint arXiv:1508.07709.

• Šuster, S., Titov, I., and van Noord, G. (2016). Bilingual learning

of multi-sense embeddings with discrete autoencoders. In NAACL-

HLT.

Some parts may also refer to the following:

• Šuster, S. (2012). Resolving PP-attachment ambiguity in French with

distributional methods. Master’s thesis, University of Groningen and

University of Lorraine.

• Hürlimann, M., Weck, B., van den Berg, E., Šuster, S., and Nissim,

M. (2015). GLAD: Groningen Lightweight Authorship Detection. In

Working Notes Papers of the CLEF 2015 Evaluation Labs.

• Šuster, S. (2015). An investigation into language complexity of World-

of-Warcraft game-external texts. arXiv preprint arXiv:1502.02655.

Software

• dep-brown-cluster: Available at

http://github.com/rug-compling/dep-brown-cluster. This is a syntactic

extension of the Brown et al. 1992 clustering algorithm.
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• hmm-reps: Available at http://github.com/rug-compling/hmm-reps. In-

ducing word representations from latent-variable sequential and un-

labeled or labeled tree models.

• bimu: Available at http://github.com/rug-compling/bimu. Inducing

multi-sense word representations bilingually with discrete-state au-

toencoders.

• align2tex: Available at http://github.com/rug-compling/align2tex.

Visualizing word alignments. It creates a LaTeX source from raw files

produced by a word aligner.
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Background
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CHAPTER 2

Representing words

This thesis is about word representations. We study existing methods for

inducing word representations and build on these to develop novel ap-

proaches by focusing on syntax and multilinguality. The word represen-

tations are an important theme in natural language processing (NLP) be-

cause they make it possible to think of words in terms of their semantic

relatedness, which allows abstracting away from word occurrences in text

and generalizing in a way that is beneficial in reducing lexical sparseness

encountered in practical NLP applications.

The methods described in this thesis rest on the principle that the mean-

ing of words can be effectively represented with mathematical objects such

as categorical identifiers of semantic clusters to which words belong, or

possibly with more complex and powerful vectorial representations. Word

representations can be obtained or learned with various methods and us-

ing different definitions of input representation and context. They possess

different properties in terms of representational capacity and, if they are

induced from data, also in terms of computational complexity. Often, once

we have successfully obtained the representations, we can apply them to

test datasets in more than one way, depending on the properties of the un-

derlying representation method. Here, we approach word representations

11
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from within various frameworks. We examine the importance of word con-

text definition primarily through the role of syntax in models of word rep-

resentations; we build representationally richer models that are capable

of handling polysemy; we induce models in a multilingual setting; and

we study the ways of applying word representations and quantifying their

quality in NLP tasks. In this chapter, we begin by discussing some basic

principles such as capturing word meaning distributionally, why we need

word representations, and how representation learning can be seen as a

constituent part of supervised machine learning.

The semantic representation of language is a wide topic in NLP—cf. the

coverage in Jurafsky and Martin (2008)—that ranges from word-level se-

mantics, the composition of word representations into higher-order groups

of phrases and sentences, to model-theoretic semantics and semantics of

events and frames, to name just a few important directions. In this the-

sis, we only focus on word-level representations, and we will be asking the

question how to construct word representations in such a way that they ei-

ther approximate some human-encoded lexical semantic knowledge—this

is the case when comparing against human-built ontologies and semantic

similarity benchmarks—or, that they help improve a downstream NLP sys-

tem, such as one for annotating words with parts of speech; a system for

recognizing organization and location mentions; and an analyzer of seman-

tic frames and its participants in the sentence. Sometimes, word represen-

tations are granted, and an approach might consist of simply using already

existing hand-crafted semantic classes. In that case, we would like to solve

the question of assigning words encountered in the text to some classes in

the lexical resource. And since the domain of word-level semantics, like

many domains in NLP, is subject to ambiguities, this process is often not

trivial.

An obvious question arising is how to define word meaning and word

similarity. We will adhere to the distributional hypothesis (Firth, 1957; Har-

ris, 1954) according to which the meaning of a word is related to the con-

texts in which it occurs. So, two words that occur in similar textual con-
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texts are said to have similar meaning. One of the important challenges

we will be addressing in this thesis is what role the definition of context

has in finally obtained word representations. Obviously, a single word can

have different meanings depending on the context. We will find it useful

to refer to such cases as different senses of a word: These are normally

taken to be discrete representations of a word’s meaning (Cruse, 1986). We

can illustrate this with the time-worn example of bank that can be charac-

terized with two radically different senses, one of a financial institution

(example (2.1)) and one of a raised area of land (example (2.2)):

(2.1) The fear of many people is to one day be in a bank which is being

robbed.

(2.2) A man was fishing on the opposite bank.

Here, the two senses are quite unrelated and would normally be classified

as a case of homonymy. When the senses are related, we call the relation-

ship polysemy. Such is the case for the blood bank and sperm bank sense

(example (2.3)), which is related to the financial institution sense in that it

is a repository for some entities (Jurafsky and Martin, 2008):

(2.3) He submitted a detailed plan for setting up a blood bank at the hos-

pital.

For our purposes, the capability to distinguish between homonymy and

polysemy in an automated way will not be important. Also, this distinction

is in practice frequently not clear-cut, as shown for example in lexicography

(Atkins and Rundell, 2008). Relations in which senses participate can be of

different kinds. We will use the term semantic relatedness to mean any

form of established relations, like synonymy, meronymy, antonymy, hypo-

/hypernymy etc. (Turney and Pantel, 2010; Cruse, 1986).

The reason for adopting word representations is motivated by the gen-

erally accepted knowledge that in computational processing of the lan-

guage, we need more than just bare word identities—we require additional

information that would tell us what the words mean and how they relate

to each other. Put differently, we need a way of bridging the gap from the
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surface word level to the knowledge of the world that is needed to solve

many higher-level natural language processing tasks.

2.1 Overcoming lexical sparseness

We now explain the problem of lexical sparseness, which is one of the cen-

tral challenges in NLP. For this, we use the language modeling task as an

illustration. In general, the goal of language modeling is to estimate the

probabilities for all strings in the language. This is crucial for any task in

which we need to identify words from a noisy input, or need to generate

or rank word sequences, to name just a few applications. Let us take as

example the four-grams having the pattern known for his ∗. As shown in

Figure 2.1, based on a relatively small corpus of 1 million words, we find

32 candidates that could fill in the empty slot ∗. However, as much as 30 of

them only occur once, which makes it difficult to construct reliable proba-

bility estimates. Another problem is that many candidate words have not

been encountered in this small corpus at all. We can observe that this is

the case by doubling the size of the corpus and repeating the counting

(Figure 2.2). Several new words are now the possible candidates of the

empty slot. Also, certain words from Figure 2.2 have now received more

reliable counts, but the form of the distribution stays approximately the

same in this case, and follows roughly the Zipfian distribution of words1.

Note however, that even though we have increased the corpus size, the

great majority of words are still hapax legomena, and we can still think of

other legitimate word fillers that have not been observed yet. If we were

to construct maximum-likelihood estimates for the words in the second

list, we would assign some positive value to e.g. p(role|known, for,his),

yet would need to give a probability of zero to p(movie|known, for,his), be-

cause “movie” was not encountered in the corpus. Regardless of how large

the corpus, many words or word sequences will occur very infrequently or

1According to one of Zipf’s laws (Zipf, 1949), a word’s frequency is inversely pro-

portional to its frequency rank.
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will not be seen at all, which poses a challenge in NLP applications such

as word-sense disambiguation (Ide and Véronis, 1998) and parsing (Bikel,

2004; van Noord, 2007). We will refer to the problem which we have just

introduced with the above example as the data or lexical sparseness problem,

that is, the fact that the data are obtained from a particular finite corpus,

and that for many model parameters, an NLP system will have zero or very

infrequent examples (Dagan et al., 1993; Jurafsky and Martin, 2008; Man-

ning and Schütze, 1999).

One possibility to get around this problem could be to adopt one from

the series of smoothing techniques that address the poor estimates of the

maximum likelihood in language modeling. Another approach2 would be

to consider word generalizations in the form of word classes, following the

class-based modeling of Brown et al. (1992), which was originally developed

to deal precisely with sparsity in language modeling. Such a class-based

approach works by representing words with hard classes, or clusters, ob-

tained from distributional properties of the corpus; here, a word can be-

long to exactly one (semantic) class. We will discuss the details of a class-

based approach to word-representation learning in Chapter 3 and Chap-

ter 6. At this point, it is useful to note that by having access to semantic

classes, we can use the counts of another word that is related and occurs in

the same class as the word for which the relevant statistics are missing. For

example, although we can not estimate p(movie|known, for,his) from the

data (Figure 2.2), we can use p(film|known, for,his) as a reasonable sub-

stitute. Yet, to be able to generalize in this way, we need to have access to

semantic classes or some other way which would let us relate words that

are semantically similar, like “movie” and “film” above.

2In practice, a common way of alleviating the sparsity is also to use abstraction in

the form of pre-processing (e.g. down-casing, lemmatization, substituting numbers and

one-time word occurrences with special symbols) and parts of speech (Smith, 2011).

The downside of the first is that it is ad hoc and might need to be altered depending on

the dataset or the language used. The downside of the second is that POS categories

might be too coarse and would excessively abstract away from the word level.
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Figure 2.1: Frequency distribution of words following the sequence

known for his. The statistics gathered from the first 1 million words of

Wikipedia (Shaoul and Westbury, 2010).
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2.2 Applicability of word representations

We will now discuss how the word representations are used and how their

quality is evaluated. The learning of word representations is not an end

in itself, and most commonly we would like the learned representations

to contribute to a concrete NLP application. To measure the quality and

compare the word representations, one possibility is then to use the NLP

task we are ultimately interested in, and measure the effect on the perfor-

mance. This type of evaluation is called extrinsic. The evaluation can also

be intrinsic3, meaning that testing is performed independently of a given

task. For this purpose, semantic similarity benchmarks or human-built

lexical inventories and ontologies are often used. Overall, the advantage

of intrinsic evaluation lies in its ability to provide a general account of

the quality of representations that is not task specific and is cheap to ob-

tain; it can also help separate out the strong and the weak aspects of word

representations, and describe specific meaning properties captured when

using dedicated benchmarks. Additionally, intrinsic evaluation in word-

representation learning often goes hand in hand with qualitative evalua-

tion, in which an attempt is made to improve the representation model in-

trospection and enhance human interpretability. For example, in the case

of vectorial representations, similarities can be measured and words can

be related graphically in a two-dimensional space. The disadvantage of

intrinsic evaluation is that the outcome might not necessarily correspond

to the performance one would obtain in an extrinsic task. Another related

reservation is that intrinsic evaluation often depends on human judgments

and human-built categories, but optimizing for them might not necessarily

lead to improvements in an end application.

We now try to generalize the application of word representations in

downstream NLP tasks such as POS tagging, named-entity recognition,

parsing, sentiment analysis, question answering etc. In this context, we

can think of word-representation learning as feature learning whose suc-

3The in vivo/in vitro terminology is sometimes also encountered in the literature.
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cess we try to evaluate on a particular task. A supervised machine learn-

ing predictor can use the learned features as input for the learning of its

own parameters (Bengio et al., 2013). It might also include other, manually-

coded features to capture salient effects for a particular task (for example, a

salient feature in named-entity recognition is word capitalization). Still, es-

pecially in neural network-based approaches, it is widespread to use word

representations as initializers at the input layer without any other hand-

engineered features (Goodfellow et al., 2016). One property of representa-

tion learning that distinguishes it from other machine learning tasks like

classification is the lack of a clear training objective, which is far-removed

from the ultimate objective to learn a classifier of some sort (Bengio et al.,

2013). Larochelle et al. (2007) and Bengio et al. (2013)4 emphasize the fact

that many classification tasks are made complex by an interaction of factors

arising from complex data, like encountered in image or natural language

processing; the role of representations in these tasks is therefore also to dis-

entangle the factors of variation. In NLP, the factors of variation behind the

produced texts in the language can be variables such as topics, domains,

author characteristics that include sociolinguistic variables like age, gen-

der and place, as well as more pragmatic variables like space constraints

when writing texts.

2.3 Formulating the representation learning problem

Although we mainly work in this thesis with word representations as some

entities to be learned, we keep a broad perspective and include also those

categories that were hand crafted, as long as they fulfill the goal of provid-

ing a generalization that will be useful in downstream tasks. One repre-

sentative of the latter category are the categories and relationships from

human-constructed lexical inventories, e.g. wordnets. Despite the fact that

the categories are given, one still needs to find the right level of generaliza-

4Note that their view of representation learning is much narrower than ours, and

encompasses only the representations rooted in probabilistic graphical models and

neural networks.
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tion for these representations and design a mapping between the tokens

encountered in the corpus and the existing semantic categories. We put

such an approach in practice in Chapter 5.

We now turn to those representations that are learned from data. We

have used the word learning already at several places in the thesis. We

borrow its definition from Mitchell (1997):

A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if

its performance at tasks in T, as measured by P, improves with

experience E.

By learning of word representations, we therefore simply mean the op-

timization of parameters of a word representation model in a way that

leads—based on training corpora—to increased performance on an intrin-

sic or extrinsic task.

Many approaches that use word representations in downstream NLP

tasks can be often characterized as instances of semi-supervised learning.

This is the case whenever the task can be decomposed in unsupervised

learning of word representations (from unlabeled data) followed by stan-

dard supervised learning (Huang et al., 2014). The used representations

can be task-independent in the sense that they can be applied to any task

once learned. However, it is true that their success on these tasks can

largely depend on the domains of the texts on which they are trained, and

on the domains on which they are tested.

Following Huang et al. (2014), we can now specify the representation

learning problem a bit more formally. Recall that in a traditional super-

vised machine learning task, we want to optimize a hypothesis on labeled

training data and use it to make predictions on previously unseen test data.

By optimization of a hypothesis we mean the learning of model parame-

ters that is itself based on features, or data representation. For a certain

learning problem, we denote the instance space as X and the distribution

or the domain from which X is drawn as D. Let Z be the space of pos-
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L(x, r, f, h)

Figure 2.3: Representation learning as part of supervised machine learn-

ing.

sible labels for an instance, and let f : X → Z be a target function that

assigns each instance its corresponding target (label). In POS tagging, for

example, the instance set X is the set of all sentences and Z is the space of

POS sequences (including POS labels like NN, for noun) that get assigned

to the sentences by the target function f . Each position in the sentence is

normally represented as a vector whose values correspond to values of fea-

tures. We also assume the existence of a representation function r : X → Y ,

which is a mapping from instances to the feature space Y , which is typi-

cally high dimensional. We refer to the dimensions of Y as features. Given

the training examples, the overarching goal is to select a hypothesis h from
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the space of possible hypothesesH , so that some loss function which mea-

sures the cost of the mismatch between the target function and the hypoth-

esis is minimized. Here, we include in this formulation also the learning

of representations:

r∗, h∗ = argmin
r∈R,h∈H

Ex∼D(X)L(x, r, f, h), (2.1)

where r∗ and h∗ are the best representation and hypothesis, respectively,

identified by the optimization step that minimizes the expectation E of the

lossL(x, r, f, h) for all instancesxdrawn fromD(X). Since the predictions

depend on the representation function, namely h(r(x)), a good representa-

tion is the one that leads to better predictions and consequently to a smaller

expected loss5. At test time, r∗ and h∗ can be used to obtain predictions on

previously unseen data. For example, r∗ would establish a representation

in the feature space for a sentence that we would like to tag, and h∗ would

assign the POS labels to each of the words in the sentence. A diagram of

how supervised training relates to representation learning is shown in Fig-

ure 2.3. In training, we are comparing by means of a loss function (shown

as the purple oval-shaped node) two different outputs: the output of the

machine learning predictor (“prediction h(r(x))”) and the output of the

target function that represents the gold-annotated labels. The underlying

input x is the same in both cases. For the machine-learning part on the

left, the prediction is a result of applying a hypothesis h (green diamond-

shaped node) to a learned transformation r of the input datax to the feature

space.

5In the context of POS tagging, the loss could, for example, simply indicate the

number of words tagged differently in the target f(x) and the hypothesis h(r(x)).
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Selected approaches to word

representations

In this chapter, we describe different frameworks for obtaining word rep-

resentations. We will not attempt to cover comprehensively all existing

ways of representing words, but we will focus on those research directions

that are relevant for the subsequent chapters of the thesis. We thus give a

high-level overview of concept-based semantic representations, word clustering

and latent-variable models, and word embeddings, but we omit, for example,

the distributional semantic models as described in Turney and Pantel (2010),

Sahlgren (2006) and Šuster (2012), which are an important research direc-

tion that in its narrow definition includes high-dimensional vector space

models and dimensionality reduction techniques that can be applied to

them (Deerwester et al., 1990; Lund and Burgess, 1996; Landauer et al.,

2007).

As we have mentioned in the previous chapter, the first framework,

which we describe in section 3.1, is special in that it is the only one in which

we assume that the word classes are given, or put differently, they are not

learned distributionally. In the frameworks of clustering and latent vari-

able models, and that of word embeddings, the word representations as

23
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well as optionally the underlying word sense assignment are obtained or

estimated from data. Since the true outputs are not given for any training

examples, we call this setting unsupervised. For some unsupervised applica-

tions, the outputs could be obtained—perhaps at great expense—to create

an annotated dataset and then evaluate the learned predictor. One example

of such an application is unsupervised grammar induction, in which the

goal is to infer grammatical structure for sentences without the use of a tree-

bank (Smith, 2011), but the evaluation can be based on a treebank. How-

ever, in other cases like word class induction, “correct” solutions might not

be knowable by humans, and the evaluation is often conducted on some

larger extrinsic task.

In the next sections, we present the different frameworks in the order

that they follow throughout the thesis. These are not intended to serve as

a review of all the work done in each field, as we review the works related

to ours in individual chapters. They are meant rather as an elementary

introduction on which we build in the following chapters.

3.1 Concept-based semantic classes

Concept-based semantic classes, shortly concept classes, are word classes

obtained from manually-constructed lexical inventories, ontologies, dictio-

naries, or other machine-readable linguistic resources. Examples of such

resources include wordnets1 for numerous languages, knowledge bases

like Freebase2, frame-semantic resource Framenet3 and Roget’s thesaurus

(Roget, 1911).

A concept class is a grouping of word types sharing the same concept.

Taking wordnets as an example, a synset is a concept class that groups syn-

onymous word-POS pairings in a single set, and records relations between

the sets or its members, thus forming a hierarchy. It is possible that a sin-

1We do not capitalize the word when we refer to the resource in a generic, language-

independent way.
2www.freebase.com
3http://framenet.icsi.berkeley.edu



3.1. Concept-based semantic classes 25

(n) partner, spouse, better half, . . .synsetpartner

personsemantic_typepartner

(n) relative, relation (n) significant other, . . .

. . .(n) wife, married woman (n) polygamist
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Figure 3.1: Example of concept classes and hypernymy in English Word-

Net for one of the senses of the noun partner.

gle word (more precisely, word-POS pairing) simultaneously belongs to

several concept classes. The usage of concept classes is closely connected

to the issue of lexical ambiguity, which is the object of research of word

sense disambiguation, i.e. establishing the mapping between the observa-

tions in a corpus and the concept class entries in a lexical resource (Ide

and Véronis, 1998). In feature engineering for a ML predictor, the use of

concept classes is widespread; and it is also common to use related classes

such as the ones obtained through hypo-/hypernymy relations (Faruqui
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and Dyer, 2015). We give an illustration of a wordnet hierarchy based on

a concrete noun in Figure 3.1. Wordnets like WordNet for English (Miller,

1995; Fellbaum, 1998) and Cornetto for Dutch (Vossen et al., 2013) also in-

clude semantic types (sometimes also called semantic fields or lexicogra-

pher classes), which can be used to incorporate more coarse-grained se-

mantic categories in an NLP system. The associated task of mapping word

occurrences to semantic types is usually referred to as supersense tagging

(Ciaramita and Altun, 2006). Examples of semantic types are the “ani-

mal” type for nouns and “emotion” for grouping verbs describing feelings.

Around 20 such types exist in Cornetto, and 26 in English WordNet.

Concept classes are widely used in feature engineering for supervised

ML tasks, examples being syntactic parsing (Agirre et al., 2008) and frame-

semantic parsing (Das et al., 2014). They can also serve as constraints in

distributional learning of word representations (Faruqui et al., 2015; Xu

et al., 2014; Yu and Dredze, 2014). Research has been conducted also in the

opposite direction, so that distributional methods are used to augment lin-

guistic resources like wordnets with new synonyms and relations (Hearst

and Schütze, 1996; Harabagiu et al., 1999; Widdows, 2003).

Our concrete use of these resources in this thesis amounts to adopting

Cornetto, a wordnet for Dutch (further details in section 5.2.3), and the

concept classes extracted from it for obtaining word representations that

help deal with lexical sparsity in syntactic parsing of Dutch. Furthermore,

we also use both Cornetto and the English WordNet when evaluating the

quality of induced word clusters in Chapter 6. In that case, the success

of inducing word clusters is measured as the degree to which the clusters

match the reference concept classes created by humans.

3.2 Clustering and probabilistic latent-variable models

Word clustering describes a family of approaches for grouping distribu-

tionally similar words together. As this is an unsupervised setting, the ob-

tained groups do not carry names. A common scenario is to simply use the
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identifiers of clusters to which words belong as features in a ML task. The

literature normally distinguishes between clustering algorithms depend-

ing on the type of induced structure (Duda et al., 1973). If the structure

is flat, the algorithm is called partitional. If it follows a structure in such

a way that we can relate one cluster to another, and so that some clusters

are specializations of more general clusters, the algorithm is categorized as

hierarchical. The hierarchical approaches can be further divided in agglom-

erative and divisive approaches, depending on whether the structure is ob-

tained in a bottom-up manner, i.e. starting with individual words and then

merging them to form clusters (agglomerative), or in a top-down manner,

in which all words initially share a single cluster, but would be subdivided

(hence, divisive) as the training proceeds.

Brown clustering (Brown et al., 1992), the method used in this thesis, is

a well-known representative of a hierarchical agglomerative method that

relies on counts of bigrams obtained from a corpus. The induced structure

is a tree, and the word clusters are located at the leaves. The leaves closer to

each other are more similar than those further away. The tree structure also

conveniently allows obtaining coarser clusters by choosing nodes higher

in the tree to achieve more general representations. We describe the algo-

rithm in detail in Chapter 6. Some example clusters are shown in Figure 3.2,

forming part of a subtree from a larger tree containing 1000 word clusters

induced from Dutch tweets4.

One of the most widely used and studied unsupervised algorithms that

performs clustering of any data instances, not just words, is the k-means al-

gorithm. The idea is to represent data characteristics with feature vectors

and to induce clusters of similar data points that partition the data. This

is done by representing clusters with their prototypical vectors, called cen-

troids. We begin with a guess of cluster centroids, and assign the feature

vectors to their closest centroids. We then move the centroids to the aver-

age of data points in a cluster. This procedure is performed iteratively until

the cluster centroids stop moving. In k-means, the number of partitions k

4http://www.let.rug.nl/gosse/Ngrams/brown.html
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∗1

∗11

∗111
gefeliciteerd,

smakelijk,
proost,

. . .

∗110
bedankt,
chapeau,

superbedankt,
. . .

∗10
dankje,
thanks,
thnx,

mooizo,
. . .

∗0

∗01
sorry,
srry

isgoed
laatmaar,

. . .

∗00
grapje,
geintje
foutje,

. . .

Figure 3.2: An excerpt from a Brown clustering tree induced from 6 mil-

lion Dutch tweets. English translations are: grapje, geintje→ joke, foutje→
mistake, isgoed→ it’s OK, laatmaar→ nevermind, dankje→ thanks, mooizo→
nice, bedankt→ thank you, chapeau→ hats off, gefeliciteerd→ congratulations,
smakelijk→ bon appetit, proost→ cheers.

needs to be specified by the user. K-means can be seen as a general cluster-

ing algorithm that leaves the feature construction, i.e. the exact specifica-

tion of what each feature dimension represents, to the user. For example,

in word clustering, different context types would lead to different feature

vectors used as input to clustering. We refer the reader to Manning et al.

(2008) for a detailed overview of this clustering algorithm and its applica-

tions.

Unlike in Brown clustering in which the cluster membership of words

is defined by a Boolean function (often referred to as hard clustering), it is

possible to learn a cluster membership function that is probabilistic, such
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as in Pereira et al. (1993) and Rooth et al. (1999), for example. In their work,

the goal is to hierarchically group nouns according to their conditional verb

distributions. In this way, they represent cluster membership as a proba-

bility distribution over clusters (or senses), p(c|w). Such a method can be

described as soft clustering.

More generally, many probabilistic models associate latent variables

with distributionally induced classes of interest and associate each word

(or another observed variable) with a probability distribution over those

classes. In probabilistic modeling, the latent variables represent random

variables whose values are not observed in the input data. In the context

of word representations, a latent variable can be introduced to capture the

sense of a word, either by taking a single value or a distribution over the

values to represent the word sense(s). A case in point is a Hidden Markov

model, which is based on two assumptions: First, the probability of a word

appearing depends only on its own semantic class, which is not observed in

the unsupervised case; second, the probability of a semantic class appear-

ing is dependent only on the previous semantic class. The model can be

adapted, though, so that the relationship between the classes is not tempo-

ral or sequential, but for example structural. We will introduce methods

belonging to this family of models with varying definitions of class rela-

tionship in Chapter 7.

To obtain word representations from an induced latent-variable model,

and specifically in a Hidden Markov model, inference is required. This

finds the most probables states given the observations at test time. In

Figure 3.3, the most probable states representing semantic classes are the

darkest-colored nodes in each word vector. In this illustration, the state

size is only 5, although in reality, it is usually in the order of hundreds of

states. Given the sequence “the significant other”, we could use the indices

of the most probable states (class identifiers) “1-2-0” as discrete represen-

tations for the words in the sequence. The flexibility of this framework lies

also in a wide array of options for obtaining word representations. For ex-

ample, we could also use the entire vectors as representations to increase
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the significant other
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Figure 3.3: Illustration of vectorial representations inferred from a Hid-

den Markov model, with an optional selection of the most probable

states.

the representational capacity. We describe these and other possibilities in

Chapter 7.

The number of states in such a model, set to five in the above example,

might be either a parameter to the model that needs to be set in advance or

it can also be discovered through learning using a mechanism controlling

the creation of new classes depending on the environment encountered at

each training instance5. While increasing the number of classes in a model

is likely to increase the capability to capture fine-grained distinctions be-

tween some items, it is also true that this finer granularity can come at a

cost of reduced generalization.

3.3 (Neural) word embeddings

Word embeddings bear some similarity to the latent variable models, espe-

cially when these are used in conjunction with techniques for obtaining vec-

torial representations. For example, word embeddings are also real-valued

vectors and they are typically low-dimensional (up to hundreds of dimen-

5One subset of approaches falling in the second category contains Bayesian non-

parametric models, see for example (Séaghdha and Korhonen, 2014).
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sions, rarely more than one thousand).6 However, they usually do not

have a probabilistic motivation or interpretation, and originate from the

research on neural networks. In addition, the standard embedding models

do not provide distinct representations for a word type occurring in differ-

ent contexts. One advantage of word embeddings is that they are fast to

train, thus scaling well to datasets with billion words and more. In compar-

ison to distributional semantic models in which high-dimensional, sparse

representations are created (and no dimensionality reduction is applied),

the word embeddings are dense representations, meaning that most of the

values are not zero.

Word embeddings are also known as distributed representations, in

which distributed refers to a “many-to-many” relationship between a con-

cept and the vectorial representation. Namely, each concept is represented

by a so-called pattern of activity distributed over many computing ele-

ments, and each computing element participates in representing different

concepts (Rumelhart et al., 1986). In this way, two similar concepts would

display a similar pattern of activity, unlike in a scheme like one-hot encod-

ing in which only one element in the vector is activated to represent a word

identity, and in which a particular word is equally similar or dissimilar to

all other words.

The use of word embeddings for representing words have been ex-

plored in the context of language modeling by Bengio et al. (2003), and

later perhaps most notably by Mnih and Hinton (2007), Collobert and We-

ston (2008) and Mikolov et al. (2013a). The embeddings are learned in a

network by a prediction task, in which one word wp is predicted based on

another wordwi or a combination of words, e.g. p(wp|wi). The embeddings

actually just represent the weights needed to be tuned in order to perform

the prediction task well. Usually, separate embeddings are trained for the

input words and the predicted words. The intuition behind the capabil-

ity of embeddings to capture semantic similarity between words lies in an

6This characteristic is beneficial when including the embeddings as features in a

ML task, since it allows for faster training.
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observation that similar words occur in similar contexts, thus two similar

input words will need to successfully predict the words they occur with.

In the Skip-Gram method of Mikolov et al. (2013a), the task of computing

the probability p(wp|wi) boils down to computing the dot product between

the input word’s embedding and a context word’s embedding7, and turn-

ing it into a probability by applying a softmax function. This operation is

then repeated for every input word in the corpus and the embeddings are

updated using gradient-based techniques. Since the representation of the

input word needs to become more like the representation of the predicted

word, and since many predicted words for two similar input words are the

same, the representations of the input words must also become alike. We

discuss the details of training this model as well as other, more complex

models of word embeddings in Chapter 8.

•France

•Paris

•

•

Italy

Rome

Figure 3.4: Analogical relationship as one of the regularities observed in

word embeddings.

The embeddings have been shown to exhibit some interesting proper-

ties, like that of analogy, which reveals that semantic relations can appear

as linear relationships in the vector space. For example, if we plot the vec-

tors of “Paris”, “France”, “Rome” and “Italy” (Figure 3.4) by projecting

7An interesting relationship between the Skip-Gram and the count-based pointwise

mutual information (PMI) has been found by Levy and Goldberg (2014c), according to

which the product of the input and context embedding matrices corresponds to a PMI

matrix with some offset.
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them on a two-dimensional plane, we can use it to obtain approximate an-

swers to questions like “Paris is to France as is to Italy”. This has been

shown to work for several types of named entities and beyond.

Once word embeddings are trained, a common application is to initial-

ize embedding layers in neural network predictors, which are intended to

solve some concrete NLP task, for example dependency parsing (Chen and

Manning, 2014). Such embeddings can be either kept fixed during training

or fine-tuned to the task at hand. In the deep learning community, the step

involving the embedding training is sometimes called unsupervised pretrain-

ing (Goodfellow et al., 2016; Collobert and Weston, 2008). Although the

word embeddings can be learned from scratch when forming a part of a

neural model optimized for a particular task, the amount of (gold) data

is normally limited, and the embeddings learned this way would be con-

strained to the specific task only.

The embeddings are a vigorous line of research in NLP with a vast

amount of work done in many directions. Some of these include alternative

model architectures (Pennington et al., 2014); effect of context type (Levy

and Goldberg, 2014a); comparison to count-based distributional semantic

models (Baroni et al., 2014); the treatment of larger units like phrases, sen-

tences and documents (Mikolov et al., 2013b; Le and Mikolov, 2014; Kiros

et al., 2015); the extensions to account for polysemy (Neelakantan et al.,

2014); the study of evaluation types (Schnabel et al., 2015); and multilin-

gual learning of word embeddings (Klementiev et al., 2012).





CHAPTER 4

Applications for word

representations

In Chapter 2, section 2.2, we have touched upon the applicability of word

representations and made a broad distinction between intrinsic and extrin-

sic applications. We have also introduced a conceptual schema, in which

we position representation learning as a part of (semi-)supervised machine

learning. In the previous chapter, we have presented an overview of differ-

ent approaches to obtaining or inducing word representations. We now de-

scribe each concrete application of word representations in turn—limiting

ourselves only to the tasks actually used throughout the thesis—to provide

the high-level background information important for the content that we

present in the following chapters. The different types of applications stud-

ied in this thesis are shown in Figure 4.1. We evaluate the majority of the

methods on more than a single task; also, we carry out two evaluation tasks

with more than one method.

35



36 Chapter 4. Applications for word representations

Evaluation type:

Parsing

Wordnets

NER

Semantic-frame
identification

Semantic
similarity

POS tagging

Method:

Concept-
based (Ch. 5)

Clustering
(Ch. 6 & 7)

Latent-variable
(Ch. 7)

Embeddings
(Ch. 7 & 8)

Figure 4.1: Types of evaluation carried out in this thesis, matched with

the word representation method used. The information in parentheses

refers to the chapter in which the results are discussed. The lines in

blue indicate that the evaluation is carried out in English; the orange

indicates Dutch. For “Embeddings”, only a baseline method is evaluated

in all four applications to which the links exits; the newly developed

embedding models from Chapter 8 are studied empirically only with

the “Semantic similarity” and “POS tagging” methods.
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4.1 Intrinsic applications

4.1.1 Semantic similarity

One possibility for evaluating word representations is to adopt a semantic

benchmark in which the similarities of word pairs were estimated by hu-

man raters. Many such benchmarking datasets exist, especially for English

(the ones used in this thesis are listed in section 8.6.1); some of them are

specialized in measuring a particular kind of semantic properties, some

are intended to cover particular sets of words according to, for example,

frequency or domain criteria. The evaluation procedure for word repre-

sentations in the context of semantic similarity benchmarks consists of mea-

suring how well the automatically obtained similarity scores on the word

pairs from the benchmark match the ratings produced by humans. As the

automatic similarity scores are normally real-valued, and the (aggregated)

human ratings are either ordinal or real-valued, some kind of correlation

analysis can be performed, indicating the extent of linear or non-linear rela-

tionship between the automatic and human ratings. In this setting, a word

representation method is deemed better than some baseline method if it

better correlates with human judgments.

A well-known semantic similarity benchmark is WS353 (Finkelstein

et al., 2001), which we mention here to illustrate the nature of the task and

the presentation of the benchmark format. In it, 353 word pairs are given

one per line together with their similarity scores in the range between 0

and 10, averaged over several human ratings:

(4.1)

word 1 word 2 avg rat. 1 rat. 2 rat. 3 . . .

professor cucumber 0.31 1 0 0 . . .

money cash 9.15 10 9.5 9.5 . . .

marathon sprint 7.47 7 9 7 . . .

profit loss 7.63 8 9.5 9.5 . . .

In this dataset, we also find antonymous pairs, such as “profit–loss”; the

human raters were asked to judge such pairs as similar provided they be-
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long to the same domain.

The problematic aspect of the benchmarks based solely on word pairs

is that no context is given that would allow the raters to compare word

senses rather than possibly polysemous word types. This concern has

been addressed, for example, in the Stanford’s Contextual Word Similar-

ities dataset, known shortly as SCWS (Huang et al., 2012), which includes

around two thousand word pairs, each word appearing in the context of

a specific sentence (additionally, some sentences to the either side of the

target sentence are included). The set of words in SCWS was chosen based

on Wordnet, and for each word pair in context—mostly noun–noun, but

also verb–verb, noun–verb, adjective–adjective, and some others—ten hu-

man judgments were obtained on a scale from 1 to 10. An example data

instance from SCWS is shown here:

(4.2)
[...] involved the murder of almost 7,000 priests [...]

[...] murder and manslaughter . This sentiment has been [...]
Average rating: 7.6

Individual ratings: 8, 8, 10, 10, 9, 5, 4, 10, 5, 7

The words compared are shown in italics. For brevity, we omit here some

sentential context to the either side. In this particular instance from the

benchmark, the target words were assigned a relatively high average simi-

larity score. The advantage of contextualizing word pairs is relevant both

in the rating phase to obtain more accurate human judgments and in auto-

matic scoring in which the context can be exploited by the word representa-

tion methods that can perform context-sensitive inference, and thus come

up with a different representation for a word depending on its context.

Regardless of the benchmark or the word representation method used,

in order to compare automatically obtained scores with human judgments,

we need a way of obtaining the automatic scores in the first place, i.e. we

need a way of measuring the similarity between the representation for each

word in the pair. For vectorial representations, this is typically done by

using a similarity metric such as the cosine, which calculates the similarity
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as a dot product over unit-length vectors, and outputs a score in the range

of 0 (perfect dissimilarity) and 1 (perfect similarity).

A different approach to the intrinsic evaluation of word representations

than the one described so far is supersense similarity, in which the ground

truth is still available in the form of human judgments, but it is encoded

based on human annotated corpora. In the method we use, the human an-

notations of (super)senses in a corpus are encoded as a feature matrix con-

sisting of “linguistic” vectors, which then serves as a reference to which we

compare the induced word representations (Tsvetkov et al., 2015). The com-

parison works by aligning dimensions of a vectorial word representation

to dimensions of linguistic vectors by maximizing the cumulative correla-

tion or the cosine score of the aligned dimensions. We use this method to

quantify the quality of induced word embeddings for English in Chapter 8.

4.1.2 Wordnet-based similarity

The wordnet-based similarity measures are particularly well suited for ob-

taining information about similarity of discrete (categorical) word repre-

sentations such as word clusters. These measures rely on the wordnet

structure to produce a score—usually between 0 and 1—that quantifies the

degree to which two concepts (synsets) are similar (Pedersen, 2010).

Taking clustering as an example, the gist of evaluation for word rep-

resentations is to obtain a score of semantic consistency and similarity

between the words that share the same cluster after the clusters have

been induced. In other words, we are interested in how successfully a

representation-inducing method groups similar words together. More pre-

cisely, a course of action might consist of the following steps:

(4.3) 1. choose a word wi,

2. look up its discrete representation ci,

3. for every wj, wj �= wi also represented by ci, calculate

sim(syn(wi), syn(wj)).
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In step 1, we begin by choosing a word, an action that can be guided by a

pre-built list of target words. This is advantageous compared to evaluating

all possible pairs of words in a clustering firstly because it is more efficient,

and secondly because it ensures greater comparability—the set of words

that are evaluated is the same regardless of the clustering method used.

Since we use wordnet-based evaluation only with discrete representations

in this thesis, the step 2 is trivial as we only need to look up the cluster in

which the word type occurs. In step 3, we only consider the word pairs

that share the same representation ci. We therefore measure the most ba-

sic type of semantic similarity provided by clustering methods, which is

the similarity of words sharing the same cluster. We could also extend

the treatment to consider words within all clusters that are somehow re-

lated. If the clusters are organized in a hierarchy (like the one shown in

Figure 3.2) with those clusters that are closer in meaning located closer

in the hierarchy, it is possible to include in the similarity calculation also

the neighboring clusters. The similarity function sim is intentionally un-

derspecified in this step: It leaves a lot of room for different engineering

solutions with respect to the exact calculation of the wordnet similarity. In

fact, the problem concerns two choices to be made: the selection of the

similarity metric and the mapping or the relationship between the word

type and its synset(s). The purpose of a similarity metric is to produce a

score based on the distance of two nodes in the wordnet hierarchy, option-

ally accounting for the location of the nodes in wordnet (higher or lower

in the hierarchy) by introducing a specificity metric for nodes. One such

metric is the well-known information content, proposed by Resnik (1995).

Furthermore, the mapping function can also be implemented in different

ways. For word types belonging to more than one synset, one straightfor-

ward approach is to calculate the similarity for all possible pairs, and then

either take the highest scoring combination or the average over all possible

combinations. We discuss these choices in more detail in section 6.4.



4.2. Extrinsic applications 41

U.N. official Rolf Ekeus heads for Washington .

I-ORG O B-PER I-PER O O I-LOC O

Figure 4.2: Annotation of an English sentence with named entities.

Adapted from the CoNLL-2003 dataset.

4.2 Extrinsic applications

4.2.1 Named-entity recognition

Named-entity recognition (NER) is a task of recognizing the occurrences

of proper names in a text, including their spans, and of labeling them with

entity types they represent. The exact definition of what constitutes an

entity is usually task- and domain-specific.1 It is a common practice in

newswire texts to treat as named entities all names of persons, companies

and locations, as well as sometimes the expressions referring to times and

numbers. In other domains, one might be interested in recognizing the

names of genes or football clubs, for example.

NER is most commonly treated as a sequence prediction task (Ratinov

and Roth, 2009), using methods like Hidden Markov models, Conditional

random fields and neural sequence models. Often, gazetteers—the exten-

sive lists of named entities—are used to increase the performance (Krish-

nan and Manning, 2006).

The named entities in a text may often consist of more than one word.

For this reason, the BIO scheme is usually adopted that encodes a word as

either B(eginning), I(nside) or O(utside) of the entity. Generic NER bench-

marks that are oriented towards annotation of news-like texts typically in-

clude four entity types—PER (persons), ORG (organizations), LOC (loca-

tions) and MISC (miscellaneous)2. The identification of entities and their

1It is beyond the scope of this work to discuss possible ways of determining which

words and word sequences represent named entities. We work with already annotated

corpora, for which it is reasonable to assume that some annotation guidelines were

followed during the annotation process.
2MISC includes, among others, names of religions, languages, works of art and
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word spans according to the BIO scheme prepends the entity label with

either B or I, and simply use O for all words that are not named entities.

An English example is given in Figure 4.2. The goal of a NER system for

this sentence is to correctly recognize which words represent entities and

which do not, as well as to assign the entities the right labels. This process

is generally ambiguous—“Washington” can refer to either a location or a

person, and in a more elaborated annotation scheme perhaps also to a po-

litical entity or a sports club. There is another type of ambiguity that goes

in the opposite direction, i.e. from the named mention to different entities

of the same type. For example, “Washington” as a person can refer to dif-

ferent people. This, however, is usually not seen as part of NER, but as a

reference resolution problem (Jurafsky and Martin, 2008).

For Dutch and English, CoNLL shared tasks of 2002 and 2003 have pro-

vided the annotated datasets, now standardly used in the development of

NER systems for general texts. These benchmarks include roughly 300,000

words for each language. Out of these, 17% represent named entities in

English, and 9% in Dutch.

The particularity of NER in comparison to other sequence-labeling

tasks is that the named entities are mostly nouns and noun phrases, many

of which occur only rarely in the text. In an attempt to design a success-

ful semi-supervised approach, word representations can be leveraged to

reduce lexical sparseness by abstracting away from the given nouns and

words surrounding them. Furthermore, context-dependent representa-

tions may succeed in capturing some ambiguities by actually inducing dif-

ferent representations for the same words occurring as different named

entities in the text (for example, “Washington” as a location name and as a

last name).

4.2.2 Part-of-speech tagging

Part-of-speech (POS) tagging is a process of assigning parts-of-speech to

words, i.e. the categories based on syntactic and morphological function

sports-related names.
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of words: Similarly functioning words with respect to their neighborhood

or with respect to their morphological properties are grouped into classes.

The most prototypical categories are nouns, verbs, adjectives and adverbs.

Unlike in word-representation learning, the focus in POS tagging is not

on semantic coherence within the categories, although it can come about

in some situations.3 The number of classes in English is typically lower

than e.g. in word clustering whose primary goal is grouping words based

on semantic coherence.4 POS tagging is one of the most explored NLP

problems, which have been tackled with various rule-based and statistical

methods. The sequence-prediction models that can be applied to NER can

also be used for POS tagging, although the two problems are different in

that NER can be seen as a two-step process of first identifying the entities

and then classifying them, whereas in POS tagging, every word bears a

part of speech.

The use of POS in NLP applications is widespread and includes tasks

such as syntactic parsing, information retrieval, authorship attribution,

speech processing and others. Furthermore, POS annotation is also com-

monly used in corpus linguistic research (Jurafsky and Martin, 2008). The

POS taggers for English newswire texts are most often trained and eval-

uated on the Wall Street Journal (WSJ) part of the Penn Treebank, which

includes in total around 45,000 sentences, or 1.1 million words annotated

with parts-of-speech.

The example in Figure 4.3 shows a gold standard annotation of an En-

glish sentence taken from the Penn Treebank. Several tags are used: CC

for a coordinating conjunction, DT and NN for a determiner and a noun,

VBZ for a verb in 3rd person singular, JJR for a comparative adjective, IN

for prepositions and subordinate conjunctions, and PRP for personal pro-

3For example, a basic distinction in meaning can carry over to the distinction be-

tween homographs with different parts-of-speech. In general, however, many sense

distinctions may exist inside the homograph, which would not be directly helpful in

POS disambiguation, cf. Wilks and Stevenson (1998).
4For English, 45 POS categories exist in the Penn Treebank (Marcus et al., 1993) and

87 in the Brown corpus (Francis and Kucera, 1979). The universal POS tagging scheme

defines only 12 coarse POS tags (Petrov et al., 2012).
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But the issue is stickier than it seems .

CC DT NN VBZ JJR IN PRP VBZ .

Figure 4.3: An English sentence with parts-of-speech, taken from the

WSJ part of the Penn Treebank.

nouns. From the point of view of automatic analysis, the POS tag assign-

ment is often ambiguous. In the above example, for instance, “issue” is

ambiguous between NN, VB (base verb form) and VBP (non-3rd person

singular), and “but” is ambiguous between CC, IN and RB (adverb).

4.2.3 Syntactic parsing

Syntactic parsing is the task of automatically analyzing the syntactic struc-

ture of an input sentence. It is common to distinguish between parsing sys-

tems that output constituent (or phrase) structures and those that output

dependency structures. The type of information captured is different in

each case (Kübler et al., 2009): In constituent parsing—perhaps the most

widely used and studied in computational linguistics—the task consists

of grouping words into constituents (phrases) that are labeled by struc-

tural categories, like noun phrase (NP) and prepositional phrase (PP); in

dependency parsing, on the other hand, we are interested in the predicate–

argument structure, identifying head–dependent (or, parent–child) rela-

tions between words labeled by the function of the dependent toward its

head, e.g. subject (SBJ) and object (OBJ). This difference is illustrated in

Figure 4.4 and Figure 4.5.

A parsing system can be described with a schema depicted in Figure 4.6.

It represents parsing as a task consisting of two stages: (strict) parsing, in

which the goal is to generate several possible syntactic analyses for a given

input, and disambiguation (or parse selection), which selects one among the

ambiguous parses, usually by means of statistical modeling (Plank, 2011).

When the parsing component is based on an explicit, formal grammar that

is usually manually defined and used for generating a set of possible parses,



4.2. Extrinsic applications 45

ROOT economic news had little effect on financial markets .

PRED

ATT SBJ

OBJ

PU

ATT
ATT

PC
ATT

Figure 4.4: Dependency structure for an English sentence, reproduced

from Kübler et al. (2009).

S

PU

.

VP

PP

NP

NNS

markets

JJ

financial

IN

on

NP

NN

effect

JJ

little

VBD

had

NP

NN

news

JJ

Economic

Figure 4.5: Constituent structure for an English sentence, reproduced

from Kübler et al. (2009).

we can name the systems of this type the grammar-driven systems. Here,

the role of the statistical disambiguation component is to use the learned

model parameters for selecting a single, preferred syntactic structure. The

Alpino parser for Dutch is an example of such a system. On the other hand,

systems which lack an explicit grammar—or whose grammar is automati-

cally induced—can be called data-driven systems: They are characterized by

their reliance on corpora (annotated or not) to learn the grammar and the

model. Representatives of this category are statistical dependency parsers,



46 Chapter 4. Applications for word representations

parsing
component

disambiguation
component

sentence

Figure 4.6: A two-stage view of a parsing system (reproduced from

Plank (2011), drawing on lecture notes of Khalil Sima’an, University of

Amsterdam).

such as Mate (Bohnet, 2010), Malt (Nivre, 2006) and MST (McDonald et al.,

2005). These parsers allow easy integration of new learning features, in-

cluding word representations. We introduce Alpino and the MST parser, as

well as the gold standard datasets to train and evaluate them, in Chapter 5

and in Chapter 6. Note that in Chapter 5 we use Alpino to study the effect

of concept-based word representations in reducing the lexical sparseness

in parsing. In Chapter 6 and Chapter 7, though, our use of the two parsers

is restricted to preparing the input texts for those representation-learning

methods that rely on dependency structures.

4.2.4 Semantic frame identification

Frame-semantic parsing is the task of analyzing the textual predicate-

argument structure such as the one shown in Figure 4.7, according to the

theory of semantic frames (Fillmore, 1982). Two frames occur in this exam-

ple sentence, Hindering and Cause_to_make_progress. The first is evoked

with a verb, and the second with a noun, although generally a single frame

can be evoked with different lexical units belonging to different parts of

speech. In English FrameNet (Baker et al., 1998), which is a resource con-

taining the definitions and annotations of frames, specifies that Hindering

can be evoked by the lexical units “block (verb)”, “delay (verb)”, “inter-
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Fluoride  inhibits  the      development        of caries
                   HINDERING           CAUSE_TO_MAKE_PROGRESS

�������

	��
���
�
�����

Figure 4.7: A parse with Hindering and Cause_to_make_progress frames

with respective arguments.

ference (noun)” and “repressive (adjective)”, among others.5 Similarly to

WordNet, the frames stand in hierarchical relations, such as inheritance (a

frame is a subtype of another frame) and using. The latter relation links to

a frame of the presupposed parent frame that serves as background. In the

above example, Hindering presupposes the Event frame, and Hindering

is itself presupposed by Difficulty. The Hindering frame governs two syn-

tactic dependencies, the nominal subject to the left and the nominal phrase

to the right. These constitute the necessary participants in the frame, also

called core frame elements (or arguments). The subject, “fluoride”, repre-

sents a “Hindrance”, and the object represents an “Action”. The definition

of the Hindrance frame includes an additional, third core element, “pro-

tagonist”, but since the action in the realization of the frame shown above

is a natural act, the protagonist is not instantiated. Other, non-core (also

known as peripheral) elements can also occur in a frame, but none occur

in the above example. These elements introduce non-essential information

such as time, place and manner. For Hindering particularly, several such

non-core element types exist and could be realized in some other text, e.g.

degree, duration and place.

As we have seen in the above example, one elementary distinction in

the FrameNet scheme is between the annotation of frames and elements

5Any of these lemma-POS pairings may evoke also other frames. In principle, each

sense of a lemma-POS pair describes a new frame (Ruppenhofer et al., 2006).
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participating in it. This duality is also encountered in the context of auto-

matic frame semantic analysis (Das et al., 2014). In NLP, the task including

the analysis for both components is usually referred to as frame-semantic

parsing. This involves the following: a) the identification of targets, i.e.

predicating words, typically realized by a heuristic component; b) the clas-

sification of semantic frames of predicates in a sentence6; and c) the identi-

fication of frame arguments participating in these events, which can also be

seen as a semantic role labeling task. In this thesis, we adopt the second

subtask of semantic frame identification. The goal is to measure the capa-

bility of word representations to better disambiguate between the frames

by differently representing different word senses. Compared to NER, in

which the classification decisions apply to a relatively small set of words,

the problem of semantic frame identification concerns making predictions

for a broader set of words, including verbs, nouns, adjectives and some-

times even prepositions. The semantic frame identification can thus give

us more complete information about the quality of the word representa-

tions.

6Since a polysemous predicate can participate in different frames, this subtask is

similar to performing word-sense disambiguation.
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Reducing lexical sparseness

with semantic classes
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CHAPTER 5

Using wordnet concept

classes in a grammar-driven

parser

Bilexical information as obtained from selectional preferences is known

to be helpful in syntactic parsing. However, using the lexical information

alone in form of word types or lemmas is bound to lead to lexical sparse-

ness. A possible solution is to adopt more general representations of words

acquired with word concept classes. In this chapter, we study the problem

of lexical sparseness in a syntactic parser for Dutch by first analyzing the

parser’s performance on each feature type described by a dependency re-

lation label. We then shortlist those feature types that would benefit from

class-based generalization the most. Finally, we report the results of a gen-

eralization using word classes obtained from a wordnet inventory with

varying degrees of generality. Although our method corrects several pre-

viously misparsed cases, it does not improve the accuracy overall.
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5.1 Motivation

Several syntactic parsers use lexicalized information in either strict parsing

or parse disambiguation steps (Bikel, 2002; Collins, 2003; Charniak, 2000;

van Noord, 2006). A bilexical feature, such as the one to learn that a particu-

lar verb tends to occur with a specific object, e.g. “drink a beer”, is modeled

from large corpora, yet for many instances during parsing, such bilexical

information is missing. For example, consider that the word “beer” has

been substituted with a less frequent drink such as “daiquiri”. It is less

likely that in this case the model will hold reliable information for “drink a

daiquiri”. To address this issue of lexical sparseness, we can apply a gener-

alization procedure that will work by grouping multiple lexical units that

are similar in meaning. Such semantic generalization has been shown to be

effective in the works of Agirre et al. (2008), Henestroza Anguiano and Can-

dito (2012) and MacKinlay et al. (2012), all of which acquire sets of word

senses or broader semantic categories from human-built lexical inventories

such as the English WordNet (Miller, 1995). The question we ask ourselves

in this chapter is

• whether semantic classes applied to the existing bilexical model of a

syntactic parser of Dutch can additionally reduce lexical sparseness,

and as a result, lead to an additional improvement of parsing accu-

racy.

Specifically, we aim to:

• quantify the relationship between successful parses and the avail-

ability of bilexical information in the existing disambiguation com-

ponent of the parser,

• identify empirically those feature types described by dependency re-

lations labels for which the semantic generalization of participating

words is most needed in parsing,
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een werkelijk superieur boek
/a truly superior book/

det

mod

mod

mod (parser)

Figure 5.1: A sentence excerpt with human-annotated dependency struc-

ture. The dotted line represents an incorrect attachment by the parser.

• provide the results of a generalization procedure for the disambigua-

tion component using semantic classes extracted from a human-built

inventory.

To further illustrate the need for generalization in syntactic parsing,1 we

provide an example excerpt from a Dutch sentence with its corresponding

dependency analysis in Figure 5.1. The parser wrongly attaches the ad-

verb “werkelijk” to the noun “boek”, whereas the correct analysis would

connect “werkelijk” to the adjective “superieur”. Here, the reason for the

wrong attachment can be attributed to the missing bilexical information

in the disambiguation model of the parser. Naturally, it is impossible to

expect to find innumerable bilexical cases like 〈“werkelijk”, “superieur”〉
in the disambiguation component. Intuitively, it should be possible to re-

solve this case of ambiguity between modification of adjective and modifi-

cation of noun, as well as other types of ambiguity, if we abstract away from

the concrete word level. For example, in the Cornetto lexical semantic in-

ventory for Dutch, the word “superieur” shares the semantic class (synset)

with the word “goed” (“good”). Since the model already includes the in-

formation about 〈“werkelijk”, “goed”〉, the semantic class generalization

in this case means a successful model lookup and can possibly result in a

correct parse.

1A more general discussion of lexical sparseness can be found in section 2.1.
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Previous studies on this topic have typically focused on generalizing

words regardless of the dependency relation in which they appear (see

section 5.4 for a detailed account of related work). Our approach differs

by first identifying those feature types described by dependency relation

labels for which the parsing accuracy is reduced. The premise of our

approach is that generalization should not be imposed where the lexical

sparseness is not severe. Following a statistical analysis, we list the feature

types that are most likely to be helpful once the model has been extended

with semantic information (section 5.3). We experiment with three types of

semantic representations (section 5.2.5), which vary in their degree of gen-

erality. Whenever the bilexical preference is lacking in the standard model,

our enhancement model would simply look up a generalized version of

the lexical pair. We show that this leads to parsing improvement in certain

cases, but it is noisy in general and causes also several deteriorated parses.

5.2 Experimental setup

In this section, we first present the parser and the training and testing re-

sources. We also present the resource from which we retrieve semantic

classes. We then introduce the method for analyzing the bilexical model

usage and discuss the disambiguation method, the levels of semantic rep-

resentation and how the new information is introduced in the modeling

part of the parsing process.

Alpino. We can describe Alpino (Bouma et al., 2001; van Noord, 2006)

concisely as a parser featuring a head-driven phrase structure grammar

(HPSG) and a maximum entropy disambiguation component. The gram-

mar is augmented to output dependency structure in LASSY format2. This

format includes both functional annotation (dependency label) and syn-

tactic category information, as well as the part-of-speech (POS) categories.

Dependency relations hold between sibling nodes; one of the nodes is as-

signed the “hd” label, for head of the relation. According to the LASSY an-

2http://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf
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notation scheme, the syntactic structures are not always proper trees, since

more than one parent per word is allowed. The output of Alpino’s parsing

component for a sentence is a packed parse forest. The best parse is ob-

tained through maximum entropy modeling with a best-first beam-search

algorithm. The details thereof can be found in van Noord (2010).

We evaluate the parser’s performance with the concept accuracy (CA)

measure, which is a mean of per-sentence minimum of recall and precision.

In practice, the measure gives similar results to labeled attachment score

(LAS) (van Noord, 2009b), which is the percentage of correct dependencies,

counting a dependency instance as correct if both the attachment and the

label are correct. The main reason for using the CA measure is to relax the

single-head constraint of the LAS measure. Alpino achieves an accuracy

of around 90% on general newspaper texts (van Noord, 2010).

Bilexical disambiguation component. The disambiguation component of

Alpino includes a large number of features, divided in several feature types.

Only some of these feature types measure selectional information about

word pairs (the bilexical component), but we list all types for completeness in

Table 5.1.

Description Types

Grammar rule applications r1, r2
POS tags f1, f2
Dependency features dep23, dep34, dep35, depprep, dep-

prep2, sdep
Ordering in the middle field mf
Unknown heuristics h1
Bilexical information z_dep35, z_hdpp, z_appos_person
Other appos_person, s1, p1, in_year, dist

Table 5.1: Alpino feature types.

The feature types under bilexical information capture the degree of associa-

tion between a pair of words in a dependency relation. For our purpose,

it will be useful to further divide the bilexical feature types along the de-
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pendency relation label and the POS tag of the head word that can appear

in the relation. In this way, we will be able to distinguish in our analysis

between cases of modification of nouns (“z_dep35(noun, hd/mod)”) and

modification of adjectives (“z_dep35(adj, hd/mod)”), to name just one ex-

ample. Reusing the phrase from Figure 5.1, we can fully instantiate the

feature types in the following way:

(5.1) 〈superieur, adj, hd/mod, noun, boek〉

(5.2) 〈werkelijk, adv, hd/mod, adj, superieur〉,

where the first element is the dependent word, which is followed by its

POS tag; the middle element is the dependency relation; the before-final

and final elements are the POS tag and the head word, respectively. As

we have just seen, the dependency relation label and the POS tag of the

head can constitute the broader specification of a feature—we will refer

to such feature types as partially instantiated feature types. So, we will treat

“z_dep35(adj, hd/mod)”, for example, as one such type. In addition to the

z_dep35 feature type, we have two other bilexical feature types: z_hdpp

and z_appos_person. The z_hdpp type captures second-order effects by

considering the node of a prepositional phrase, as in the partially instanti-

ated type “z_hdpp(noun, hd/pc)”, which stands for a noun head in combi-

nation with a head word of the prepositional complement. For illustration,

consider

(5.3) organisaties die zich met de inburgering van immigranten

bezighouden

“organizations dealing with naturalization of immigrants”,

from which we can extract the 〈inburgering, noun, hd/pc, van, houd_bezig,

verb〉 feature instance, where the first element is the head word, which is

followed by its POS tag and the dependency relation label; the last three el-

ements are the preposition, the node of the prepositional complement and
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its POS tag.3 The third type, z_appos_person, pertains to named-entity re-

lated features, but since it rarely occurs in the disambiguation model, and

since the semantic classes including named entities are uncommon in our

lexical semantic inventory for Dutch, we discard it from further considera-

tion and work only with z_dep35 and z_hdpp feature types.

Every feature instance in the bilexical part of the disambiguation model

is associated with a normalized pointwise mutual information score with

a frequency threshold for inclusion of > 50. The frequency threshold is

applied to avoid the unreliable mutual information scores for infrequent

events, as well as to keep the size of extracted instances manageable. The

best parse is selected by a linear combination of features with their learned

weights (van Noord, 2007):

ŷ = argmax
y

∑
i

wifi(x, y), (5.1)

where the mutual information score is one feature function (fi) among

many for the the sentence–parse pair (x, y). The total number of partially

instantiated bilexical feature types is 35. The number of all feature in-

stances in the disambiguation component in our experiments is around 3.3

million. It is worth noting that the association information is obtained from

parsed structures, which means that the training corpus is first parsed (us-

ing the existing disambiguation component), and then the new association

scores are acquired. The method thus represents a self-learning approach

to obtaining lexical information. van Noord (2010) shows that the incor-

poration of the bilexical information into parsing improves over the parser

without it, with the advantage ranging between 0.4–0.5 CA score. In that

work, a corpus of Dutch texts amounting to around 500 million words is

used to learn the bilexical preferences.

3Note that the z_hdpp instance captures different information from the z_dep35

examples above.
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5.2.1 Corpora

The statistical analysis that will serve us as the basis for the identification of

promising partially instantiated feature types is carried out on Lassy Small,

a hand-annotated corpus of Dutch. The corpus contains around 1 million

words corresponding to 1.3 million dependency instances for a large vari-

ety of texts like newspapers, Wikipedia, websites, fiction etc. (van Noord,

2009a).4 An automatically syntactically annotated part of the preliminary

version of Lassy Large5 is used for training the lexical association model of

Alpino. This corpus contains about 500 million words. We test our method

on the Alpino Treebank (van Noord, 2006)6, which amounts to ≈7,000 sen-

tences, and is a collection of newspaper texts from the Eindhoven corpus,

and parts of Lassy Small (≈4,000 sentences).

5.2.2 Statistical analysis of parser’s performance and disambiguation

model lookup

We are interested in studying the relationship between the presence of

bilexical information in the disambiguation model and the correctness of

the parses. We would like to find candidates that are promising for gener-

alization, where by candidate we mean any partially instantiated feature

type. A candidate should thus be the one for which the bilexical informa-

tion in the disambiguation model is often missing, which then tends to

negatively affect the parsing outcome.

We carry out the statistical analysis both on the level of sentence and

on the level of individual instances (dependencies). In the first scenario, the

parsing accuracy can be measured as per-sentence concept accuracy (CA),

while the model presence can be measured as the proportion of instances

for that sentence found in the bilexical model. In the second case, both

variables need to be categorical (binary), as an instance can either be in

4http://tst-centrale.org/producten/corpora/lassy-klein-corpus/6-66
5http://tst-centrale.org/producten/corpora/lassy-groot-corpus/6-67
6http://www.let.rug.nl/~vannoord/trees/
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the model or not, and the parse can be either correct or not. We there-

fore use several statistical tests to take these differences into account. For

the sentence-level analysis, we use the Spearman non-parametric correla-

tion test, while for the instance-level analysis we use the Cramér’s phi (φc)

association measure (interpretable just as a correlation score, i.e. ranging

between 0—no association—and 1—perfect association). In addition, we

will report the odds-ratio score (Gries, 2009) due to its ability to indicate

how the likelihood of one variable level changes in response to a change

of another variable’s level. For example, we will be able to say how much

more likely a correct parse is when the bilexical preference is found in the

disambiguation model (call it E for a positive event). The odds ratio is ex-

pressed simply in terms of the probabilities for the positive event (pE) and

the negative event (1− pE):

odds =
pE

1− pE
. (5.2)

Note that all measures can be applied to all candidates grouped, which

gives an indication of effectiveness of the bilexical disambiguation model

in general, but they can also be obtained on each candidate separately.

5.2.3 Lexical semantic inventory

Cornetto7 is a lexical semantic inventory for Dutch resulting from a merge

between Referentie Bestand Nederlands (RBN, a collection of lexical units)

and Dutch WordNet (Vossen et al., 2013). It includes more than 92,000

form-POS pairs, described in terms of lexical units, synsets and other crite-

ria. In wordnets, words are typically specified by a coarse POS label (hence

the term form-POS pair), e.g. “file-n” for “file” as a noun and “file-v” for

“file” as a verb. The synsets represent sets of synonymous form-POS pair-

ings. When looking at a particular meaning of a form-POS pair (i.e. a com-

bination of the form, the POS label and the synset identifier), we talk about

7Part of it is presently available as Open Source Dutch Wordnet (Postma et al., 2016).
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a lexical unit. Table 5.2 lists some statistics of Cornetto, version 2.

Type All POS Nouns Verbs Adjectives Adverbs

Synsets 70,370 52,845 9,017 7,689 220
Lexical units 119,108 85,449 17,314 15,712 475
Form-POS pairs 92,686 70,315 9,051 12,288 1,032

Table 5.2: Cornetto statistics per part-of-speech category.

Cornetto also includes coarse semantic categories, called semantic types,

which provide a very general description analogous to English WordNet

semantic files, also known as super-senses (MacKinlay et al., 2012; Agirre

et al., 2008). Around 20 semantic types are found in Cornetto. We list the

ten most frequent ones in Table 5.3.

Semantic type POS

nondynamic noun
action verb
artefact noun
human noun
dynamic noun
abstract noun, adjective
place noun, adjective
concrete noun
emotional/mental adjective
process verb

Table 5.3: 10 most common semantic types in Cornetto.

The types are POS-dependent, meaning that a verb, for example, can

be described with the “action” class, but not “place”, which is reserved for

nouns and adjectives. The semantic type information is attributed in Cor-

netto to about one half of all lexical units. We refer the reader to Cornetto

user documentation8 for more information on semantic types.

8http://cornetto.clarin.inl.nl/help/D9-Cornetto-Documentation.pdf
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For the purpose of determining the generality of a synset, we treat Cor-

netto as a set of digraphs (one for each part of speech), with nodes constitut-

ing synsets and arcs constituting hypernymic relations. Since the graphs

have a tree-like structure, we use the term leaves to denote the most concrete

synsets with no incoming arcs (hyponyms), and top to denote the most ab-

stract node with no outgoing arcs. We use the Information Content (IC)

measure as defined in (Sánchez et al., 2011):

IC(s) = −log (|Ls|/|Ss|) + 1

|L|+ 1
, (5.3)

where L are the leaves of the hierarchy, Ls are the leaves reachable from

a synset s, and Ss are the subsumers of s (more general synsets located

higher in the hierarchy). Intuitively, when s is located high in the hierarchy,

many leaves can be reached from it, hence Ls will be large, and the final

IC score will be low. Conversely, more specialized synsets, located lower

in the hierarchy, bear more information content.

5.2.4 Disambiguation method

To circumvent the problem of sense ambiguity when mapping classes to

word forms, we use the first-sense heuristic. Although this technique

yields wrong classes in certain number of cases, it has been shown to per-

form well in the works of Agirre et al. (2008, 2011) and McCarthy et al.

(2004). Unlike the sense ordering in English WordNet (McCarthy et al.,

2004), the senses in Cornetto are not ranked by frequency but by salience.

The reason for this can be tracked to the construction criteria of RBN on

which Cornetto is based. In RBN, various lexicographic criteria were con-

sidered when ordering the senses, frequency in corpora being only one of

them. We refer the reader to Martin et al. (2005) for a more detailed account

of these criteria.
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d_n−28590[iets] (something)

d_n−26542[zwembroek] (swimming trunks)

top[NA]

d_n−24103[object] (object)

d_n−40118[kledingstuk] (piece of clothing)

d_n−26998[badkostuum,...] (bathing suit)

d_n−31770[voorwerp,...] (item)

●

●

●

●

●

●

●

ietsets

p[Np[N

●●

[ob[ob

●●●

●●

ooror

stustu

roeoe

stuutu
●●

●●

●●

●●

0

1

2

3

4

5

6

7

8

9

10

11

IC

δ

Figure 5.2: Obtaining an intermediately-grained representation for the

word “zwembroek” using an IC threshold value δ. English translation

in parentheses.



5.2. Experimental setup 63

5.2.5 Levels of semantic representation

We explore semantic classes of varying degrees of generality. The most

straightforward way to represent a word-POS pair using Cornetto is to use

its immediate, first-listed synset. We will treat the immediate synset as a

fine-grained semantic representation of a lexical unit, as it is the most con-

crete representation type used in our work. Synsets provide a generaliza-

tion whenever they group more than one lexical unit. However, a singleton

synset in fact adds specificity to the form-POS instance, by licensing only

a single sense of the instance. This duality has been also noted in the work

of Bikel (2000) on word-sense disambiguation and parsing.

In obtaining intermediately-grained representations, we make use of the

previously introduced Information Content. We first compute the IC score

for a synset s. Then, if IC(s) exceeds a threshold δ, s is too specific, there-

fore we would like to consider a more general synset. The suitable general-

ized synset sgen is the one closest to, but smaller than δ. This is exemplified

in Figure 5.2. However, when it is already the case that IC(s) < δ, the

synset is located sufficiently high in the hierarchy, therefore no generaliza-

tion is needed. We set the value of δ manually, by inspecting hypernymic

paths of various lexical units. At this stage, no empirical optimization of δ

is attempted. For the experiments described below we set δ to 6.

The most general representation type we consider in this work is the

semantic types, already described in section 5.2.3.

5.2.6 Application of semantic classes to disambiguation model

The incorporation of semantic classes is performed on the bilexical part

of the disambiguation component without retraining. The semantic class

identifiers are assigned to words in all the feature instances belonging to

one of the selected partially instantiated feature types. Then, the MI scores

are calculated. In order to improve the mapping between word roots in the

bilexical part of the model and word lemmas in Cornetto, we preprocess

the lemmas in Cornetto with the Alpino lexical analyzer.
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The new information is made available as the data that is auxiliary to

the bilexical part of the disambiguation model. In this way, it is possible

to use the generalized model in a back-off manner. The instances extended

with semantic classes are only considered after a failed lookup in the bilex-

ical model.9 We use the back-off strategy because we see generalization as

potentially helpful only when lexical sparseness is too severe. When this

is not the case, using bilexical preferences directly is known to be effective

in its own right (van Noord, 2010).

5.3 Empirical study

5.3.1 Relationship between parsing accuracy and disambiguation model

lookup

We carry out this analysis on a test dataset of 62,944 sentences. Correlat-

ing the two variables—the CA score and the in-model proportion—reveals

a mild positive relationship of Spearman ρs = 0.239. The correlation is

visualized in Figure 5.3. Each light-gray dot represents a value for one sen-

tence. When multiple sentences achieve the same value, the overlapping

dots yield a darker-colored effect. We can observe in the plot that the major-

ity of points are located in the upper part, with CA values above 50. Also,

the points tend towards the right half of the plot, which is a sign that on

average more than a half of the dependency instances would be found in

the disambiguation model.10 The blue curve is a loess (for “locally weighted

scatter-plot smoothing”) curve which summarizes the scatter: Low CA val-

ues correspond to a lower proportion of in-model information, but high CA

values correspond to a higher proportion of in-model information.

9 We have also experimented with using semantic classes by default and backing

off to bilexical model, but this led to a reduced performance.
10 The plot also reveals an artifact of the experimental setup, displayed as unevenly

distributed dots. The distribution is disrupted at regular intervals, yielding an effect of

parallel dotted lines. This is explained by the fact that both measures use proportions

(for example, a sentence of length 3 can only yield 4 possible values for the in-model

variable), which are not continuous.
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Figure 5.3: A plot of the in-model ratio against the CA scores from the

sentence perspective. The loess curve summarizes the variation in the

data.

We now correlate the in-model proportion and parsing accuracy per

instance. So, for a single instance, both the in-model proportion and pars-

ing accuracy are treated as binary variables. The Pearson’s chi-square test

confirms (p < 0.001) that parsing accuracy on instances which were in the

model differs to instances not in the model. The odds ratio on all feature
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Figure 5.4: Mosaic plot of in-model proportion and parser accuracy.
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types is 3.6, which means that a parse is 3.6 times more likely to be incor-

rect when the bilexical feature is missing. Figure 5.4 pairs our variables

of interest. We can see that incorrect parses are less frequent than correct

ones, but they are characterized by a higher number of unsuccessful model

lookups.

Type Found in corpus Found in model %

z_dep35(verb, hd/vc) 41798 40877 97.8
z_dep35(verb, hd/mod) 96609 87591 90.7
z_dep35(prep, hd/obj1) 135645 115582 85.2
z_dep35(verb, hd/su) 113658 86640 76.2
z_dep35(adj, hd/mod) 11828 8859 74.9
z_dep35(noun, hd/mod) 133925 86430 64.5
z_dep35(noun, cnj/cnj) 18848 5512 29.2
z_hdpp(adj, hd/mod) 3254 569 17.5

all 924783 672535 72.7

Table 5.4: In-model proportions for a selection of partially instantiated

feature types.

The partially instantiated feature types which we would like to enhance

with semantic classes are selected according to the following criteria: the

odds ratio, the Cramér’s phi association coefficient (both measuring effect

size) and the number of out-of-model instances that were parsed incor-

rectly. Table 5.4 shows the in-model proportions across the commonest

types. The in-model proportion is the highest for cases of verbal comple-

ments (hd/vc), in which the complement can only be introduced with a

limited set of words. For our purpose, the prevailing type of error ob-

served in incorrect parses should be wrong attachment. We therefore dis-

card those types which mostly include other error types, such as incorrect

dependency relation labels resulting from limitations in the grammar or

from non-standard language phenomena. The final selection consists of

types listed in Table 5.5 and described briefly here:

• modification of the adjective occurs mostly with another adjective
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or an adverb. The challenging aspect for the parser is to choose the

correct attachment site.

• nominal coordination—at least one of the coordinated words must

be a noun. Here too, the prevalent type of mistake is an incorrectly at-

tached coordinated element. Less frequently, the construction is not

recognized as such by the parser. This happens especially when the

coordination is less typical, as with the conjunction “evenals” (“just

as”).

• modification of the noun—nouns are most commonly modified by

the prepositions introducing prepositional phrases. Adjectives and

other nouns can act as modifiers as well. Just as with the previous

types, incorrect attachment site is the main source of errors. A man-

ual analysis reveals that parsing mistakes of this type occur often in

long sentences with heavy modification.

Type Instances Odds φc Out-of-model #/%

z_dep35(adj, hd/mod) 11828 2.653 0.20 1213/10.3
z_dep35(noun, cnj/cnj) 18853 2.042 0.12 3192/16.9
z_dep35(noun, hd/mod) 133925 1.962 0.11 8003/6.0

Table 5.5: A shortlist of partially instantiated feature types with respec-

tive statistics.

Note that all the types have relatively low association coefficients be-

cause the bilexical information is only a supplementary source of features

in the parse selection component.

5.3.2 Generalization with semantic classes

For the selected types from Table 5.5, any noun, adjective or adverb partic-

ipating in them will undergo generalization with fine- and intermediate-

grained classes. The semantic types from Cornetto, however, can only be
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obtained for nouns and adjectives since they are not defined for adverbs.

We show in Table 5.6 how the inclusion of semantic classes affects the over-

all parsing accuracy. The configuration using immediate synsets (SYN)

does not result in an overall improvement of parsing accuracy. The aver-

age performance with ten-fold cross validation levels the baseline parser

configuration at 90.46 % CA. The SYN configuration leads to 33 improved

dependency instances, however it also introduces 29 incorrect dependency

instances. There are several reasons why the number of actual parse mod-

ifications here is small. First, the access to the new information is at-

tempted relatively rarely, only after a failed model lookup. Second, Cor-

netto synsets could only be mapped to around 60% of the form-POS pairs

encountered during parsing. Third, the success of finding a generalized

instance having at least one successfully mapped synset ID is 7.85%. This

low number means that synsets cannot generalize sufficiently, which is

understandable—many synsets include only one lexical unit.

Method % Found Improved Deteriorated CA new CA old

SYN 7.8 33 29 90.46 90.46
ST 62.1 178 299 90.35 90.46

Table 5.6: Parsing results obtained by generalization with semantic

classes. SYN: immediate synset, ST: semantic type, Found: instances

found in back-off, Improved: incorrect-to-correct parse modification,

Deteriorated: correct-to-incorrect parse modification. Total number of

test sentences: 11,053.

In the experiment with coarse semantic types (ST), the results are even

worse: The parsing accuracy drops to 90.35%. Although the number of

correctly introduced parses increases in comparison with SYN (to 178), the

number of modifications which result in an inaccurate parse increases as

well (299). The new information thus clearly overgeneralizes. It is possible

that the generalization we obtain with only 20 semantic types for Dutch,

as opposed to 45 types in English WordNet (Agirre et al., 2008), influences

the resulting precision. The results in Table 5.6 show how a better recall (%
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found) from the enhanced model corresponds to a deteriorated precision (#

deteriorated).

The best performing type among the 3 identified types was nominal

conjunction. We applied the method of intermediate granularity (INT) to

this type only. The results for nominal conjunction are shown in Table

5.7. INT method does introduce a higher number of modifications than

SYN, but again at the expense of precision. Further experiments would be

needed in order to confirm whether INT is a better performer than the ST

method. A manual inspection of instances that were parsed correctly as a

result of the incorporated semantic classes confirms our reasoning on the

motivating example from Figure 5.1 for all three dependency types. Con-

sider the following sentence encountered during testing:

(5.4) De afgelopen week werden er in de Utrechtse Camera bioscoop elke dag

Tarzanfilms gedraaid.

Last week, Tarzan films were shown daily in the Camera cinema in

Utrecht.

Method Improved Deteriorated CA new CA old

SYN 7 2 90.47 90.46
ST 20 26 90.45 90.46
INT 16 19 90.45 90.46

Table 5.7: Parsing results for the “z_dep35(noun, cnj/cnj)” type. INT:

class of intermediate granularity (based on IC scores with δ = 6).

The attachment of the word “Utrechtse” is ambiguous between “Camera”

and “bioscoop” (“cinema”). The pair representing the correct attachment,

〈“Utrechtse”, “bioscoop”〉, was not found in the bilexical model and was

not attached correctly by the parser. The word “Utrechtse” was success-

fully substituted with a synset representing place, which then enabled a

successful parse. In contrast, incorrect parses are mostly introduced either

because the head–dependent pair for which the model provides support
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stands for a wrong attachment, or because the relation label in the treebank

is different (e.g. apposition instead of modification).

5.4 Additional related work

Research on parsing improvement with semantic generalization can be

roughly divided into approaches that introduce lexical semantic informa-

tion from human-built resources and the approaches which acquire seman-

tic classes distributionally, e.g. by clustering. Here, we introduce the exist-

ing work of the first type, since it is the most relevant to our work.

One of the earliest attempts to bring lexical semantic information in

parsing is the work of Bikel (2000). He incorporates WordNet classes into

a lexicalized generative PCFG model for English, but without major im-

provements. Bikel also considers several levels of generality but does not

try to determine the optimal level.

Xiong et al. (2005) use resources similar to WordNet for Chinese in or-

der to retrieve sense information; they use three levels of generalization:

the immediate synset as well as two distinct hypernym synsets. The new

class-based information is incorporated as selectional preferences in a gen-

erative lexicalized model, which improves over their baseline model. Fujita

et al. (2007) develop a parse selection model for Japanese, which in its best

configuration uses both syntactic and semantic features. The semantic fea-

tures are based on dependencies extracted from semantic representations

of sentences. Just like in Xiong et al. (2005), the dependency triple elements

are substituted by senses and hypernym classes at various levels. Based on

semantic dependencies and valency features, they achieve a substantial im-

provement over their best syntactic model.

Agirre et al. (2008) experiment with two lexicalized parsing models

(Charniak, 2000; Bikel, 2004) by mapping semantic classes to the training

data. They evaluate the extended models on both general parsing and PP-

attachment disambiguation. Three levels of semantic representation are

incorporated: synsets, coarse semantic files and hybrid word–semantic file
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representations. The semantic files and the first-sense heuristic for disam-

biguation turn out to be good performers in most of the experiments. The

maximum performance gain observed is 1.1% (in F-score) in general pars-

ing and 5.6% in PP-attachment. A more recent work by Agirre et al. (2011)

reproduces these findings, but this time including semantic classes as fea-

tures into a data-driven dependency parser (Nivre, 2006).

Henestroza Anguiano and Candito (2012) introduce probabilistic gen-

eralization features for dependency parsing of French. In their work, a

word is represented as a probability distribution over a space of general-

ized classes, which can be either lemmas, clusters or synsets. They observe

slight improvements on the French Treebank and an out-of-domain medi-

cal corpus using the first-sense synsets from French EuroWordNet. Since

they obtain somewhat higher scores when testing on the out-of-domain

data, they argue that parsing improvement is more likely to be success-

ful when there is a lexical divide between the training set and the testing

set. Similarly, MacKinlay et al. (2012) show mixed results in HPSG parse

selection using the English Resource Grammar. The authors observe no

improvement in including synset features from hypernym paths. The best

performing representations are found to be semantic files, which lead to a

small reduction of error rate.

Clark (2001) learns selectional preferences based on classes obtained

from WordNet and evaluates them in parse selection. Although he fails

to improve the base selection component of the Carroll and Briscoe (1996)

parser, the work is relevant to us since it also addresses the issue of select-

ing a suitable level of generalization. In contrast to other works we have

just referred to, Clark (2001) investigates a more principled way of control-

ling the generalization level. His procedure involves a chi-square test with

the significance level acting as a parameter for controlling the extent of

generalization.

The work of Kiperwasser and Goldberg (2015) is close to ours in that the

bilexical statistics are based on automatically-parsed data. The extracted

statistics are included as features in a graph-based dependency parser.
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Compared to the related work, our approach differs in that we build a

generalization component on top of a bilexical disambiguation component

that has already been included successfully in the syntactic parser. Ad-

ditionally, in our work we do not apply semantic classes indiscriminately

to words in all dependency types, but enhance only specific dependency

types that are identified empirically. We observe that bilexical information

is differently useful for different dependency types, which are in turn dif-

ferently problematic for the parser. This constraint can in principle avoid

applying the new information to dependency types for which the bilexical

model performs well. Our work further differs by including semantic infor-

mation not into full parsing, but in the existing parse selection component.

Additionally, we enhance only the bilexical part of the disambiguation com-

ponent, which limits the room for improvement.

5.5 Conclusion

We have presented an investigation of the lexical sparseness in the parsing

of Dutch, and a technique relying on semantic classes to reduce it. The en-

hancement of the existing bilexical model for parse selection with semantic

classes does not result in improved parsing accuracy, which somewhat mir-

rors the results of MacKinlay et al. (2012) and Bikel (2000). We would like

to emphasize that in our case the bilexical information had been already ex-

plored and included in the Alpino parser, which makes the baseline against

which we compare stronger. In the experiment in which immediate synsets

are used with a back-off strategy after a failed lexical lookup, the number

of correct parses is higher than the number of incorrect ones, but the total

number of modifications is too low to be strongly reflected in the overall

parsing accuracy.

We believe that the impact of our method is limited, firstly, because

the parser commits errors of different types, with incorrect resolution of

attachment ambiguities being just one. Often, an incorrect parse occurs

because of a limitation in the lexicon or grammar, which does not foresee
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a specific construction (which can then lead to an incorrect dependency

relation label); because of the effect of long sentences or non-standard lan-

guage phenomena (e.g. in the case of a misspelling); or because of incorrect

or inconsistent gold annotation (cf. also Manning (2011)).

Because the synsets are fine-grained, they do not effectively reduce

sparseness. Immediate synsets lead to more improvements than deterio-

rations because they represent a specialization (one sense of a word) so the

learned selectional preferences are more accurate, too. In the light of pre-

vious research, it is surprising that the coarse semantic types performed

worse than synsets. This could be at least partly attributed to a different

specification and number of semantic types in English WordNet and Dutch

Cornetto. The experiment in which we choose the suitable level of repre-

sentation by measuring synset generality gives slightly better results than

that of semantic types, although further work should be performed to as-

sess the effect of the threshold parameter on the results. The fact that the

number of parse modifications is low can be explained by Cornetto cov-

erage and the back-off strategy. Our results suggest that higher levels of

generalization yield a higher number of parse deteriorations. Another fac-

tor contributing to deteriorations could be the selection of incorrect senses

for a given word form. It is possible that the first most prominent sense in

Cornetto is often not the most frequent sense. Currently, the form of Dutch

SemCor which would allow us to reorder Cornetto senses by frequency

does not yet exist (Vossen et al., 2013). However, this is unlikely to matter

for senses which are difficult to distinguish and for high levels of represen-

tation with higher chance of converging senses. Further, as noted at the

end of section 5.4, the room for improvement in our experiments is smaller

compared to studies enhancing full parsing or selection components more

generally. It seems that the degree of lexicalization of the parser partly de-

termines the impact of generalization techniques too. For example, Plank

(2011) shows that removing lexical features from Alpino’s selection compo-

nent affects the performance relatively little compared to some data-driven

parsers whose performance can drop as much as 10.5% when unlexicalized.
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The drop percentage might be an indicator of the expected final impact of

generalization.

In the next part, we develop distributional models for inducing se-

mantic classes, which could effectively tackle the problem of resource

coverage—note that around 40% of words could not be mapped to seman-

tic classes because they were not found in the lexical semantic inventory.

Distributional approaches in general can have further advantages, namely

an increased adaptability for out-of-domain parsing, possibility to vary

sense granularity and sense ranking, and the ability to disambiguate word

senses. We will propose two models from which we can obtain lexical fea-

tures which can be used for a variety of tasks.
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CHAPTER 6

Dependency Brown

clustering

We present an effective modification of the popular Brown et al. (1992)

word clustering algorithm using a dependency language model. By lever-

aging syntax-based context, the induced clusters outperform the standard

Brown clusters in a wordnet-based similarity task for Dutch. We find the

improvements to be stable across parameters such as number of clusters,

minimum frequency and granularity. Another practical advantage is that

dependency Brown clustering achieves a desired clustering quality with

less data, which means shorter clustering times. At the end of this chapter,

we also look at the clustering quality when the training data consists of

the instances from specific dependency relations and find that certain re-

lations provide better context, which leads to further improvements over

the standard Brown clustering.

6.1 Motivating the use of syntactic context

Semi-supervised approaches have been successful in various areas of nat-

ural language processing. Among a plethora of clustering techniques,

79
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Brown clustering (Brown et al., 1992) is popular for its conceptual simplic-

ity, available implementations (Stolcke, 2002; Liang, 2005; Klusáček, 2006),

and because the resulting word clusters have been shown to be helpful in

several NLP tasks. The induced clusters represent syntactic and semantic

generalization of words, which can be helpful in dealing with word sparse-

ness.

The Brown clustering groups words distributionally, based on shared

context. However, only immediately adjacent words are taken into account,

which is a known limitation (Koo et al., 2008; Sagae and Gordon, 2009;

Grave et al., 2013). To give an example, even though verbs constitute in-

formative contexts for object nouns, they might not always be immediately

adjacent to the object nouns. However, by extracting the contexts from de-

pendency relations, we get immediate access to these verbs. The difference

between the two types of contexts can be illustrated with the following ex-

ample:

The method repeatedly samples the data

bigram contexts

dependency contexts

The bigram context thus fails to capture the relation between the object

“data” and the predicate “samples”, as well as the one between the subject

“method” and the predicate. Furthermore, the dependency representation

rightly ignores some of the less informative contexts coming from immedi-

ately adjacent words. For example, there is no relation between the predi-

cate “samples” and the article “the” to the right.

Given the above, it might be preferable therefore to induce word clus-

ters based on the dependency relations in which the words occur. In sec-

tion 6.3, we present how this relates to the standard, bigram-based Brown

clustering algorithm, and we modify the implementation by Liang (2005)

to perform dependency clustering. We evaluate the induced clusters in
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a wordnet-based similarity experiment. Dependency clustering yields su-

perior clusters for Dutch across different settings of parameters such as

number of clusters, frequency threshold and level of granularity. Learning-

instance selection on the basis of specific dependency relation labels fur-

ther improves the clustering quality. The proposed adaptation of Brown

clustering does not change the complexity of the algorithm, and—although

we require that syntactically parsed text is available—we find out that

much less data is needed for a desired level of clustering quality.

6.2 The Brown et al. (1992) clustering

The Brown clustering (Brown et al., 1992) is an agglomerative (merge-

based) algorithm that induces a hierarchical clustering of words. It takes

a tokenized corpus and groups word types into k clusters identified with

unique bit strings, representing paths in the induced binary tree in which

the leaves are word clusters. Prefixes of the paths can be used to achieve

clusters of coarser granularity (Sun et al., 2011; Turian et al., 2010). The ob-

tained clusters contain words that are semantically related, or are paradig-

matic or orthographic variants. We are using the term semantic related-

ness in its broadest possible scope. We say that words or clusters are se-

mantically related if they are in any kind of semantic relation: synonymy,

meronymy, antonymy, hypernymy etc. (Turney and Pantel, 2010). Fig-

ure 6.1 illustrates the clustering output as a binary tree with the bit string

identifiers.

The algorithm consists of two phases. In the first phase, the algorithm

starts by putting the k most frequent word types into distinct empty clus-

ters. Then, the k+1th most frequent word is assigned to a new cluster, after

which two among the resulting k+1 clusters are merged, namely the pair

that maximizes the average mutual information of the current clustering.

This process is repeated until all word types have been merged. In the sec-

ond phase, the resulting k clusters are merged to build the binary tree. The

version of the algorithm optimized for speed runs in O(k2|V |), where |V |
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is the vocabulary size.

Brown clustering has been used extensively in NLP tasks such as pars-

ing (Koo et al., 2008; Candito and Crabbé, 2009; Haffari et al., 2011; Pitler,

2012; Kiperwasser and Goldberg, 2015), named-entity recognition (NER)

and chunking (Turian et al., 2010), sentiment analysis (Popat et al., 2013),

relation extraction (Plank and Moschitti, 2013), unsupervised semantic

role labeling (Titov and Klementiev, 2012a), question answering (Momtazi

et al., 2010), POS tagging (Owoputi et al., 2013) and speech recognition

with recursive neural networks (Shi et al., 2013). Recently, multilingual

clustering has been proposed (Täckström et al., 2012; Faruqui and Dyer,

2013), and alternative ways of feature extraction from Brown clusters have

been investigated by Derczynski and Chester (2016).

Among the most frequently recognized limitations (cf. Koo et al. (2008),

Chrupala (2011) and Frank et al. (2013)) are a) the hard clustering approach,

b) the relatively long running time1 and c) the insensitivity to wider context.

Our method attempts to overcome the final disadvantage. As it requires

less data to obtain a similarity result as high as that of the standard Brown

clustering, it also reduces the running time.

Leveraging syntactic context for word representations has been ex-

plored, among others, by Lin (1998b) for distributional thesauri; by Haffari

et al. (2011) for combining Brown clusters and word groupings from split

non-terminals; by Sagae and Gordon (2009) for using unlexicalized syn-

tactic context in hierarchical clustering; by van de Cruys (2010) and Padó

and Lapata (2007) in comparing window- and syntactic-based word space

models; and Boyd-Graber and Blei (2008) in the context of syntactic topic

models.

The work closest to ours is that of Grave et al. (2013). The authors show

that clusters obtained from dependency trees outperform standard Brown

clustering when used as features in super-sense tagging and NER. Their

focus, however, is on a generalization of Brown clustering with Hidden

Markov models (HMMs) and on an extension of Markov chains to trees.

1Especially when k > 3000. Note that the algorithm depends quadratically on k.
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Learning and inference are done with online expectation-maximization

and belief propagation. In the approach of Grave et al., the mapping be-

tween a word and its semantic class is non-deterministic, and can thus cap-

ture homonymy and polysemy. At test time, a context-sensitive inference

can be performed to obtain the word representations (Huang et al., 2011;

Nepal and Yates, 2014). The context sensitivity is certainly an important

advantage over Brown clustering in which the mapping between a word

and a cluster is deterministic. However, it has its own disadvantages: Cre-

ating context-sensitive representations requires possibly costly inference;

furthermore, HMM-based clustering does not build nor lends itself easily

to a hierarchy, which is often exploited during feature creation in super-

vised learning to control cluster granularity (see section 6.5.2). We explore

context-sensitive representations in our own work in the next chapter (us-

ing HMM-based representations) and Chapter 7 (using multi-sense word

embeddings).

Compared to Grave et al. who focus on new representation learning

methods with HMMs on dependency trees, in this chapter we take an in-

depth look at the parameters and the choices that are standardly consid-

ered when using the Brown et al. (1992) algorithm. We show that the ad-

vantage of dependency clustering can be observed throughout different

parametrizations of cluster capacity, granularity level, frequency thresh-

olding and other criteria (section 6), and that the advantage is roughly con-

stant for varying amounts of input data.

6.3 The extension with a dependency language model

The bigram language model underlying Brown clustering takes the prob-

ability of a sentence as the product of probabilities of words based on im-

mediately preceding words. In contrast, we replace this by a dependency

language model (DLM), which defines the probability of a sentence over

a dependency tree (Shen et al., 2008). We will define a dependency tree

as a rooted, connected, acyclic directed graph in which the nodes are the
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words from the vocabulary V . We will refer to the lexicalized tree as ST

and the bare tree structure as T . For our purposes, it will be sufficient to

deal with unlabeled trees, i.e. we discard the dependency relations asso-

ciated with the edges in the tree. The sentence probability under a DLM

can be factorized in different ways (Chen et al., 2012; Charniak, 2001; Popel

and Mareček, 2010), but the common idea is that a word is conditioned on

some history where the link between the two is obtained with dependency

edges. In practice, the history often includes the immediate parent of the

word—which can be either a lexical head or the artificial root node—and

sometimes siblings occurring between the surface realizations of the child

and the parent. Our take on the DLM follows that of Charniak (2001) and

Popel and Mareček (2010), and consists of conditioning the probability of

a word on its parent:

p(ST |T ) =
m∏
i=1

p(wi|wπ(i), T ), (6.1)

where 〈wi〉mi=1, wi ∈ V is the word ordering corresponding to a breadth-

first enumeration of the tree, π : {1, . . . ,K} 	→ {0, . . . ,K} identifies the

single parent of a word, with w0 representing the root of the tree.

The objective in Brown et al. (1992) is specified in the context of a

class-based bigram language model. The intuition for using this subset of

language models relies on assigning distributionally similar words to the

same classes. This can allow better predictions for histories that have not

been previously observed by assuming that they are similar to other, ob-

served histories. The clustering objective is then to find such a determin-

istic clustering function σ mapping each word from the vocabulary to one

of the clusters, σ : V 	→ C , that maximizes the likelihood of the data.

Here, we use the DLM as defined above to replace the bigram formula-

tion in the objective:

L(ST ;σ, T ) =
m∏
i=1

p(wi|σ(wi))p(σ(wi)|σ(wπ(i)), T ), (6.2)
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where i ranges over all children in the tree and π is the parent-assigning

function introduced above. The class transition probability is conditioned

on the class of the parent of wi instead of on the class of the immediately

preceding word. As shown by Brown et al. (1992), the equation (6.2) can

be decomposed to the entropy of the word distribution and the mutual in-

formation between parent-child clusters. Since the entropy is independent

of the clustering function, the objective amounts to finding such clustering

function σ that maximizes the mutual information. We include the rewrit-

ing of the equation (6.2) in terms of mutual information in Appendix A.

On the practical side, the calculation of the mutual information in the

implementation changes to the extent that count tables no longer represent

the adjacency relationship (bigrams) between words but the parenthood

(child–parent relation).

6.4 Experimental setup for Dutch

We evaluate our word clusters by following the method of van de Cruys

(2010) for evaluating vector space models. The method is based on a word-

net for Dutch and assumes that two semantically related words are also

located close to each other in the wordnet hierarchy.2 We use Cornetto

(Vossen et al., 2013), which includes around 92,000 form-POS pairs de-

scribed in terms of lexical units, synsets and other criteria. We refer the

reader to section 5.2.3 for details. For calculating similarity scores, we use

the Lin similarity measure (Lin, 1998b; Sánchez et al., 2011), ranging be-

tween 0 and 1.

Evaluation is guided by a list of 10,000 most frequent words from

SoNaR Oostdijk et al. (2008), a 500M-word reference corpus for Dutch.3

Every word is compared to all other words in the same cluster, and the

average similarity for all comparisons is taken as the final score. The de-

2For English, several semantic similarity datasets are available, some of which can

identify the type of relatedness captured (Faruqui and Dyer, 2014a). We are not aware

of such datasets for Dutch.
3http://lands.let.ru.nl/projects/SoNaR
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scribed method is well suited for measuring intracluster quality, yet useful

information about word similarity is available also by looking at neighbor-

ing clusters in the binary tree. This intercluster quality, according to which

clusters that are close in the binary tree are more similar than clusters that

are far apart, can be captured indirectly by evaluating with differently sized

bit strings. In this way, when a short string is used, two or more semanti-

cally related, but originally isolated clusters are merged, which should re-

sult in a drop in clustering quality (semantic relatedness tends to “dissolve”

when merging).

For both the standard and the dependency Brown clustering, the same

set of sentences is used. To make the experiments computationally practi-

cal, we sampled from SoNaR roughly 46M-word worth of sentences, which

is comparable to the count of English datasets used in Koo et al. (2008)

and Turian et al. (2010). The sentence length was restricted to five or more

words to exclude noisy text. All the corpus annotation was removed.

For dependency clustering, the dataset was lemmatized and parsed

with Alpino (van Noord, 2006). A description of the parser can be found

in section 5.2. Unless specified otherwise, we use first-order dependencies

produced by the parser. The bilexical counts of head and dependent (ig-

noring the relation label) serve as input for dependency clustering.

The corpus domains that we encounter in test time might be different

from those of the corpus on which the parser was tested. As a consequence,

the parser might not always perform with about 90% accuracy reported for

newspaper texts (van Noord, 2010). However, we expect the drop in accu-

racy to be small since it has been shown that the Alpino parser is relatively

insensitive to domain shifts compared to some entirely data-driven parsers

(Plank and van Noord, 2010).

6.5 Empirical study for Dutch

The main parameter in Brown clustering is the number of clusters k, which

we set to either 1000 or 3200, except when measuring clustering capacity,
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for which smaller values of k are used. These values of k are also stan-

dardly encountered throughout the literature. For k above 3200, the algo-

rithm stops being practical on current hardware assuming a single-core

implementation.

We limit the minimum frequency of words in clustering to three, unless

stated otherwise. The resulting vocabulary size in the case of k = 1000

with the frequency threshold applied is around 240,000. We use a paired

t-test to check for statistical significance of observed differences in mean

Lin scores.

6.5.1 Cluster examples

In Table 6.1, we show both the versatility of dependency clusters by di-

viding the examples in five groups (A–E), and the similarity of clusters

within the group. Note that the longer the common substring between the

clusters, the closer they are in the binary tree. Group A includes words de-

scribing professions or people’s roles and functions. Group B lists personal

pronouns, including reflexive pronouns (B2), where substantial differenti-

ation exists with many singleton clusters. Because first and last names are

very common in our corpus, many fine-grained distinctions are created

between these (C). C1 groups names of presidents, whereas C2 and C3 dis-

tinguish between feminine and masculine names. D includes two related

clusters describing means of communication: D1 contains orthographic

variants (e.g. “email” and “e-mail”) and diminutives, e.g. “sms_DIM”, cor-

responding to Dutch “smsje”; whereas D2 includes words for communi-

cation devices and software. Finally, measurable concepts are included in

E.

Complete clusters induced with either the standard or the depen-

dency Brown clustering algorithm can be found at https://github.com/

rug-compling/dep-brown-data.
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6.5.2 Cluster quality

Table 6.2 presents the general quality of standard and dependency clus-

tering. The results for 1000 and 3200 clusters show that we obtain a higher

similarity score for 3200 clusters compared to 1000, and a more marked dif-

ference between the standard and the dependency clustering in the case of

k=3200 (Δ=0.019). We also look at how many words from the frequency

list were evaluated successfully. The recall depends on the success of map-

ping between words and synsets as well as the success of finding the word

in one of the clusters. The latter factor influences the recall to a much lesser

degree, as almost all words are found in the clustering. For 3200 clusters

with the minimum frequency set to fifty, approximately 5000 words are suc-

cessfully evaluated, whereas for 1000 clusters, this number is around 7000

due to a different frequency threshold. These numbers are not affected by

the type of clustering (standard or dependency).

k Brown DepBrown Δ

1000 0.191 0.196 +.005*
3200 0.279 0.298 +.019**

Table 6.2: Lin similarity scores for the standard (Brown) and the de-

pendency Brown clustering (DepBrown), with k the number of clusters.

Δ=DepBrown – Brown. Frequency threshold of 50 is used for clustering

with k = 3200. *: statistically significant with p < 0.05, **: statistically

significant with p < 0.001.

The results under three different clustering parametrizations are shown

in Table 6.3. One way of controlling the granularity is to choose the num-

ber of output clusters k. As shown in the table under CAP (“capacity”), the

dependency clustering achieves a better quality regardless of the choice

of k, and in general, choosing a smaller k decreases the quality, which is

compatible with the observations of Turian et al. (2010) in their chunking

experiments.

It is often the case that frequent words within a single cluster exhibit
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Setting k min Brown DepBrown Δ

CAP

200 10 0.148 0.157 +.009
400 10 0.169 0.175 +.006
600 10 0.182 0.191 +.009
800 10 0.191 0.205 +.014

FREQ

1000 5 0.196 0.204 +.008
1000 10 0.202 0.216 +.014
1000 20 0.206 0.221 +.015
1000 30 0.209 0.224 +.015
1000 50 0.216 0.227 +.011

NOUNS 1000 3 0.272 0.279 +.007

Table 6.3: Lin similarity scores for the standard Brown and the depen-

dency Brown clustering (DepBrown), with k the number of clusters, min
the minimum frequency of words. CAP: varying k, fixed min; FREQ:

varying min, fixed k; NOUNS: evaluating only nouns, Δ=DepBrown –

Brown. All the results reported for DepBrown are significantly different

from Brown with p < 0.001.

clear semantic relatedness, but rare words are semantically quite unre-

lated.4 This is confirmed by our results in which the quality of the clus-

tering improves approximately logarithmically with frequency threshold

increasing (FREQ). The margin between the standard and the dependency

clustering is also increasing as we increase the threshold. In downstream

tasks, Brown clusters bring improvements with both a high frequency

threshold (Owoputi et al., 2013) as without thresholding (Koo et al., 2008;

Turian et al., 2010).

We also investigate the quality of nouns only to facilitate the compari-

son to van de Cruys (2010). We observe a considerable gain in quality when

only nouns are used compared to using all parts of speech—the Lin score is

increased by 0.08. In the noun-only evaluation, the dependency clustering

also achieves a higher score (0.279) than the standard clustering (0.272). It

4Although cf. Turian et al. (2010) who show that Brown clustering has a superior

representation for rare words than the neural word embeddings in their experiment.
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Figure 6.2: Effect of bit string length of the standard and the depen-

dency Brown clustering on the similarity scores. The number of clusters

parameter set to 1000, and frequency threshold to 10.

is shown in van de Cruys (2010) that syntactic vector space models outper-

form window-based models, which is confirmed by our finding for word

clustering as well. In his work, the syntactic vector space models yield a

0.04 advantage in Lin score, whereas our dependency clusters achieve a
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less marked advantage, reaching up to 0.019 in Lin score. A possible ex-

planation for this difference is that in his evaluation an average over only

five most similar nouns is taken, whereas we impose no such restriction.

We would like to point out that our work does not aim to compare and

discuss the merits of clustering and vector space models as two competing

techniques for obtaining word representations, but rather to provide a com-

prehensive comparison of the standard Brown clustering to its dependency

extension.

An effect similar to that of controlling capacity with the parameter k

can be achieved by making use of the fact that the induced structure is a

hierarchy. While the parameter k needs to be chosen before clustering, the

hierarchical structure can be exploited during feature extraction based on

the already existing clusters. By truncating the path bit string, we can con-

trol the cluster granularity. For different tasks, different bit string lengths

might be appropriate (Sun et al., 2011; Koo et al., 2008; Miller et al., 2004).

For example, one might prefer coarser distinctions (i.e. shorter bit strings)

in parsing, while finer granularity might be necessary to obtain effective

representations of proper names in NER. We have ran the experiment with

string length ranging from one to eighteen, and show the results in Fig-

ure 6.2. Across the board, the dependency clustering yields better results

than the standard clustering. Naturally, with shorter strings the quality de-

creases, which is explained by an increasing word population in the clus-

ters, with more and more distant (both hierarchically and semantically)

clusters being merged.

6.5.3 Amount of data

Figure 6.3 shows the amount of data needed to achieve a certain quality

of clustering. For clustering on one hundred thousand sentences the sim-

ilarity score for DepBrown is around 0.165 and for Brown around 0.155.

For each subsequent addition of the data, the dependency clustering con-

tinues to outperform the standard clustering, with a single exception at

2.2 million sentences. In order to achieve the highest score attained by the
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Figure 6.3: Learning curves for the standard and the dependency Brown

clustering with 1000 clusters. Dashed line displays the difference in

amount of data (in millions of sentences) needed for DepBrown to achieve

the best quality of Brown. Using all 2.7 million sentences from the corpus

corresponds to 46 million words.

standard clustering (0.193) with 2.2 million sentences, dependency cluster-

ing requires only around 0.6 million sentences, which is around 1.6 million
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sentences (or 27 million words) less. This observation is advantageous es-

pecially because less data means shorter running time for clustering as the

number of word types is reduced.5

6.5.4 Data selection with dependency relations

Our dependency clustering described in the previous sections operates on

words appearing in any dependency relation. We now investigate whether

selecting only a particular dependency relation—i.e. using both parent and

child words from that dependency relation as input—leads to clusters with

stronger semantic relatedness. Each relation can be characterized as either

a first- or a second-order relation. A second-order relation is between the

words with an intervening preposition, e.g. between a verb and a noun of a

directional complement introduced by a preposition, such as in the Dutch

“eten achter pc” (“eating at the computer”).6 We have induced distinct sets

of clusters for each of the forty-five dependency relations and measured

the quality of each of them separately. The cumulative baseline that does

not distinguish between dependency relations (studied before) is given in

Table 6.4 as ALL (Ord-1). This is the same result as reported in Table 6.2

for k = 1000. The addition of second-order dependencies (Ord-1 & Ord-2)

does not change the clustering quality of the baseline (0.196) but increases

the number of types.

In the upper part of Table 6.4, we list six relations that lead to a clus-

tering quality which is above the baseline. Two conclusions can be drawn

from the results on these relations. First, some dependency relations con-

tribute better context that leads to increased semantic relatedness com-

pared to clustering without relation selection. Second, both the first- and

the second-order relations appear among the relations outperforming the

baseline. The highest score from the top six relations is achieved by using

5Of course, in practice the advantage is only applicable when the parsed text already

exists.
6The preposition should be seen only as an implicit link between the words and is not

included in the input data for clustering. For the example fragment, “eating-computer”

would constitute a data instance used by the algorithm.
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Type Ord-1 Ord-2 DepBrown Population

OBJ2 � 0.238 1,622
LD � 0.233 2,419
PC � 0.211 21,157
LD � 0.208 12,149
OBJ1 � 0.203 108,037
SU � 0.199 79,844

ALL � 0.196 495,479
ALL � � 0.196 559,908
SU+OBJ1 � 0.202 156,645

Table 6.4: Lin similarity scores for the dependency Brown clustering

(DepBrown) per type of dependency relation. Ord-1: first-order relation;

Ord-2: second-order relation (with intervening preposition); Population:

number of word types in the clustering.

the instances exclusively from the second-order secondary object (OBJ2) re-

lation. However, relatively few word types are included. The same is true

for the first-order directional complements (LD). Of course, clustering with

only one of these relations would have quite limited applicability if used in

a downstream NLP task due to the low number of word types. However,

the main point we want to make is that these relations yield semantically

superior clusters, and as such deserve further attention in learning seman-

tic clusters using syntax. The remaining four among the top six relations

are more frequent, and lead to sets of clusters with higher number of word

types. These are the second-order prepositional complement (PC) and di-

rectional complement (LD), and the first-order direct object (OBJ1) and sub-

ject (SU) relations. Finally, the setting SU+OBJ1 joins words obtained from

the two largest categories, the subject and the direct object relations. It

achieves a quality that falls somewhere between the values obtained for

the two relations separately, and still increases the number of word types.
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6.6 A study on English

We now present another empirical study to investigate whether depen-

dency clustering in English leads to the same advantage as observed in

Dutch. Throughout, we follow the same experimental setup as for Dutch,

but the resources and the syntactic parser are different. We now describe

those in more detail, and then present a summary of our findings.

6.6.1 Experimental setup

We carry out the wordnet similarity evaluation task in the same way as de-

scribed in section 6.4, however with a wordnet for English, namely Word-

Net v.3 (Miller, 1995), conveniently included in the NLTK library (Bird

et al., 2009). We use the implementation of the Lin similarity measure from

NLTK, which differs from the one we have used for Dutch in that it is based

on an information-theoretic notion of information content7, and amounts

to taking the inverse of the frequency of a word in a corpus. We use the IC

scores already available in NLTK, precomputed from the British National

Corpus Leech (1992) for nouns and for verbs.

We use the BLLIP (Charniak et al., 2000) corpus to induce the clusters

for English. The corpus contains around 43 million words of Wall Street

Journal text. We ensure that the sentences of the Penn Treebank, which is

used to train our dependency parser, are removed prior to clustering. Al-

though this step is only really needed for dependency clustering, we use

the filtered corpus for both types of clustering to enable a fair comparison.

To obtain the dependency tuples that serve as input for dependency clus-

tering, we parse the corpus with the MST parser (McDonald and Pereira,

2006). We use the projective, second order model variant, and train it on

sections 2–21 of the Penn Treebank Wall Street Journal (PTB). Prior to that,

the PTB was patched with NP bracketing rules (Vadas and Curran, 2007)

and converted to dependencies with the LTH converter (Johansson and

Nugues, 2007). Our trained parsing model achieves the unlabeled accuracy

7The IC criterion for Dutch was defined ontologically, see equation (5.3).
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of 91.84 and the labeled accuracy of 87.36 on section 23 of the PTB without

retagging the POS. At train and test time, the parser relies on POS tags. In

our case, we assign these with Citar (https://github.com/danieldk/citar), a

trigram HMM POS tagger inspired by the work of Brants (2000). We use

the standard splits of the PTB for training and testing, sections 00–18 and

22–24, respectively. The tagger achieves the accuracy of 96.3. The output of

the parser is a CoNLL-formatted file, from which we extract dependency

tuples of head–dependent pairs in any dependency relation. The vocab-

ulary size for the base setting of clustering with the minimum frequency

threshold of 3 is around 320,000 for English. This number is somewhat

higher than in Dutch due to the use of word forms in English and word

roots in Dutch.

6.6.2 Empirical summary

Setting k min Brown DepBrown Δ

CAP

200 3 0.172 0.168 −.004
400 3 0.187 0.181 −.006
600 3 0.199 0.190 −.009
800 3 0.204 0.197 −.007

3200 50 0.319 0.313 −.006

FREQ

1000 3 0.212 0.201 −.009
1000 5 0.225 0.212 −.013
1000 10 0.240 0.229 −.011
1000 20 0.255 0.246 −.009
1000 30 0.264 0.256 −.008
1000 50 0.276 0.266 −.010

NOUNS 1000 3 0.215 0.206 −.009

Table 6.5: Lin similarity scores for the standard Brown and the depen-

dency Brown clustering (DepBrown) for English, with k the number of

clusters, min the minimum frequency of words, Δ=DepBrown – Brown.

The similarity scores for English are reported in Table 6.5. Under all
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investigated conditions—varying the clustering capacity, the frequency of

words for inclusion and the restriction to nouns, the situation is the reverse

of what we have seen for Dutch, with dependency Brown clusters failing

to outperform the standard clusters. Another difference to the situation for

Dutch is that here we only observe a very modest increase in the quality

when constraining the POS tags to nouns (as opposed to using all POS).

One explanation for this might be that in English the evaluation covers only

nouns and verbs, while in Dutch it also includes adjectives and adverbs.

For these, as well as for verbs, the quality in Dutch is lower than for nouns.

How can we interpret the finding that the the dependency represen-

tation in Brown clustering for English has such a different effect than for

Dutch? One possible explanation is that the input tuples are of different

quality or type. For example, the dependency parser for English might

make more mistakes than the parser for Dutch. However, we expect that

this effect should be small, if at all existing, since the parsing accuracies

measured on the test sets are comparable in both Dutch and English. It

is also unlikely that the accuracy of the English parser could be affected

by a domain shift. The BLLIP corpus and WSJ have very similar domains,

chiefly economical news. In addition, the dependency parsing schemes

might follow different attachment conventions, leading to extraction of a

different types of tuples, or contexts. An example is the case of coordina-

tion attachment, for which the convention is to link the coordinated ele-

ments together in Dutch, but not in English. 8

Next, it might be the case that the effect can be accounted by the dif-

ferences between languages (Bender, 2011). The word order is generally

accepted to be less fixed in Dutch than in English. This means that the stan-

dard bigram clustering approach can capture the selectional preferences

less well than in English. Because of that, the dependency representation

could be more useful for Dutch than for English.

8In the sentence “Enkele belangrijke en actieve leden ( naast Vlaanderen ) zijn [. . . ]”

(“Some important and active members (next to Flanders) are . . . ”), a conjunction relation

would couple “belangrijke” and “actieve”, which would consequently constitute a tuple.
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Lastly, the effect could be related to the specific task. However, given

the findings from the subsequent study on HMM-based representations

(Chapter 7), this factor is unlikely to be strong as the same language pattern

emerges there.

6.7 Additional related work

The topic of linear versus syntactic context in word cluster induction has

been studied for English by Grave et al. (2013), which is the work most re-

lated to ours. In their research, the semantic clusters are seen as a special

case of HMM-induced representations in which the model’s function for

mapping words to clusters is deterministic. The main focus of Grave et

al. is on continuous, non-deterministic HMM representations, and on the

techniques for efficient learning. While the Brown clusters, both standard

and dependency-based, are used in their work, they only include the clus-

ters in default form without exploring the clustering parameters as we do

here. The role of context type in Brown clustering has been first studied by

Momtazi et al. (2010), but in a task-specific setting that includes term extrac-

tion for sentence retrieval. They compare differently sized linear contexts,

window-2 and window-5, as well as a sentence- and a document-based

context type. In addition, they include dependency contexts obtained by

parsing with Minipar (Lin, 2003). They find that bigram-based clusters

outperform all other context types when evaluated in sentence retrieval.

A substantial amount of work on the properties of linear and syntac-

tic contexts has been done in the domains of automatic detection of sim-

ilar words (Lin, 1998a; Grefenstette, 1994; Ruge, 1992; Hindle, 1990) and

in distributional word-space modeling (Padó and Lapata, 2007; Baroni

and Lenci, 2010; van de Cruys, 2010) as well as in topic modeling (Boyd-

Graber and Blei, 2008). In the framework of distributed word represen-

tations (word embeddings), the contribution of dependency contexts has

been explored by Levy and Goldberg (2014a). While all these methods ulti-

mately try to capture some broad notion of semantic similarity, they differ
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in how they represent words: Word space models use high-dimensional

vectors of sparse co-occurrence counts; distributed word representations

as well as HMM-based word representations use lower-dimensional (typ-

ically around 100) dense vectors; and Brown clusters use discrete binary

codes to uniquely identify the word cluster in the hierarchy.

6.8 Conclusion

We have presented a detailed study on extending the Brown clustering al-

gorithm with a dependency language model. In the first part, we have

shown the advantage of the dependency clustering over the standard

Brown algorithm in a series of experiments in which we have investigated

the impact of cluster capacity, granularity level, frequency thresholding,

amount of data and more. In the second part, we put forward the idea

of selective clustering using data obtained only from specific dependency

relations. Several relations lead to an improved intracluster similarity.

Our findings from the experiments on selective clustering warrant the

development of more complex models that could use the additional infor-

mation available in the form of syntactic functions in the creation of seman-

tic clusters. This is the topic of the next chapter.

In the present chapter, we have analyzed the cluster quality by means

of a wordnet similarity task. We have chosen this method because it is in-

formative about the generic quality of the clusters, i.e. one that is not linked

to any particular task. Still, we need to acknowledge that the relationship

and the qualitative difference between the dependency and the standard

clustering might not be the same in a downstream NLP application. Al-

though the dependency clusters will not be the focus of the next chapter,

we will still use them as baseline features, and will report also on their

performance in extrinsic tasks, for both Dutch and English.

Another interesting question which we do not address in this thesis is

how the parsing accuracy affects the quality of obtained clusters.





CHAPTER 7

A discrete latent-variable

model with syntactic

functions

In this chapter, we build on the work from the previous chapter and con-

sider a model which will not only be based on syntactic structure, but will

also use the labels of syntactic relations. Unlike in Brown clustering in

which only hard assignments to semantic classes are possible, the latent-

variable models discussed here can provide distinct word representations

depending on the context in which words occur. Since word representa-

tions induced from models with discrete latent variables such as Hidden

Markov models (HMMs) have been shown to be beneficial in many NLP

applications, we use HMMs as the basis for our work. We exploit labeled

syntactic dependency trees and formalize the induction problem as un-

supervised learning of tree-structured hidden Markov models. Syntactic

functions are used as additional observed variables in the model, influenc-

ing both transition and emission components. Such syntactic information

can potentially capture more fine-grained and functional distinctions be-

tween words, which, in turn, may be desirable in many NLP applications.

103
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We evaluate the word representations on two tasks—named entity recog-

nition and semantic frame identification. Compared to an unlabeled tree

model, we observe improvements from exploiting syntactic function infor-

mation in both applications, and find that the obtained results rival those

of state-of-the-art representation learning methods. Additionally, we re-

visit the relationship between sequential and unlabeled-tree models and

find that the advantage of the latter is not self-evident.

7.1 Hidden Markov models and their variants

Although the methods for obtaining word representations are diverse (see

previous chapters), they normally share the well-known distributional hy-

pothesis (Harris, 1954), according to which the similarity is established

based on occurrence in similar contexts. However, word representation

methods frequently differ in how they operationalize the definition of con-

text. We have discussed in the previous section how syntactic contexts can

lead to superior representations compared to those obtained from linear se-

quences in several downstream tasks (Grave et al., 2013; Bansal et al., 2014;

Sagae and Gordon, 2009; Belinkov et al., 2014) as well as when evaluated

on semantic similarity tasks (Levy and Goldberg, 2014a; Padó and Lapata,

2007).

Unlike the majority of recent work pursued in the context of neural

network-inspired word embeddings (Collobert and Weston, 2008; Mikolov

et al., 2013a; Pennington et al., 2014), the methods discussed in this chapter

fall into the framework of hidden Markov models, building on the previous

work of Grave et al. (2013) and Huang et al. (2014). Although HMMs are

much less explored for the purpose of word representation learning, they

are appealing due to their ability to provide context-sensitive representa-

tions, in the sense that the same word in two different sentential contexts

can be given distinct representations. In this way, we are able to account for

various senses of a word. While this advantage comes naturally in HMMs,

the handling of polysemy and homonymy typically requires a substantial
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model extension in other frameworks, cf. Huang et al. (2012), Tian et al.

(2014), Neelakantan et al. (2014) as well as our own work described in the

next chapter. On the downside, context sensitivity in HMMs requires infer-

ence, which is expensive compared to a simple lookup, so we concentrate

in our experiments on word representations that are originally obtained

in a context-sensitive way, but are available for lookup as static representa-

tions at test time.

In our method, we include two types of observed variables, namely

words and syntactic functions, and a latent variable which captures the

meaning of the word. The added observed syntactic function variable al-

lows us to address a drawback of learning word representation from un-

labeled dependency trees in the context of HMMs (section 7.2). The moti-

vation for including syntactic functions comes from the intuition that they

in fact act as proxies for semantic roles. The current research practice is to

either discard this type of information (so context words are determined

on the syntactic structure alone (Grave et al., 2013)), or include it in a pre-

processing step, i.e. by attaching syntactic labels to words, as in Levy and

Goldberg (2014a).

We evaluate the word representations in two structured prediction

tasks, named entity recognition and semantic frame identification. As our

extension builds upon sequential and unlabeled-tree HMMs, we also re-

visit the basic difference between these two architectures, but are unable

to confirm entirely the alleged advantage of unlabeled syntactic context

for word representations in the named-entity recognition task.

7.2 Motivating syntactic functions

A word can typically occur with distinct syntactic functions. Since these

account for words in different semantic roles (Bender, 2013; Levin, 1993),

the incorporation of the syntactic function between a word and its parent1

1Here, just like in the previous chapter, we adhere to the “parent”–“child” terminol-

ogy, although “governor”/“head”–“dependent”/“child”/“modifier” are also found in

the literature (Kübler et al., 2009).
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could give us more precise representations. For example, in “Carla bought

the computer”, the subject and the object represent two different semantic

roles, namely the buyer and the goods, respectively. Along similar lines,

Padó and Lapata (2007), Séaghdha and Korhonen (2014) and Grave et al.

(2013) argue that it is inaccurate to treat all context words as equal contrib-

utors to a word’s meaning. We have also provided some evidence in the

previous chapter, in which we have seen how a data selection technique

based on dependency relations affects the final semantic similarity scores.

In HMM learning, the model parameters learned from unlabeled syn-

tactic structure encode the probabilistic relationship between the hidden

states of parent and child, and that between the hidden state and the ob-

served word. The tree structure thus only defines the word’s context, but

is oblivious of the relationship between the words. For example, Grave

et al. (2013) acknowledge precisely this limitation of their unlabeled-tree

representations by providing as example a hidden state of a verb that can-

not discriminate between left (e.g. subject) and right (e.g. object) neighbors

because of shared transition parameters. This adversely affects the accu-

racy of their super-sense tagger for English. Similarly, we have demon-

strated in Chapter 6 that filtering dependency instances based on syntactic

functions can positively affect the quality of obtained Brown word clusters

when measured in a wordnet similarity task.

7.3 A tree model with syntactic functions

We now introduce some notation that we will use to define the tree model

with syntactic functions. We represent a sentence as a tuple of K words,

w = (w1, . . . , wK), where each wk ∈ {1, . . . , |V |} is an integer represent-

ing a word in the vocabularyV . In the vanilla inference procedure, the goal

is to infer a tuple ofK states c = (c1, . . . , cK), where each ck ∈ {1, . . . , N}
is an integer representing a semantic class of wk

2, and N is the number of

2In the previous chapter, the semantic class of wk was assigned by a clustering

function σ, while here we use the variable c for convenience.
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states, which needs to be set prior to training. In the continuation, we will

see other, more information-rich methods by letting wk’s representation

be a probability distribution over N states. In that case, we denote wk’s

representation as uk ∈ R
N .

As usual in Markov models, we can reason about the model architec-

ture from the point of view of generation. The generation of the sentence in

an unlabeled-tree HMM can be decomposed into the generation of classes

(transitions) and the generation of words (emissions). The process is de-

fined on a tree, in which a node ck is generated by its single parent cπ(k),

where π : {1, . . . ,K} 	→ {0, . . . ,K}, with 0 representing the root of the

tree (the only node not emitting a word). We denote a syntactic function

as r ∈ {r1, . . . , rS}, where S is the total number of syntactic function types

produced by the syntactic parser. We encode the syntactic function at po-

sition k as rk � rwk→wπ(k)
, i.e. the dependency relation between wk and its

parent.

We would like the variable r to modulate the transition and emission

processes. We achieve this by drawing on a special type of HMM, called the

Input-output HMM. It was first introduced by Bengio and Frasconi (1996)

as a sequential model in which an additional sequence of observations

called “input” becomes part of the model, and the model is used as a con-

ditional predictor. The authors describe the application of their model in

speech processing, where the goal is to obtain an accurate predictor of the

output phoneme layer from the input acoustic layer. Our focus is, in con-

trast, on representation learning (the hidden layer) rather than prediction

(the output layer). We also adapt the sequential topology used by Bengio

and Frasconi to trees.

We condition the probability distribution of words and semantic

classes on syntactic functions, using the following factorization:

p(w, c|r)=
K∏

k=1

p(wk|ck, rk)p(ck|cπ(k), rk), (7.1)

where rk encodes additional information aboutwk, in our case the syntactic
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function of wk to its parent. This is represented graphically in Figure 7.1.

The parameters of the model are stored in column-stochastic3 transition

and emission matrices4:

T, where Tijl = p(ck=i | cπ(k)=j, rk=l)

O, where Oijl = p(wk=i | ck=j, rk=l)

The number of required parameters for representing the transitions is

O(N 2 S), and for representing the emissions O(N |V |S). In practice, the

number of syntactic functions S is small. Additionally, we find it beneficial

to restrict S to most frequent syntactic functions (see section 7.1 for details).

Our model satisfies the single-parent constraint and can be applied to

proper trees only. It is in principle possible to extend the base representa-

tion for the model by using approximate inference techniques that work on

graphs (Murphy, 2012, section 20.4), but we do not explore this possibility

in this thesis.5

As opposed to an unlabeled-tree HMM, which is a representative of

a homogeneous model, our extension can in fact be categorized as an

inhomogeneous (or non-stationary) model since the transition and emis-

sion probability distributions change as a function of input (cf. Bengio

(1999) and Murphy (2012)). Another comparison concerns the learning of

long-term dependencies: Since in the Input-output architecture the tran-

sition probabilities can change as a function of input at each k, they can

be sharper (have lower entropy) than the transition probabilities of a ho-

mogeneous HMM. Having the transition parameters closer to zero or one

reduces the ambiguity of the next state and allows the context to flow more

easily. To verify and illustrate that with a concrete example, we have used

the transition parameters of two of our trained models as input data for

3Which means that each column sums to 1: ∀l ∈ r, ∀j ∈ c :
∑

i T
(l)
ij = 1.

4We are abusing the terminology slightly, as these are in fact three-dimensional

arrays.
5This would be relevant for dependency annotation schemes which include sec-

ondary edges.
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tree−hmm synfunc−hmm

0.00

0.25

0.50

0.75

1.00

−10 0 10 −10 0 10
density function

tr
an

si
tio

n 
pr

ob
ab

ili
ty

Figure 7.2: The shape of the transition probability distribution for each

of synfunc-hmm, the tree HMM with syntactic functions, and tree-hmm,

the unlabeled-tree HMM.

Figure 7.2. In these plots, the probability densities are shown using the

width of the plot, and the continuous y-axis represents transition probabil-

ity values. The violin plots make it easy to spot the relative differences in

the transition probabilities of the two models. We see that in both cases,
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the probability of most transitions is low, but the transition probabilities

of the tree HMM with syntactic functions are more peaky than those of

an unlabeled-tree HMM: The density plot is even more concentrated at

the extremes, i.e. closer to either 0 or 1, whereas the middle spectrum is

thinner. We confirm this difference also numerically by calculating the cu-

mulative entropy of the transition probability distribution, which gives a

lower entropy of 5.34 to the inhomogenous synfunc-hmm and 5.6 to the

homogenous tree-hmm model. We can thus confirm the reasoning above

about the sharper transition probability distribution in the case of inho-

mogenous models.

7.4 Learning and inference

We train the model with the Expectation-Maximization (EM) algorithm

(Baum, 1972; Dempster et al., 1977) and use the sum-product message

passing for inference on trees (Pearl, 1988). The message passing, some-

times also called belief propagation, is an instance of exact inference al-

gorithms for graphical models, and corresponds to the forward-backward

recursions (Stratonovich, 1960; Rabiner, 1989) for inference in sequential

HMMs. The estimation of hidden states in our case is the same as in an

unlabeled-tree model, except that it is performed conditionally on r. We

provide the details of the inference algorithm in Appendix B.

The E-step uses the current model parameters to calculate, for each

training example, the posterior probability of each label. In supervised

learning, we need an empirical distribution p̂(X,Y ), but in unsupervised

learning, we’re given only a distribution over observations, p̂(X). The

role of the E-step is to provide an estimate of conditional probability of

Y , which is not observed, given X , allowing us to obtain a complete dis-

tribution p̂(X,Y ). The M-step then simply performs supervised learning,

finding maximum-likelihood estimate (MLE) from the multinomial model

family P given the complete sample.

In our case, we are concerned with estimating the parameters T and
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τijl =
N∑

n=1

Kn∑
k=1

E

[
1{C(n)

k =i, C
(n)
π(k)=j, R

(n)
k =l}

∣∣∣W (n)=w(n), R(n)=r(n)
]

ωijl =
N∑

n=1

Kn∑
k=1

E

[
1{W (n)

k =i, C
(n)
π(k)=j, R

(n)
k =l}

∣∣∣W (n)=w(n), R(n)=r(n)
]

Figure 7.3: Obtaining pseudo-counts, or expected sufficient statistics, in

the E-step.

O of our tree HMM with syntactic functions. In the E-phase, we obtain

pseudo-counts, or the expected sufficient statistics, on the basis of the exist-

ing parameters, as shown in Figure 7.3. These are calculated with the sum-

product message passing algorithm and represent the number of times that

each hidden variable is expected to be used with the current setting of the

parameters. The M-step then simply normalizes the pseudo-counts

T̂ijl =
τijl∑
j′ τij′l

(7.2)

in the case of transition parameters and, similarly, for emissions. The com-

plexity of the message passing algorithm is proportional to the number of

nodes in the tree and the square of the number of states in the model (if a

word can take on any semantic class).

7.4.1 State splitting and merging

We explore the idea of introducing complexity, i.e. the desired number of

states, progressively in order to alleviate the problem of EM finding a poor

solution. Note that this can be particularly severe when the search space

is large (Petrov et al., 2006). The splitting procedure starts with initializing

the model parameters with a small number of states, then splits the param-

eters of each state s into s1 and s2 by cloning s and slightly perturbing to
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break the symmetry. The model is retrained, and a new split round takes

place. The split-and-train procedure is repeated until the desired num-

ber of states is reached. To allow splitting states to various degrees—so

that some states would ultimately become more fragmented than others—

Petrov et al. also merge back those already split states which improve the

likelihood the least. The motivation for this step is that excessive fragmen-

tation of hidden states can yield less robust state estimates, leading to over-

fitting. This can be justifiable in cases when a class is relatively general

and would not profit from further subcategorization.6 Although the merge

step is done approximately and does not require new cycles of inference,

we find that the extra running time does not justify the sporadic improve-

ments we empirically observe. We settle therefore on the splitting-only

regime, and instead of training the model with 2k states directly, we find it

most beneficial to begin with k − 2 or k − 1. So, for a model in which the

desired number of states is 128 (k = 7), the splitting procedure works well

when beginning with 32 (k = 5) or 64 (k = 6) states, whereas the perfor-

mance with smaller k (< 5) is actually worse than when training without

splitting.

7.4.2 Decoding for HMM-based models

Once a model is trained, we can search for the most probable states given

observed data by using the max-product message passing (Max-Product,

a generalization of the Viterbi algorithm that works on sequential data) for

efficient decoding on trees:

ĉ = argmax
c

p(C = c |W = w, R = r). (7.3)

We have also tried posterior (or minimum risk) decoding (Lember and

Koloydenko, 2014; Ganchev et al., 2008), in which we calculate the states

that are individually the most probable given the observation. The method

works by performing message passing to obtain the state posteriors, after

6E.g., a part-of-speech category for function words, like determiners (Petrov, 2009).
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which the maximum scoring states can be determined. In our empirical

study on the development set of the NER data, however, we find no consis-

tent improvement over the max-product message passing.

It is also possible to omit the search for the best states and simply use

the posterior state distribution uk overN hidden states, obtained with the

inference algorithm (Nepal and Yates, 2014; Grave et al., 2014):

u(k)
c = E

[
1{Ck = c} ∣∣W = w, R = r

]
. (7.4)

We call this representation Post-Token. Since it is vectorial, it can bear

more information than the optimal discrete states. It is worth emphasizing

that in both Max-Product and Post-Token, inference is performed based

on a given sentence, thus providing a context-dependent representation.

We find in our experiments that Post-Token consistently outperforms Max-

Product due to its ability to carry more information and uncertainty. This

can then be exploited by the downstream task predictor. Similar observa-

tions have been made by Huang et al. (2014) and Nepal and Yates (2014).

One disadvantage of using context-sensitive representations at test

time is that obtaining them is relatively costly. That is both because syntac-

tic parsing is required by our models and because the computation needed

for inference is more time consuming than when using a simple lookup.

Another disadvantage with techniques involving inference and decoding

is that these are sometimes not applicable. An example is information re-

trieval, where the entire sentence is usually not given (Huang et al., 2011),

and only a word or two are provided as a query. Based on these argu-

ments, it can be beneficial therefore to accept a trade-off between full con-

text sensitivity and efficiency; this can be achieved in our case with an al-

ternative, static representation called Post-Type. These representations can

be obtained in a context-insensitive way at test time (Huang et al., 2011;

Grave et al., 2014). In order to prepare them, we simply average the poste-

rior state distributions (which are context-sensitive) of all occurrences of a
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word type w̃ from a large corpus U :

v(w̃) =
1

Zw̃

∑
i∈U :wi=w̃

u(i). (7.5)

In other words, we obtain a generic, one-vector-per-word representation,

in which the different senses found in different contexts are in fact con-

flated.

hand

director

leg

foot

headchairman

face

president

shoulder

manager

eye

chief

executive

_head_
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●
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●

●

●

●

●

●

●

("The head louse is one of the three
types of lice that infest people")

Figure 7.4: Example representations obtained with our model with syn-

tactic functions. All are static Post-Type representations, except “_head_”,

which is obtained with Post-Token from the concrete sentence included

in parentheses.

In Figure 7.4, we give a graphical example of some word representa-

tions learned with our model (subsection 7.5.5), obtained either with the

Post-Token or the Post-Type. To visualize the representations, we apply
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multidimensional scaling.7 We can see that the model clearly separates

between management positions and parts of body, and interestingly, puts

“head” closer to management positions, which can be explained by the

business and economic nature of the Bllip corpus. The words “chief” and

“executive” are located together, yet isolated from others, possibly because

of their strong tendency to precede nouns. The arrow on the plot indicates

the shift in the meaning when a Post-Token representation is obtained for

“head” (part-of-body) within a sentence.

Despite the advantage of Post-Token to account for word senses, we

observe that Post-Type performs better in almost all experiments. A likely

explanation is that averaging increases the generalizability of representa-

tions. For the concrete tasks in which we apply the word representations,

the increased robustness simply outweighs context sensitivity. Another ex-

planation could be that Post-Type might be less sensitive to parsing errors

at test time.

7.5 Empirical study

7.5.1 Parameters and setup

We train our models following an online learning regime. Specifically,

we use the mini-batch step-wise EM (Liang and Klein, 2009; Cappé and

Moulines, 2009), and determine the hyper-parameters on the held-out

dataset of 10,000 sentences to maximize the log-likelihood. We find out

that higher values for the step-wise reduction power α and the mini-batch

size lead to better overall log-likelihood, but with a somewhat negative

effect on the convergence speed. We have experimented with various val-

ues for α ({0.6, 0.7, 0.8, 0.9, 1}) and the mini-batch size ({1, 10, 100, 1000}),

and finally settle on α = 1 and the 1000 sentences in a mini-batch. We find

that two iterations over the entire dataset is sufficient to obtain good pa-

rameters, cf. Klein (2005).

7https://github.com/scikit-learn/scikit-learn
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Figure 7.5: Convergence of the batch and the online EM (with a minibatch

of either 1 or 1000 sentences, and α = 1) for a sequential HMM. The

models have been trained on a 10,000-sentence portion of the Dutch

training corpus, with the number of states set to 100.

It has been noted in Liang and Klein (2009) that online EM is able to

converge to solutions with higher accuracy and log-likelihood on tasks like

POS tagging and document classification. To investigate this, we have run

a set of experiments. In Figure 7.5, we compare batch and online regimes in



118 Chapter 7. A discrete latent-variable model with syntactic functions

terms of the obtained log-likelihood per iteration. As expected, online EM

converges faster, but unlike in the work of Liang and Klein (2009), the solu-

tions in our case perform in fact slightly worse than those found by batch

EM beginning at around 30 iterations. We should note, however, that our

results are based on a fraction of the training data only, and that a different

picture might emerge when taking into account the complete data. Since

it is impractical to train a model for 30 epochs or more, we use an online

regime with a higher value of α, for which the updates of the old param-

eters are more conservative. We also find it beneficial to run a handful of

iterations of online EM followed by additional two iterations of batch EM

(Figure 7.6). The positive effect can be seen for both the sequential and the

tree model. They both have similar patterns of convergence, but, although

the tree model starts off at a lower log-likelihood, it ultimately succeeds in

finding a tighter fit to the data.

Initialization. Since the EM algorithm in our setting only finds a local

optimum of the log-likelihood, the initialization of model parameters can

have a major impact on the final outcome. We initialize the emission ma-

trices with Brown clusters by first assigning random values between 0 and

1 to the matrix elements, and then multiplying the elements indexed by

the words in a cluster by a factor of f ∈ {10, 100, 1K, 10K}. Finally, we

normalize the matrices. This technique incorporates a strong bias towards

those word-class emissions that exist in Brown clusters. The transition pa-

rameters are simply set to random numbers sampled from the uniform dis-

tribution between 0 and 1, and finally normalized.

Approximate inference. Following Grave et al. (2013) and Pal et al. (2006),

we approximate the belief vectors during inference,8 which speeds up

learning and works as regularization. We use the k-best projection method,

in which only k-largest coefficients (in our case k = 1
8
N ) are kept.

8In a bottom-up pass, a belief vector represents the local evidence by multiplying

the messages received from the children of a node, as well as the emission probability

at that node.
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Figure 7.6: Convergence in learning of sequential (hmm) and unlabeled

tree (tree-hmm) HMMs with online EM (mini-batch size set to 1000 sen-

tences). Also shown are the log-likelihoods of batch EM, for which each

model is initialized with the parameters from the 5th online iteration,

denoted on the plot as dotted lines. The models are trained on a 10,000-

sentence portion of the Dutch training corpus, with the number of states

set to 80.
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7.5.2 Data for obtaining word representations

English. We use the 43M-word Bllip corpus (Charniak et al., 2000) of WSJ

texts, from which we remove the sentences in the PTB and those whose

length is ≤ 4 or ≥ 40. We use the same parser as in the previous chapter,

the MST dependency parser (McDonald and Pereira, 2006) and build a pro-

jective, second order model, trained on sections 2–21 of the Penn Treebank

WSJ (PTB). The preprocessing steps are the same as those described pre-

viously. After parsing, we replace the words occurring less than 40 times

with a special symbol to model OOV words. This results in the vocabulary

size of around 27,000 words.

Dutch. We first produce a random sample of 2.5M sentences from the

SoNaR corpus9 (Oostdijk et al., 2008), then follow the same preprocessing

steps as for English. We parse the corpus with Alpino (van Noord, 2006).

In contrast to the English experiments, in which we use word forms, we

keep here the root forms produced by the parser’s lexical analyzer. The

resulting vocabulary size is about 25,000 words. The dependency struc-

tures produced by the parser include multiple parents to facilitate the treat-

ment of wh-clauses, coordination and passivization. Since our method ex-

pects proper trees, we convert the Alpino output to CoNLL format using

http://www.let.rug.nl/bplank/alpino2conll/, which also transforms nodes

with multiple parents to single-parent nodes.

7.5.3 Evaluation tasks

We evaluate the learned representations in two extrinsic sequence and

structure labeling tasks.

7.5.3.1 Named entity recognition

We use the standard CoNLL-2002 shared task dataset for Dutch and

CoNLL-2003 dataset for English. We also include the out-of-domain MUC-

9http://lands.let.ru.nl/projects/SoNaR
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7 testset, preprocessed according to Turian et al. (2010).10 We refer the

reader to section 4.2.1 of this thesis and to Ratinov and Roth (2009) for a

detailed description of the NER classification problem.

Just like Turian et al. (2010), we use the averaged structured perceptron

(Collins, 2002) with Viterbi as the base for our NER system.11 The classifier

is trained for a fixed number of iterations, and uses these baseline features:

• wk information: is-alphanumeric (= the word includes alphanu-

meric characters), all-digits (= consists of digits only), all-capitalized

(= all letters in the word are capitalized),

is-capitalized (= only the first letter is capitalized), is-hyphenated (=

the word includes a hyphen);

• prefixes and suffixes of wk of maximum length 3;

• word window: wk, wk±1, wk±2;

• capitalization pattern in the word window, based on is-capitalized.

We construct N real-valued features for a word vector of dimensional-

ityN , and a simple indicator feature for a categorical word representation.

7.5.3.2 Semantic frame identification

We introduced the task of semantic frame identification (SFI) in Chapter 4.

Here, we use the Semafor parser (Das et al., 2014) consisting of two log-

linear components trained with gradient-based techniques. The parser is

trained and tested on the FrameNet 1.5 full-text annotations. Our test set

consists of the same 23 documents as in Hermann et al. (2014). We investi-

gate the effect of word representation features on the frame identification

component. We measure Semafor’s performance on gold-standard targets,

and report the accuracy on exact matches, as well as on partial matches. The

10The number of sentences in the training and test sets is 15,806 (train)/ 5,195 (test)

for Dutch, 14,041 (train)/ 3,454 (test) for English and 2417 (test) for MUC-7.
11http://github.com/LxMLS/lxmls-toolkit
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latter give partial credit to identified related frames. We use and mod-

ify the publicly available implementation at http://github.com/sammthomson/

semafor.

Our baseline features for a target wk include:

• wk and its parentwπ(k); if the parent is a preposition, the grandparent

is taken by collapsing the dependency),

• the lemmas and POS tags of wk and wπ(k),

• syntactic functions of:

– each of wk’s children,

– wk
12,

– wπ(k) (towards its parent wπ(π(k)).

7.5.4 Baseline word representations

We test our model, which we call Synfunc-Hmm, against the following base-

lines:

• Baseline: use only baseline features and no word representation fea-

tures

• Hmm: use baseline features and word representation features from

the sequential HMM

• Tree-Hmm: use baseline features and word representation features

from the unlabeled-tree HMM

We induce other representations for comparison and include them in addi-

tion to the baseline set of features:

• Brown: use Brown cluster identifiers

12This feature was not present in Semafor at the time of our experimental study, yet

it improves the test set accuracy by around 0.15.
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• Dep-Brown: use dependency Brown cluster identifiers

• Skip-Gram: use Skip-Gram word embeddings

7.5.5 Preparing word representations

Brown clusters. Brown clusters (Brown et al., 1992) are known to be effec-

tive and robust when compared, for example, to word embeddings (Bansal

et al., 2014; Passos et al., 2014; Nepal and Yates, 2014; Qu et al., 2015). The

method can be seen as a special case of a HMM in which word emissions

are deterministic, i.e. a word belongs to at most one semantic class. While

the standard algorithm relies on sequential, bigram data representation,

we also use dependency-based clusters following our proposed extension

from Chapter 6 (Šuster and van Noord, 2014). For both methods, we use

the publicly available implementations.13

Following other work on English (Koo et al., 2008; Nepal and Yates,

2014), we add both coarse- and fine-grained clusters as features by using

prefixes of length 4, 6, 10 and 20 in addition to the complete binary tree

path. For Dutch, coarser-grained clusters do not yield any improvement.

Brown features are included in a window around the target word, just

as the NER word features. When adding cluster features to the frame-

semantic parser, we transform the cluster identifiers to one-hot vectors,

which gives a small improvement over the use of indicator features.

HMM-based models. The N -dimensional representations obtained from

HMMs and their variants are included as N distinct continuous features.

In the NER task, word representations are included at wk and wk+1 for

Dutch and at wk for English, which we determined on the NER develop-

ment sets. We investigate state space sizes of 64, 128 and 256 and finally

chooseN=128 as a reasonable trade-off between training time and quality.

We use the same dimensionality for other word representation models in

this chapter.

13http://github.com/percyliang/brown-cluster,

http://github.com/rug-compling/dep-brown-cluster
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We observe that by constraining Synfunc-Hmm to use only the k most

frequent syntactic functions and to treat the remaining ones as a single spe-

cial syntactic function, we obtain better results on the development part of

the NER datasets. This is likely because for a model with all S syntactic

functions produced by the parser, there is less learning evidence for more

infrequent syntactic functions. We explore the effect of keeping up to five

most frequent syntactic functions, ignoring functional ones such as punc-

tuation and determiner.14 The final selection is shown in Table 7.1.

English Dutch

nmod (nominal modifier) mod (modifier)
pmod (prepositional modifier) su (subject)
sub (subject) obj1 (direct object)

cnj (conjunction)
mwp (multiword unit)

Table 7.1: Syntactic functions in Synfunc-Hmm for English (produced by

the MST parser) and Dutch (produced by Alpino).

For NER experiments, the representations from each HMM model are

obtained with three different “decoding” methods described in subsec-

tion 7.4.2. In the evaluation, we only report the results for the method that

performed best on the NER development sets, Post-Type.15

Word embeddings. We use the Skip-Gram model presented in Mikolov

et al. (2013a) (https://code.google.com/p/word2vec/), trained with negative

sampling (Mikolov et al., 2013b). The training seeks to maximize the dot

product between word-context pairs encountered in the training corpus

and minimize the dot product between those pairs in which the context

word is randomly sampled. We set both the number of negative examples

14We define the list of function-marker syntactic functions following Goldberg and

Orwant (2013).
15While exploring the constraint on the number of syntactic functions, we do find

that Post-Token outperforms Post-Type in some sets of syntactic functions, but not in

the final selection.
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and the size of the context window to 5, the down-sampling threshold to

1× 10−4, and the number of iterations to 15.

7.5.6 NER results

The results for English and Dutch CoNLL test sets are shown in Table 7.2.

For English, all HMM-based models improve the baseline, with the se-

quential Hmm achieving the highest F-score. Our Synfunc-Hmm performs

on a par with Skip-Gram. It outperforms the unlabeled-tree model, which

is an indication that the added observations are meaningful. Brown clus-

ters do not exceed the Baseline score.16 Testing for significance with a boot-

strap method (Søgaard et al., 2014), we find out that only Hmm significantly

(at p < 0.01) improves over Baseline on macro-F1, while Skipgram and

Synfunc-Hmm show significant improvements only for the location entity

type.

English Dutch

Model P R F-1 P R F-1

Baseline 80.12 77.30 78.69 75.36 70.92 73.07
Hmm 81.49 78.90 80.17 77.61 73.97 75.74
Tree-Hmm 80.49 78.10 79.28 77.41 73.48 75.40
Synfunc-Hmm 80.65 78.90 79.76 (+.48) 78.54 75.23 76.85 (+1.45)
Brown 80.15 77.28 78.70 77.88 71.73 74.68
Dep-Brown 78.80 75.73 77.23 77.50 73.66 75.53
Skip-Gram 80.80 78.98 79.88 76.02 71.28 73.57

Table 7.2: NER results (precision, recall and F-score) on English and

Dutch test sets. Best result per column in bold. The score increase

reported in parentheses is in comparison to Tree-Hmm.

The general trend for Dutch is somewhat different. Most notably, all

word representations contribute much more effectively to the overall clas-

sification performance compared to English. The best-scoring model, our

16However, after additional experiments we observe that the cluster features do

improve over the baseline score when the number of clusters is increased.
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Synfunc-Hmm, improves over the baseline significantly, by as much as 3.8

points. Part of the reason Synfunc-Hmm works so well in this case is that it

can make use of the informative “mwp” syntactic function between the

parts of a multiword unit. Similarly as for English, the unlabeled-tree

model performs slightly worse than the sequential Hmm. The cluster fea-

tures are more valuable here than in English, and we also observe a 0.7-

point advantage by using dependency Brown clusters over the standard,

bigram Brown clusters. The Skip-Gram model does not perform as well as

in English, which might indicate that the hyper-parameters would need

fine-tuning specific to Dutch.

On the out-of-domain MUC dataset (Figure 7.3), the tree-based repre-

sentations appear to perform poorly, whereas the highest score is achieved

by the Skip-Gram method. Unfortunately, it is difficult to generalize from

the F-1 result alone. Concretely, the dataset contains 3,518 named enti-

ties, and the Skip-Gram method makes 258 correct predictions more than

Tree-Hmm. However, because the MUC dataset covers the narrow topic of

missile-launch scenarios, the system gets badly penalized if a mistake is

made repeatedly for a certain named entity. For example, only the entity

“NASA” occurs 103 times, mostly wrongly classified by the Tree-Hmm sys-

tem, but correctly by Skip-Gram. The overall performance may therefore

hinge on a limited number of frequently occurring entities. A workaround

is to evaluate per entity type, i.e. calculate the F-score for each entity, then

average over all entity types. The results for this evaluation scenario are re-

ported as F-1type. Skip-Gram still performs best, but the difference to other

models is smaller. Finally, we also report a third F-1 score, F-1unlab, which

is calculated just like F-1type but ignoring the actual entity label. So, if a

named-entity token is recognized as such, we count it as correct predic-

tion ignoring the entity label type, similarly as done by Ratinov and Roth

(2009). Since this setting boosts the performance of Synfunc-Hmm, we can

conclude that the features obtained from Synfunc-Hmm are more effective

at identifying entities rather than at labeling them.

The fact that we observe different tendencies for English and Dutch
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MUC test set

Model F-1 F-1type F-1unlab

Baseline 65.44 87.04 96.25
Hmm 70.20 87.66 96.50
Tree-Hmm 65.67 86.99 96.53
Synfunc-Hmm 66.49 (+.82) 86.93 (-.06) 96.69 (+.16)
Brown 68.85 87.72 96.67
Dep-Brown 68.31 87.44 96.47
Skip-Gram 72.42 88.94 96.69

Table 7.3: NER results on the English MUC dataset. Best result per col-

umn in bold. The score increase reported in parentheses is in comparison

to Tree-Hmm. F-1type is the F-score measured per word type, and F-1unlab

is the F-score measured per word type, ignoring labels.

can be attributed to an interplay of factors, such as language differences

(Bender, 2011), difference in accuracy of syntactic parsers, and differences

specific to the evaluation datasets. We briefly discuss the first possibility. It

is clear from Table 7.2 that all syntax-based models (Dep-Brown, Tree-Hmm,

Synfunc-Hmm) generally benefit Dutch more than English. Along similar

lines as in section 6.6.2, we hypothesize that since the word order in Dutch

is generally less fixed than in English,17 a sequence-based model for Dutch

cannot capture selectional preferences that successfully, i.e. there is more

interchanging of semantically diverse words in a small word window. This

then may make the difference in performance between sequential and tree

models more apparent for Dutch.

7.5.7 SFI results

We now turn to the results for semantic frame identification. Here, the

results are for English only due to the lack of such frame-annotated re-

sources for Dutch. The results are shown in Table 7.4. None of the models

17For instance, it is unusual for the direct object in English to precede the verb, but

quite common in Dutch.
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clearly outperforms other models. The highest score is obtained with the

Skip-Gram embeddings, however, the difference to other models is small.

Concretely, Skip-Gram correctly identifies only two cases more than Dep-

Brown, out of 3681 correctly disambiguated frames. The Synfunc-Hmm

model yields a noticeable improvement over the Hmm and Baseline mod-

els with both scorings, and over the Tree-Hmm with partial scoring.

Finally, some notes on statistical significance of these results. We have

tested for significance by running a paired permutation test. On exact

matches, only Dep-Brown and Brown significantly outperform the base-

line with the p < 0.05. On partial matches, Dep-Brown, Brown, Skip-Gram

and Synfunc-Hmm all outperform the baseline significantly. Synfunc-Hmm

performs significantly better than Tree-Hmm on partial matches, whereas

the difference between Skip-Gram and Synfunc-Hmm is not significant.

Model Exact Partial

Baseline 82.70 90.44
Hmm 82.20 90.20
Tree-Hmm 82.89 90.59
Synfunc-Hmm 82.95 (+0.06) 90.80 (+0.21)
Brown 83.15 90.74
Dep-Brown 83.15 90.76
Skip-Gram 83.19 90.91

Table 7.4: Frame identification accuracy. Score increase in parentheses is

relative to Tree-Hmm.

7.5.8 Further discussion

To summarize our findings about the effect of using word representations

obtained from labeled or unlabeled tree models, we have seen that in the

NER experiments unlabeled syntactic trees do not in general provide a better

structure for defining the contexts compared to plain sequences. The only

exception is the case of dependency Brown clustering for Dutch. Compar-

ing our results to those of Grave et al. (2013), we therefore cannot confirm
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the same advantage when using unlabeled-tree representations. We reflect

on a possible reason in the next section. In SFI, however, the unlabeled-tree

representations do compare more favorably to sequential representations.

How important is the addition of syntactic functions in the tree HMM

model? In practically all experiments, the extension with syntactic func-

tions has an advantage over the baseline and other HMM-based represen-

tations. In Dutch NER, this advantage extends also over all other models

we compare against. The explanation for these improvements appears to

lie in discrimination between the types of contexts, for example between a

modifier and a subject, which is impossible in sequential or unlabeled-tree

HMM architectures.

As methods for comparison, we have also included Brown and depen-

dency Brown clusters as baseline features for the downstream tasks. In

this way, we have provided additional evidence that confirms our findings

from the previous chapter, namely that dependency Brown clustering ap-

plied to Dutch is superior to standard Brown clustering, yet when applied

to English we observe an opposite effect. We have argued that the reason

might lie in language differences (such as word order), differences in accu-

racy of the parsers and in the specifics of the evaluation datasets.

7.6 Additional related work

HMMs have been used successfully for learning word representations al-

ready before, see Huang et al. (2014) for an overview, with an empha-

sis on investigating domain adaptability. Among the models they study,

three techniques provide context-sensitive representations, meaning that

the representation and the features obtained from it depend on the local

context around the target word. Their first model is a Naive Bayes model

with categorical hidden states, trained with EM and based on trigrams,

without taking into account the dependencies between the trigrams; the

second model is a HMM trained with EM, using the Max-Product and

Post-Token methods (see section 7.4.2) for constructing the representations.
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This model correspond to our sequential Hmm, except that our training pro-

cedure uses several refinements (see section 7.4.1 and section 7.5.1). Their

third model is a latent-variable model called Partial Lattice Markov Ran-

dom Field, consisting of several layers of hidden states. The inference in

this model is made tractable by leaving out some of the connections be-

tween the hidden states. One of their findings is that the second and the

third model do particularly well on polysemous words when evaluated in

chunking and POS tagging.

A model architecture similar to Huang et al. (2014)’s third model is ex-

plored by Nepal and Yates (2014), and belongs to the family of factorial

HMMs. The emphasis in their work is on developing a practical learning

mechanism via variational approximation. They show that their model

outperforms simpler models like HMMs and Brown clusters on chunking

and tagging tasks, possibly due to the property of the factorial HMM that

it is sensitive to the entire word sequence. The downside of the factorial

architecture, however, is that it does not scale well to large datasets. For ex-

ample, Nepal and Yates need to restrict the training dataset size to around

110,000 sentences to make the training practical.

The extension of HMMs to dependency trees for the purpose of word

representation learning was first proposed by Grave et al. (2013). Although

our baseline HMM methods, Hmm and Tree-Hmm, conceptually follow the

models of Grave et al., there are still several differences.18 One source of

differences is in the precise steps taken to refine the learning procedure,

such as when performing Brown initialization, state splitting, and also ap-

proximation of belief vectors during inference. Another source involves the

evaluation setting. Their NER classifier uses only a single baseline feature,

and when including Brown clusters, they do not make use of the cluster-

ing hierarchy to produce coarser-grained cluster features. In general, we

can say that Brown clusters provide for more competitive features in our

18Their implementation is not publicly available, so we were unable to replicate

their results using their source code. Our comparison to their method is based on the

published work and personal communication with the authors.
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work than in the work of Grave et al., which is probably connected to our

use of differently grained clusters. In this respect, our experimental set-

ting is more similar to Turian et al. (2010). Another practical difference

is that Grave et al. concatenate words with POS tags to construct the input

text, whereas we use tokens (English) or word roots (Dutch). Although the

concatenation with POS tags is a preprocessing step, it introduces in our

opinion a strong bias that allow easier discrimination between the cases of

homonymy.

There is a long tradition of unsupervised training of HMMs for POS

tagging (Kupiec, 1992; Merialdo, 1994), with more recent work on incor-

porating bias by favoring sparse posterior distributions within the poste-

rior regularization framework (Graça et al., 2007), and for example on auto-

supervised refinement of HMMs (Garrette and Baldridge, 2012). It would

be interesting to see how well these techniques apply to word representa-

tion learning methods like ours. Another interesting area for exploration

is the compositionality of latent-variable representations. The recent work

by Grave et al. (2014) propose compositionality techniques for HMM-based

models that originate in distributional-semantics research.

The incorporation of word representations into semantic frame identi-

fication has been explored in Hermann et al. (2014). They perform a projec-

tion of generic word embeddings for context words to a low-dimensional

representation, which also learns an embedding for each frame label. The

method selects the frame closest to the low-dimensional representation ob-

tained through mapping of the input embeddings. Their approach differs

from ours in that they induce new representations that are tied to a spe-

cific application, whereas we aim to obtain linguistically enhanced word

representations that can be subsequently used in a variety of tasks. In our

case, the word representations are thus included as additional features in

the log-linear model. Although Hermann et al. also use syntactic functions,

they are used to position the general word embeddings within a single in-

put context embedding, whereas we use the syntactic functions explicitly

during representation learning. Unfortunately, we are unable to directly
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compare our results with theirs as their parser implementation is propri-

etary. The accuracy of our baseline system on the test set is 0.27 percent

lower in the exact matching regime and 0.07 lower in the partial matching

regime compared to the baseline implementation score reported in Her-

mann et al. (2014) using the implementation of Das et al. (2014).19

The topic of context type (syntactic vs. linear) has been abundantly

treated in the literature on distributional semantic models (Lin, 1998a; Ba-

roni and Lenci, 2010; van de Cruys, 2010) and elsewhere (Boyd-Graber

and Blei, 2008; Tjong Kim Sang and Hofmann, 2009; Séaghdha and Korho-

nen, 2014). In the framework of word embeddings, Levy and Goldberg

(2014a) generalize the Skip-Gram model to arbitrary contexts, and study

dependency-based contexts on a set of intrinsic tasks. Wang et al. (2015)

build on the work of Levy and Goldberg (2014a) and propose a relation-

dependent model for learning word embeddings. The idea that differ-

ent contexts are differently important during model learning has been ex-

plored, for example, by Ling et al. (2015), who use an attention model for

weighting the relevant context words.

7.7 Conclusion and future work

In this chapter, we have proposed an extension of a Hidden Markov

tree model with syntactic functions. We have seen that by adopting a

dependency-language model and keeping the syntactic functions associ-

ated to dependency trees, the model can discriminate better between the

word contexts that are used as input compared to the sequential or the

unlabeled-tree HMMs. In our empirical study, we demonstrate a positive

effect of the proposed word representations on the performance of two

NLP applications, named entity recognition and semantic frame identifi-

cation. Since we use the sequential and the unlabeled tree models as base-

19Among other implementation differences, they introduce a variable capturing

lexical semantic relations from WordNet.
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lines, we observe that blindly preferring the former over the latter does not

always lead to an improvement.

One promising direction for future work is how to discriminate be-

tween context types so that more accurate representation models can be

built in other frameworks. Another interesting direction is how to compose

the word-level representation into higher-order representations, such as

phrases and sentences. Although some work exists for sequential HMMs

(Grave et al., 2014), it would be interesting to see how the tree structure can

guide semantic composition in labeled- or unlabeled-tree models. In this

chapter, as well as in the previous Chapter 6, we have proposed models

whose learning input is based on the syntactic structures produced by the

parser. Although the automatic syntactic analysis can mostly be very accu-

rate, it sometimes leads to mistakes. Wrongly selected attachment sites and

dependency labels possibly have a negative effect on the obtained word rep-

resentations. Therefore, it would be interesting to investigate this further,

preferably by distinguishing between the effect of parser errors in the word

representation training corpus and at obtaining the word representations

on the parsed test set. If it is true that parsing mistakes are detrimental for

the quality of word representations, then adding parse reliability informa-

tion to the model could be one possible solution: For example—assuming

that longer attachments are parsed less reliably by the parser—one could

add a dependency length bias in form of context weighting to the model

(cf. Smith and Eisner (2006)).
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CHAPTER 8

Bilingual learning of

multi-sense embeddings with

discrete autoencoders

We present an approach to learning multi-sense word embeddings relying

both on monolingual and bilingual information. Our model consists of

an encoder, which uses monolingual and bilingual context (i.e. a parallel

sentence) to choose a sense for a given word, and a decoder which pre-

dicts context words based on the chosen sense. The two components are

estimated jointly. We observe that the word representations induced from

bilingual data outperform the monolingual counterparts across a range of

evaluation tasks, even though crosslingual information is not available at

test time.

8.1 Introduction

Approaches to distributional learning of word embeddings (introduced in

section 3.3) have received much attention in recent years, and the induced
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representations have been shown to capture syntactic and semantic proper-

ties of words. They have been evaluated intrinsically (Mikolov et al., 2013a;

Baroni et al., 2014; Levy and Goldberg, 2014b) and have also been used in

concrete NLP applications to deal with word sparsity and improve general-

ization (Turian et al., 2010; Collobert et al., 2011; Bansal et al., 2014; Passos

et al., 2014). While most work has focused on developing embedding mod-

els which represent a word with a single vector, some researchers have

attempted to capture polysemy explicitly and have encoded properties of

each word with multiple vectors (Huang et al., 2012; Tian et al., 2014; Nee-

lakantan et al., 2014; Chen et al., 2014; Li and Jurafsky, 2015).

In parallel to this work on multi-sense word embeddings, another line

of research has investigated integrating multilingual data, with largely two

distinct goals in mind. The first goal has been to obtain representations for

several languages in the shared parameter space, which then enables the

transfer of a downstream model (e.g., a syntactic parser) trained on anno-

tated training data in one language to another language lacking this anno-

tation. Some representative works are Klementiev et al. (2012), Hermann

and Blunsom (2014), Gouws et al. (2014) and Chandar A P et al. (2014). Sec-

ondly, information from another language can also be leveraged to yield

better first-language embeddings (Guo et al., 2014). Our approach falls in

this latter, much less explored category.

More abstractly, the work presented here can be characterized by a view

of multilingual learning as a means of language grounding. Although the

term “grounding” is normally used only when incorporating other modal-

ities (like vision, for example) in language processing, some researchers

nevertheless use it also when working in a multilingual scenario. Of course,

multilingual grounding is not constrained to representation learning, but

can apply to any ML problem which satisfies the condition that a given lan-

guage is thought to benefit from other languages (Faruqui and Dyer, 2014b;

Zou et al., 2013; Titov and Klementiev, 2012b; Snyder and Barzilay, 2010;

Naseem et al., 2009).

The main idea in this chapter rests on the intuition that polysemy in
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one language can be at least partially resolved by looking at the transla-

tion of the word and its context in another language (Kaji, 2003; Ng et al.,

2003; Diab and Resnik, 2002; Ide, 2000; Dagan and Itai, 1994; Brown et al.,

1991). Better sense assignments can then lead to better sense-specific word

embeddings.

We propose a model that uses second-language embeddings as a super-

visory signal in learning multi-sense representations in the first language.

This supervision is easy to obtain for many language pairs as numerous

parallel corpora exist nowadays. Our model, which can be seen as an au-

toencoder with a discrete hidden layer encoding word senses, leverages

bilingual data in its encoding part, while the decoder predicts the sur-

rounding words relying on the predicted senses. Although we expect a

parallel corpus that is word-aligned as input, we also investigate a set-up

which is indicative of the model performance when only sentence align-

ment is available. We explain our approach in detail in the next sections.

8.2 Contributions

In Chapter 1, we stated the research question for this last part of the thesis

as:

• How can bilingual, parallel corpora be employed for better multi-

sense word representations?

In summary, we can answer the question with the following findings:

• The second-language signal effectively improves the quality of multi-

sense embeddings as seen on a variety of intrinsic tasks for English,

with the results superior to that of the baseline Skip-Gram model,

even though the crosslingual information is not available at test time.

• This finding is robust across several settings, such as varying embed-

ding dimensionality, vocabulary size and amount of data.
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Encoder
p(s|xi, Ci, C

′
i, θ)

the next turn-off on the right

à droite à la bifurcation suivante

sense(xi: turn-off): "road", "feeling"... (hidden)

Decoder
p(xj|xi, s, θ)

right

sense prediction

context-word
prediction

Figure 8.1: Model schema: The sense encoder uses bilingual signal in

its predictions, and the decoder predicts context words based on those.

Here, sense prediction concerns the word “turn-off”; in the decoding

part, surrounding words are predicted, one at a time (e.g. “right”). The

learning is performed jointly.

• In the extrinsic POS tagging task, the second-language signal also of-

fers improvements over monolingually-trained multi-sense embed-

dings, however, the standard Skip-Gram embeddings turn out to be

the most robust in this task.

8.3 Word embeddings with discrete autoencoders

Our method borrows its general structure from neural autoencoders

(Rumelhart et al., 1986; Bengio et al., 2013). Autoencoders are networks

trained to reproduce their input by first mapping their input to a (lower

dimensional) hidden layer and then predicting an approximation of the

input relying on this hidden layer. In our case, the hidden layer is not
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a real-valued vector, but is a categorical variable encoding the sense of a

word. Discrete-state autoencoders have been successful in several natural

language processing applications, including POS tagging and word align-

ment (Ammar et al., 2014), semantic role induction (Titov and Khoddam,

2015) and relation discovery (Marcheggiani and Titov, 2016).

More formally, our model consists of two components: an encoding

part which assigns a sense to a pivot word, and a reconstruction (decod-

ing) part recovering context words based on the pivot word and its sense.

As predictions are probabilistic (“soft”), the reconstruction step involves

summation over all potential word senses. The goal is to find embedding

parameters which minimize the error in recovering context words based

on the pivot word and the sense assignment. Parameters of both encod-

ing and reconstruction are jointly optimized. Intuitively, a good sense as-

signment should make the reconstruction step as easy as possible. The en-

coder uses not only words in the first-language sentence to choose the sense

but also, at training time, is conditioning its decisions on the words in the

second-language sentence. We hypothesize that the injection of crosslin-

gual information will guide learning towards inducing more informative

sense-specific word representations. Consequently, using this information

at training time would benefit the model even though crosslingual infor-

mation is not available to the encoder at test time.

We specify the encoding part as a log-linear model:

p(s|xi, Ci, C
′
i, θ) ∝ exp

(
ϕ�

i,s(
1− λ

|Ci|
∑
j∈Ci

γj +
λ

|C ′
i|

∑
k∈C′

i

γ′
k)
)
. (8.1)

To choose the sense s ∈ S for a word xi, we use the bag of context words

Ci from the first language l, as well as the bag of context wordsC ′
i from the

second language l′.1 The first-language context Ci is defined as a multiset

Ci = {xi−n, . . . , xi−1, xi+1, . . . , xi+n} including words around the pivot

word in the window of size n to each side. We set n to 5 in all our ex-

1We have also considered a formulation which included a sense-specific bias bxi,s ∈
R to capture relative frequency of latent senses but it did not seem to affect performance.
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periments. The crosslingual context C ′
i is discussed in section 8.4, where

we rely on word alignments to choose context of different sizes. We distin-

guish between sense-specific embeddings, denoted byϕ ∈ R
d, and generic

sense-agnostic ones, denoted {γ, γ′} ∈ R
d for first and second language, re-

spectively. The number of sense-specific embeddings is the same for all

words. We use θ to denote all these embedding parameters. They are

learned jointly from scratch, with the exception of the second-language

embeddings, which we first pre-train on the given language.

The hyperparameter λ ∈ R, 0 ≤ λ ≤ 1 weights the contribution of

the first and the second language. Setting λ = 0 would drop the second-

language component and use only the first language. Our formulation

allows the addition of new languages easily, provided that the second-

language embeddings live in the shared semantic (i.e. embedding) space.

The role of the reconstruction part is to predict a context word xj given

the pivot xi and the current estimate of its s:

p(xj|xi, s, θ) =
exp(ϕ�

i,sγj)∑
k∈|V| exp(ϕ�

i,sγk)
, (8.2)

where |V| is the vocabulary size. This is effectively a Skip-Gram model

(Mikolov et al., 2013a) extended to rely on senses.

8.3.1 Learning and regularization

As sense assignments are not observed during training, the learning ob-

jective includes marginalization over word senses and thus can be written

as: ∑
i

∑
j∈Cxi

log
∑
s∈S

p(xj|xi, s, θ)p(s|xi, Ci, C
′
i, θ), (8.3)

in which index i goes over all pivot words in the first language, j over

all context words to predict at each i, and s marginalizes over all possi-

ble senses of the word xi. In practice, we avoid the costly computation of

the normalization factor in the softmax computation of equation (8.2) and
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use negative sampling2 (Mikolov et al., 2013b) instead of log p(xj|xi, s, θ):

log σ(ϕ�
i,sγj) +

∑
x∈N

log σ(−ϕ�
i,sγx), (8.4)

where σ is the sigmoid non-linearity function 1/1+e−z, and γx is a word

embedding from the sample of negative (noisy) words N . Optimizing the

autoencoding objective is broadly similar to the learning algorithm defined

for multi-sense embedding induction in some of the previous work (Nee-

lakantan et al., 2014; Li and Jurafsky, 2015). Note though that this previous

work has considered only monolingual context.

We use a minibatch training regime and seek to optimize the objective

function L(B, θ) for each minibatch B. We found that optimizing this ob-

jective directly often resulted in inducing very flat posterior distributions.

We therefore use a form of posterior regularization (Ganchev et al., 2010)

where we can encode our prior expectations that the posteriors should be

sharp. The regularized objective for a minibatch is defined as

L(B, θ) + λH

∑
i∈B

H(qi), (8.5)

whereH is the entropy function and qi are the posterior distributions from

the encoder (p(s|xi, Ci, C
′
i, θ)). This modified objective can also be moti-

vated from a variational approximation perspective, but we refer the reader

to Marcheggiani and Titov (2016) for details. By varying the parameter

λH ∈ R, it is easy to control the amount of entropy regularization. For

λH > 0, the objective is optimized with flatter posteriors (the sum of en-

tropies must be as large as possible), while λH < 0 infers more peaky pos-

teriors. When λH → −∞, the probability mass needs to be concentrated

2The idea behind negative sampling is simple: We would like to contrast the correct

(positive) instances—in our case the pivot-context pair actually observed—with a pair

in which the context word is some random, negative word that (very likely) does not fit

the context well. In other words, we are contrasting plausible word combinations with

implausible ones (Smith and Eisner, 2005).
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on a single sense, resulting in an algorithm similar to hard EM. In practice,

we found that using hard-update training3, which is closely related to the

λH → −∞ setting, led to best performance.

8.3.2 Obtaining word representations

At test time, we construct the word representations by averaging all sense

embeddings for a word xi and weighting them with the sense expecta-

tions4 (Li and Jurafsky, 2015):

ωi =
∑
s∈S

p(s|xi, Ci)ϕi,s. (8.6)

Unlike in training, the sense prediction step here does not use the crosslin-

gual context C ′
i since it is not available in the evaluation tasks. In our

treatment of the problem, instead of marginalizing out the unobservable

crosslingual context, we simply ignore it in computation.

Sometimes, even the first-language context is missing, as is the situa-

tion in many word similarity tasks. In that case, we just use the uniform

average, 1/|S|
∑

s∈S ϕi,s.

8.4 Word affiliation from alignments

In defining the crosslingual signal we draw on a heuristic inspired by De-

vlin et al. (2014). The second-language context words are taken to be the

multiset of words around and including the pivot affiliated to xi:

C ′
i = {x′

ai−m, ..., x
′
ai
, ..., x′

ai+m}, (8.7)

where x′
ai

is the word affiliated to xi and the parameter m regulates the

context window size. By choosing m = 0, only the affiliated word is used

3I.e. updating only that embedding ϕi,s∗ for which s∗ = argmaxs p(s|xi, Ci, C
′
i, θ).

4Although our training objective has sparsity-inducing properties, the posteriors at

test time are not entirely peaked, which makes weighting beneficial.
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as l′ context, and by choosing m = ∞, the l′ context is the entire sentence

(≈uniform alignment). To obtain the index ai, we use the following rules:

1) If xi aligns to exactly one second-language word, ai is the index of the

word it aligns to.

2) If xi aligns to multiple words, ai is the index of the aligned word in the

middle (and rounding down when necessary).

3) If xi is unaligned, C ′
i is empty, therefore no l′ context is used.

We use the cdec aligner (Dyer et al., 2010) to word-align the parallel cor-

pora.

8.5 Parameters and set-up

8.5.1 Learning parameters

We use AdaGrad as the gradient-based optimization algorithm (Duchi

et al., 2011) with initial learning rate set to 0.1. This techniques adapts the

learning rate in such a way that larger updates are performed for infre-

quent parameters and smaller updates for frequent parameters. AdaGrad

is thought to be well-suited for situations with sparse data, which is exactly

the kind found in language processing. Intuitively, we would like to use

larger updates for rare words (i.e. their embeddings) and smaller updates

for frequent words.

We set the minibatch size to 1000, the number of negative samples to 1,

the factor for sub-sampling of frequent words to 0.001 and the window size

parameterm to 5. All the embeddings are 50-dimensional unless specified

otherwise. They are initialized by sampling from the uniform distribution

between [−0.05, 0.05]. We include in the vocabulary all words occurring in

the corpus at least 20 times unless specified differently. We set the number

of senses per word to 3, and discuss the importance of this choice in sub-

section 8.7.4 and section 8.9. All other parameters with their default values

can be examined in the source code available online.
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8.5.2 Bilingual data

In a large body of work on multilingual word representations, Europarl

(Koehn, 2005) is the preferred source of parallel data. However, the do-

main of Europarl is rather constrained, whereas we would like to obtain

word representations of more general language, also to carry out an effec-

tive evaluation on semantic similarity datasets where domains are usually

broader. We therefore use the following parallel corpora: News Commen-

tary (Bojar et al., 2013) (abbreviated NC), Yandex-1M5 (RU-EN), CzEng 1.0

(Bojar et al., 2012) (CZ-EN), from which we exclude the EU legislation texts,

and GigaFrEn (Callison-Burch et al., 2009) (FR-EN). The sizes of the cor-

pora are reported in Table 8.1. The word representations trained on the

NC corpora are evaluated only intrinsically due to the small sizes.

Corpus Language Words Sent.

NC Fr 4 M 0.2 M
NC Ru 4 M 0.2 M
NC Cz 3 M 0.1 M
NC De 4 M 0.2 M
NC Es 4 M 0.2 M

RU-EN Ru 24 M 1 M
CZ-EN Cz 126 M 10 M
FR-EN Fr 670 M 23 M

Table 8.1: Parallel corpora used in this study. The word sizes reported

are based on the English part of the corpus. Each language pair in NC

has a different English part, hence the varying number of sentences per

target language.

5https://translate.yandex.ru/corpus
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8.6 Evaluation tasks

We evaluate the quality of our word representations on a number of tasks,

both intrinsic and extrinsic.6 We describe those next.

8.6.1 Word similarity

We are interested here in how well the semantic similarity ratings obtained

from embedding comparisons correlate to human ratings, which is an im-

portant indicator of the generic quality of word embeddings (Schnabel

et al., 2015). For this purpose, we use a variety of similarity benchmarks for

English and report the Spearman ρ correlation scores between the human

ratings and the cosine ratings obtained from our word representations. The

SCWS benchmark (Huang et al., 2012) is probably the most suitable simi-

larity dataset for evaluating multi-sense embeddings, since it allows us to

perform the sense prediction step based on the sentential context provided

for each word in the pair, as described in section 4.1.

We also use several other benchmarks, but they only provide the rat-

ings for the word pairs without context. WS-353 contains 353 human-rated

word pairs (Finkelstein et al., 2001), while Agirre et al. (2009) separate this

benchmark for similarity (WS-SIM) and relatedness (WS-REL). The RG-65

(Rubenstein and Goodenough, 1965) and the MC-30 (Miller and Charles,

1991) benchmarks contain nouns only. The MTurk-287 (Radinsky et al.,

2011) and MTurk-771 (Halawi et al., 2012) include word pairs whose simi-

larity was crowdsourced from AMT. Similarly, MEN (Bruni et al., 2012) is

an AMT-annotated dataset of 3000 word pairs. The YP-130 (Yang and Pow-

ers, 2006) and Verb-143 (Baker et al., 2014) measure verb similarity. Rare-

Word (Luong et al., 2013) contains 2034 rare-word pairs. Finally, SimLex-

999 (Hill et al., 2014b) is intended to measure pure similarity as opposed to

relatedness. For these benchmarks, we prepare the word representations

by taking a uniform average of all sense embeddings per word. The eval-

6The evaluation code and the implementation of the models can be found online,

see Chapter 1.
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uation is carried out using the tool described in Faruqui and Dyer (2014a).

Out of readability concerns, we report the results by averaging over all

benchmarks (Similarity), and include the individual results in Appendix C.

8.6.2 Supersense similarity

We also evaluate on a task measuring the similarity between our embed-

dings (uniformly averaged in the case of multi-sense embeddings) and a

matrix of supersense features extracted from the English SemCor. We per-

form the evaluation using the Qvec tool (Tsvetkov et al., 2015). We choose

this method because it has been shown to output scores that correlate well

with extrinsic tasks, e.g. text classification and sentiment analysis. We be-

lieve that this, in combination with word similarity tasks from the previous

section, can give a reliable picture of the generic quality of word embed-

dings studied in this chapter.

8.6.3 POS tagging

As our downstream evaluation task, we use the learned word representa-

tions at the embedding layer of a neural network tagging model. We use

the same convolutional architecture as Li and Jurafsky (2015): an input

layer taking a concatenation of neighboring embeddings as input, three

hidden layers with a rectified linear unit activation function and a softmax

output layer. No other features are used by the tagging model. We train

for 10 epochs using one sentence as a batch. Other more specialized hy-

perparameters can be examined in the source code. The multi-sense word

embeddings are inferred from the sentential context using the weighted

average, just as in the evaluation on the SCWS dataset. We use the stan-

dard splits of the Wall Street Journal portion of the Penn Treebank: 0–18

for training, 19–21 for development and 22–24 for testing.
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8.7 Results

8.7.1 Overview

We compare three embeddings models: Skip-Gram (Sg), Multi-sense (Mu)

and Bilingual Multi-sense (BiMu). We use our own implementation for

each of them. The first two can be seen as simpler variants of the BiMu

model: In Sg we omit the encoder entirely, and in Mu we omit only the

second-language (l′) part of the encoder in equation (8.1). We train the Sg

and the Mu models on the English part of the parallel corpora. Separate

Sg models are trained on each of the second-language parts to obtained

pre-trained embeddings which are then used by the BiMu model. During

experiments, we keep those parameters that are common to all methods

fixed. The values λ and m for controlling the second-language signal in

BiMu are set on the POS tagging development set (cf. subsection 8.8.1).

The results on the SCWS benchmark (Table 8.2) show consistent im-

provements of the BiMu model over Sg and Mu across all parallel corpora,

except on the small CZ-EN (NC) corpus. We have also measured the 95%

confidence intervals of the difference between the correlation coefficients

of BiMu and Sg, following the method described in Zou (2007). Accord-

ing to these values, BiMu significantly outperforms Sg on RU-EN, and on

French, Russian and Spanish NC corpora.7

Next, ignoring any language-specific factors, we would expect to ob-

serve a trend according to which the larger the corpus, the higher the corre-

lation score. However, this is not what we find. Among the largest corpora,

i.e. RU-EN, CZ-EN and FR-EN, the models trained on RU-EN perform sur-

prisingly well, practically on par with the 23-times larger FR-EN corpus.

Similarly, the quality of the embeddings trained on CZ-EN is generally

lower than when trained on the 10 times smaller RU-EN corpus. One expla-

nation for this might be different text composition of the corpora, with RU-

EN matching the domain of the evaluation task better than the larger two

corpora. Also, FR-EN is known to be noisy, containing web-crawled sen-

7We count those results in which the CI of the difference does not include 0.
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BiMu↔Sg

Task Corpus Sg Mu BiMu Diff CIDiff

S
C

W
S

RU-EN 54.8 57.3 59.5 4.7 0.9–9.8
CZ-EN 51.2 54.0 55.3 4.1 -0.6–8.8
FR-EN 58.8 60.4 60.5 1.7 -2.6–5.9

FR-EN (NC) 47.2 52.4 54.3 7.1 2.2–12.0
RU-EN (NC) 47.3 54.0 54.0 6.7 0.6–12.8
CZ-EN (NC) 47.7 52.1 51.9 4.2 -2.0–10.3
DE-EN (NC) 48.5 52.9 54.0 5.5 -0.6–11.6
ES-EN (NC) 47.2 53.2 54.5 7.3 1.1–13.3

S
im

il
a
ri

ty

RU-EN 37.8 41.2 46.3
CZ-EN 39.5 36.9 41.9
FR-EN 46.3 42.0 43.5

FR-EN (NC) 17.9 26.0 27.6
RU-EN (NC) 19.3 27.3 28.4
CZ-EN (NC) 15.8 26.6 25.4
DE-EN (NC) 20.7 28.4 30.8
ES-EN (NC) 19.9 27.2 31.2

Q
v
ec

RU-EN 55.8 56.0 56.5
CZ-EN 56.6 56.5 55.9
FR-EN 57.5 57.1 57.6

P
O

S

RU-EN 93.5 93.2 93.3
CZ-EN 94.0 93.7 94.0
FR-EN 94.1 93.8 94.0

Table 8.2: Results, per-row best in bold. Sg and Mu are trained on the

English part of the parallel corpora. In BiMu↔Sg, we report the difference

between BiMu and Sg, together with the 95% CI of that difference. The

Similarity scores are averaged over 12 benchmarks described in subsec-

tion 8.6.1. For POS tagging, we report the accuracy.

tences that are not parallel or not natural language (Denkowski et al., 2012).

Furthermore, language-dependent effects might be playing a role: For ex-

ample, there are signs of Czech being the least helpful language among
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Model (300-dim.) SCWS

Sg 65.0
Mu 66.7
BiMu 69.0
Chen et al. (2014) 68.4
Neelakantan et al. (2014) 69.3
Li and Jurafsky (2015) 69.7

Table 8.3: Comparison to other works (reprinted), for the vocabulary

of top-6000 words. Our models are trained on RU-EN, a much smaller

corpus than those used in previous work.

those studied. But while there is evidence for that in all intrinsic tasks,

the situation in POS tagging does not confirm this speculation. We have a

closer look at the effect of language choice on the quality of word embed-

dings in section 8.8.2.

To gain some insight in how our models compare to the results pre-

viously reported in the literature, we relate our models to previously re-

ported SCWS scores using 300-dimensional models in Table 8.3. Even

though we train on a much smaller corpus than the previous works,8 the

BiMu model achieves a very competitive correlation score.

The results on Similarity benchmarks and Qvec largely confirm those

on SCWS, despite the lack of sentential context which would allow to

weight the contribution of different senses more accurately for the multi-

sense models. Why, then, does simply averaging the Mu and BiMu em-

beddings lead to better results than when using the Sg embeddings? We

hypothesize that the single-sense model tends to over-represent the dom-

inant sense with its generic, one-vector-per-word representation, whereas

the uniformly averaged embeddings yielded by the multi-sense models

better encode the range of potential senses. Similar observations have

been made in the context of selectional preference modeling of polysemous

8For example, Li and Jurafsky (2015) use the concatenation of Gigaword and

Wikipedia with more than 5 billion words.
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Figure 8.2: Effect of amount of data used in learning on the SCWS

correlation scores.

verbs (Greenberg et al., 2015).

In POS tagging, the relationship between Mu and BiMu models is simi-

lar as discussed above. Overall, however, neither of the multi-sense models

outperforms the Sg embeddings, which is somewhat surprising. A possi-

ble explanation is that the neural network tagger may be able to implicitly

perform disambiguation on top of single-sense Sg embeddings, similarly

to what has been argued in Li and Jurafsky (2015). The tagging accuracies

obtained with Mu on CZ-EN and FR-EN are similar to the one obtained

by Li and Jurafsky with their multi-sense model (93.8), while the accuracy

of Sg is more competitive in our case (around 94.0 compared to 92.5), al-

though they use a larger corpus for training the word representations.

In all tasks, the addition of the bilingual component during training

increases the accuracy of the encoder for most corpora, even though the

bilingual information is not available during evaluation.
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Figure 8.3: Effect of embedding dimensionality on the models trained

on RU-EN and evaluated on SCWS with either the full vocabulary or the

top-6000 words.

8.7.2 The amount of (parallel) data

Figure 8.2 displays how the semantic similarity as measured on SCWS

evolves as a function of increasingly larger sub-samples from FR-EN, our

largest parallel corpus. The BiMu embeddings show relatively stable im-

provements over Mu and especially over Sg embeddings. The same per-

formance as that of Sg at 100% is achieved by Mu and BiMu sooner, using

only around 40 or 50% of the corpus.

8.7.3 The dimensionality and frequent words

It is argued in Li and Jurafsky (2015) that often just increasing the dimen-

sionality of the Sg model suffices to obtain better results than that of their

multi-sense model. We look at the effect of dimensionality on semantic
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similarity in Figure 8.3, and see that simply increasing the dimensionality

of the Sg model (to any of 100, 200 or 300 dimensions) is not sufficient to

outperform the Mu or BiMu models of the same dimensionality. When con-

straining the vocabulary to 6,000 most frequent words (the dashed lines

in the figure), the representations obtain higher quality. This is under-

standable since more evidence is available during training for frequent

words. We can see that the models, especially Sg, benefit slightly more

from the increased dimensionality when looking at these most frequent

words. This is also according to expectations—frequent words need more

representational capacity due to their complex semantic and syntactic be-

havior (Atkins and Rundell, 2008).

8.7.4 The number of senses

In our model, the number of senses k is a parameter, which we keep fixed

to 3 throughout the empirical study. We comment here briefly on other

choices, namely k ∈ {2, 4, 5}. We have found k = 2 to be a good choice

on the RU-EN and FR-EN corpora (but not on CZ-EN), with an around

0.2-point improvement over k = 3 on SCWS and in POS tagging. With

the larger values of k, the performance tends to degrade. For example, on

RU-EN, the k = 5 score on SCWS is about 0.6 point below our default

setting.

8.8 The effect of second language

In this section, we first have a look at the effect of varying the contribution

of the first and the second language, and then how the choice of the second

language and the language family affects the embedding quality and the

outcome on the SCWS and in POS tagging.

8.8.1 The importance of bilingual signal

The degree of contribution of the second language l′ during learning is af-

fected by two different parameters. One is the parameter λ, controlling
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Figure 8.4: Controlling the bilingual signal: effect of varying the parame-

ter λ for controlling the importance of second-language context (0.1-least

important, 0.9-most important). The reported accuracies are measured

on the POS tagging development set.

the trade-off between the importance of the first and the second language

in the sense prediction part (encoder), the other is the value of m for con-

trolling the size of the window around the second-language word that is

affiliated to the pivot (equation (8.7)). The effect of the first parameter is

shown graphically in Figure 8.4. It suggests that the context from the sec-

ond language is useful in sense prediction, and that it should be weighted

relatively heavily (around 0.7 and 0.8, depending on the language).

Regarding the role of the second parameter in sense disambiguation,

the WSD literature has reported both smaller (more local) and larger (more

topical) monolingual contexts to be useful, see e.g. Ide and Véronis (1998)

for an overview. In Figure 8.5 we find that considering a very narrow con-

text in the second language—the affiliated word only or a m = 1 win-

dow around it—performs the best, and that there is usually some deterio-
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Figure 8.5: Controlling the bilingual signal: effect of second-language

window size m on the accuracy. The reported accuracies are measured

on the POS tagging development set.

ration when using a broader window. However, the negative effect on the

accuracy is still relatively small, up to around −0.1 for the models using

French and Russian as the second languages, and −0.25 for Czech when

setting m = ∞ (the rightmost label on the x-axis). It is interesting that the

infinite window size setting, which approximately corresponds to using

sentence-only alignments9, performs well also on the SCWS benchmark,

and improves on the monolingual multi-sense baseline on all corpora. The

SCWS results are shown in Table 8.4.

9Strictly speaking, the m = ∞ setting is not the same as using only sentence align-

ments since the entire sentence is taken as the context only when the affiliated word

exists, but no second-language context is used when a word has no affiliated counterpart.

In practice, though, we expect the difference in quality of word representations between

the two views to be small.
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Model RU-EN CZ-EN FR-EN

Mu 63.29 59.12 64.19
BiMu, m = ∞ 65.61 62.07 64.36

Table 8.4: Comparison of SCWS correlation scores of BiMu trained with

infinite l′ window to the Mu baseline (vocabulary of top-6000 words).

8.8.2 The effect of language choice

Throughout this chapter, we have used several languages in turn to

study their effect on the sense-encoding component of our model. But

because of the variation inherent to the parallel corpora representing

these languages—most importantly the size, as well as the text and topic

composition—we have been unable to draw any conclusions about which

languages are the most beneficial for performing sense discrimination in

English. In this section, we therefore examine the contribution of different

languages in a controlled setting. We achieve this by running a small-scale

study on a multi-parallel corpus, i.e. a corpus in which several languages

are sentence-aligned to a single language, in our case English.

Before presenting the empirical study, we would like to briefly dis-

cuss what we can expect intuitively. Arguably, languages closely related

to English should be less beneficial in improving the sense estimator for

English than the more distant languages. For example, the correspond-

ing polysemy of an English word in a language like French might be sim-

ply preserved, e.g. “interest” (English) and “intérêt” (French). Given “in-

terest” in an English sentence, it is of little help to know that this word

occurrence is translated as “intérêt” in French, since both can bear the fi-

nancial and the wanting-to-know meaning. However, in another language

like Slovene, this meaning distinction would be lexicalized with e.g. “zani-

manje” (wanting-to-know) and “obresti” (financial). It could then present

a useful source of information when disambiguating the English side. In

general, we would expect the benefit to be greater with more distant lan-

guages, as there would be fewer situations with overlapping polysemy.
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It is exactly this type of research questions that have kept busy also the

researchers in word-sense disambiguation (WSD) (Ide, 2000; Resnik and

Yarowsky, 1999). Ide (2000), for example, studies the degree to which

translations lexicalize a source word differently. She finds that a word like

“head” occurs in an English novel 65 times and with 4 different senses ac-

cording to WordNet. It is lexicalized with 9 different words in Slovene

and Romanian, with 6 words in Spanish, and 4 words in Czech. Although

Ide also categorizes languages according to their relatedness (languages of

the same genus vs. between genera, as well as different families (non- vs.

Indoeuropean)), she does not discover any link between the language dis-

tance and the degree of lexicalization. This is unlike the previous study of

Resnik and Yarowsky (1999), who found that monolingual sense distinc-

tions can be captured well especially when the language family distance

increases (non-Indoeuropean languages tend to lexicalize English sense

distinctions more than Indoeuropean languages). In our case, we would

like to see which of the findings can be confirmed in our own experiments

with representation learning.

We choose the Bible as our multi-parallel corpus. It is readily available

and translated in many languages, including those we have studied in the

preceding sections of this chapter. We use the translations available from

http://homepages.inf.ed.ac.uk/s0787820/bible/. This resource, discussed in

detail in Christodouloupoulos and Steedman (2014), includes 100 transla-

tions of the Bible in total, most of them into non-Indoeuropean languages.

For around half of the languages, full translations of the Bible are available;

these amount to around 31 thousand sentences or verses (per language).

The size of the corpus in words varies between approximately 690 and 920

thousand words. We use the following languages in our experiments:

• 9 Indoeuropean languages belonging to six different genera or sub-

families: Italic (French, Spanish), Slavic (Russian, Czech, Slovene),

Baltic (Lithuanian), Germanic (German), Greek (Greek) and Alba-

nian (Albanian);



8.8. The effect of second language 159

Task Language Correlation Indo-
european:
yes / no

S
C

W
S

German 0.50
Xhosa 0.50
Tagalog 0.49
Slovene 0.49
French 0.49
Arabic 0.49
Greek 0.49
Somali 0.49
Hebrew 0.48
Russian 0.48
Czech 0.48
Lithuanian 0.48
Albanian 0.48
Vietnamese 0.48
Spanish 0.47
Telugu 0.46

Table 8.5: SCWS benchmark results with bilingually trained word em-

beddings. English is used as the first language, and one of the listed

languages as the second language included in the sense estimation step.

Blue denotes Indoeuropean languages; red denotes non-Indoeuropean

languages.

• 7 non-Indoeuropean languages from six different genera: Semitic

(Arabic, Hebrew), Atlantic-Congo (Xhosa), Malayo-Polynesian (Taga-

log), Cushitic (Somali), Mon-Khmer (Vietnamese) and South-Central

(Telugu).

Just as with the previously used corpora, we prepare the Bible corpora by

first tokenizing and then aligning them on the word level. The minimum

frequency of words included in the word-representation vocabulary is 5.

The effect of the choice of the second language on the quality of rep-

resentations as measured intrinsically is shown in Table 8.5. The range of
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correlation scores from highest to lowest is small, which indicates that the

language choice does not play an important role on the quality of word

representations (when evaluating on this particular dataset). There is also

no clear pattern depending on the language family, and at the same time

more and less distant languages can occur at a similar place in the ranking:

German as a closely related language and Xhosa as a distant language both

perform similarly.

We evaluate the embeddings trained with these different languages

also in the POS tagging task. The results are shown in Figure 8.6. The

languages are ranked according to the accuracy and depending on the lan-

guage family. The range of accuracies obtained is somewhat larger (max.

around 0.5 point) than in the case of SCWS, but similarly to the previous

experiment, it is hard to discern any strong tendency. The Indoeuropean

languages perform on average just as well, if not slightly better (at a differ-

ence of around 0.1 in median score) than the non-Indoeuropean ones.

We can conclude from these experiments that the language relatedness

does not influence the quality of our sense encoder and the obtained word

representations in any predictable way. Compared to the WSD works in-

troduced above, our findings are closer to those of Ide (2000), who did not

find any clear relationship either. Despite the outcome of our study, we

can not state that language choice does not affect the end quality of word

representations in general. Our analysis is based on a corpus which is small

according to representation learning standards; it is entirely possible that

a study involving a larger corpus would yield different results. Unfortu-

nately, not many corpora suitable for such a study exist.10 Secondly, the

effect of language choice is not measured directly, as in a WSD set-up, but

only through the effect of the sense estimation component on the embed-

ding learning part. Furthermore, the representations are aggregated at test

time using a weighted average, which might smear out some differences.

10One candidate is Europarl (Koehn, 2005), but it offers a narrower range of languages,

with varying amounts of available data. A study could still be performed using the

common intersection of a selection of languages.
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Figure 8.6: POS tagging accuracies with bilingually trained word em-

beddings. English is used as the first language, and one of the listed

languages as the second language (included in the sense estimation

step). We distinguish between Indoeuropean and non-Indoeuropean

languages, with the median value in each category denoted as a blue

point.
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8.9 Additional related work

In this section, we provide an overview of the related work, some of it not

yet mentioned in the previous sections.

Multi-sense models. One line of research has dealt with sense induc-

tion as a separate, clustering problem that is followed by an embedding

learning component (Huang et al., 2012; Reisinger and Mooney, 2010). In

another, the sense assignment and the embeddings are trained jointly, just

like in our case (Neelakantan et al., 2014; Tian et al., 2014; Li and Juraf-

sky, 2015; Bartunov et al., 2015). The two approaches most closely re-

lated to ours are by Neelakantan et al. (2014) and Li and Jurafsky (2015).

Neelakantan et al. (2014) propose an extension of Skip-Gram (Mikolov

et al., 2013a) by introducing sense-specific parameters together with the k-

means-inspired “centroid” vectors that keep track of the contexts in which

word senses have occurred. They explore two model variants, one in which

the number of senses is the same for all words, and another in which a

threshold value determines the number of senses for each word. The re-

sults comparing the two variants are inconclusive, with the advantage of

the dynamic variant being virtually nonexistent. In our work, we use the

static approach. Whenever there is evidence for less senses than the num-

ber of available sense vectors, this is unlikely to be a serious issue as the

learning would concentrate on some of the senses, and these would then

be the preferred predictions also at test time. Li and Jurafsky (2015) build

upon the work of Neelakantan et al. with a more principled method for in-

troducing new senses using the Chinese Restaurant Processes (CRP). Our

experiments confirm the findings of Neelakantan et al. that multi-sense

embeddings improve Skip-gram embeddings on intrinsic tasks, as well as

those of Li and Jurafsky, who find that multi-sense embeddings offer lit-

tle benefit to the neural network learner on extrinsic tasks. Our discrete-

autoencoding method when viewed without the bilingual part in the en-

coder has a lot in common with their methods.
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Multilingual models. The research on using multilingual information

in the learning of multi-sense embedding models is scarce. Guo et al. (2014)

perform a sense induction step based on clustering translations prior to

learning word embeddings. Once the translations are clustered, they are

mapped to a source corpus using WSD heuristics, after which a recurrent

neural network is trained to obtain sense-specific representations. Unlike

in our work, the sense induction and embedding learning components are

entirely separated, without a possibility for one to influence another. In

a similar vein, Bansal et al. (2012) use bilingual corpora to perform soft

word clustering, extending the previous work on the monolingual case of

Lin and Wu (2009). Single-sense representations in the multilingual context

have been studied more extensively (Lu et al., 2015; Coulmance et al., 2015;

Faruqui and Dyer, 2014b; Hill et al., 2014a; Zhang et al., 2014; Faruqui and

Dyer, 2013; Zou et al., 2013), with a goal of bringing the representations

in the shared semantic space. A related line of work concerns the crosslin-

gual setting, where one tries to leverage training data in one language to

build models for typically lower-resource languages (Hermann and Blun-

som, 2014; Gouws et al., 2014; Chandar A P et al., 2014; Soyer et al., 2014;

Klementiev et al., 2012; Täckström et al., 2012).

The recent works of Kawakami and Dyer (2016) and Nalisnick and Ravi

(2015) are also of interest. The latter work on the infinite Skip-Gram model

in which the embedding dimensionality is stochastic is relevant since it

demonstrates that their embeddings exploit different dimensions to en-

code different word meanings. Just like us, Kawakami and Dyer (2016)

use bilingual supervision, but in a more complex LSTM network that is

trained to predict word translations. Although they do not represent dif-

ferent word senses separately, their method produces representations that

depend on the context. In our work, the second-language signal is intro-

duced only in the sense prediction component and is flexible—it can be de-

fined in various ways and can be obtained from sentence-only alignments

as a special case.
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8.10 Conclusion and future work

We have presented a method for learning multi-sense embeddings that

performs sense estimation and context prediction jointly. Both mono- and

bilingual information is used in the sense prediction during training. We

have explored the model performance on a variety of tasks, showing that

the bilingual signal improves the sense predictor, even though the crosslin-

gual information is not available at test time. In this way, we are able to ob-

tain word representations that are of better quality than the monolingually-

trained multi-sense representations, and that outperform the Skip-Gram

embeddings on intrinsic tasks. We have analyzed the model performance

under several conditions, namely varying dimensionality, vocabulary size,

amount of data, and size of the second-language context. For the latter pa-

rameter, we find that bilingual information is useful even when using the

entire sentence as context, suggesting that sentence-only alignment might

be sufficient in certain situations. We have also examined the effect of lan-

guage choice on the quality of embeddings by using a multi-parallel cor-

pus. We have not found any clear relationship between the language or its

family and the outcome in evaluation tasks in which we use the bilingually

trained word embeddings.

There are many research areas we did not address in our work, but are

worth exploring. One is to create a truly multilingual set-up in which sev-

eral languages contribute to the crosslingual signal at the same time. Our

formulation of the sense encoder allows such an extension by a straightfor-

ward modification, in which several languages combine linearly in the en-

coder. In that case, it would be necessary that the crosslingual signal comes

from word representations sharing the same embedding space. Such rep-

resentations can be estimated with methods described in Coulmance et al.

(2015), Guo et al. (2016) and Luong et al. (2015), inter alia. Secondly, while

we have used various languages in enhancing the word embeddings for

English, it would make sense to reverse the situation and use English (or

other languages) to train embeddings for a language other than English.

In that case, the set of the evaluation tasks might need to be reconsidered
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due to the scarcity of annotated resources in many non-English languages.

Finally, the extrinsic performance of multi-sense embeddings in general

should be carefully examined since the advantage is not clear based on our

findings and that of Li and Jurafsky (2015). Preferably, a larger array of

extrinsic tasks would be considered. Additionally, it would be interesting

to directly compare the accuracy of a POS tagging model implemented as

a neural network with other non-neural (sequence) classifiers.
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CHAPTER 9

Summary and conclusions

In this thesis, we focused on word representations and proposed several

methods that build upon existing approaches. We investigated their prop-

erties and effectiveness in a variety of settings. We have addressed three

major themes: The first and the most specific one was the application of

human-built word representations in syntactic parsing (Part II); the second

(Part III) concerned the role of syntax in models of word representations;

and lastly, we looked at the role of multilingual learning in the representa-

tion models capable of explaining polysemy (Part IV).

In Part I, we started off with a presentation of theoretical background

on word representations. We introduced distributional lexical semantics

and motivated the use of word representations in natural language pro-

cessing through the concepts of lexical sparseness and generalization. We

distinguished between two ways of evaluating the word representations:

intrinsic, which aims to measure how successfully the word representa-

tions capture human-elicited word similarity; and extrinsic, which involves

the integration of representations in concrete language processing systems.

We have also shown that representation learning can be seen as a con-

stituent part of the broader semi-supervised machine learning. In Chap-

ter 3, we gave an overview of all the representation methods we worked

169



170 Chapter 9. Summary and conclusions

with: concept classes, word clusters, latent-variable models and word em-

beddings. In Chapter 4, we went on to describe the evaluation tasks that

included several semantic similarity benchmarks and models for part-of-

speech tagging, named entity recognition, syntactic parsing, and identifi-

cation of semantic frames.

In Part II, we empirically investigated the lexical sparseness phe-

nomenon in the Alpino parser for Dutch. We extended its component for

modeling bilexical preferences with wordnet classes. Even though this led

to improvements in certain parsing outcomes, our method also introduced

in fact just as many incorrect parses. The main finding—which also an-

swers the research question we formulated in the introduction (Q1)—was

thus mostly negative: The generalization through concept classes did not

lead to improved overall parsing accuracy. We conjectured that this could

have happened because we did not build the disambiguation component

with generalization properties from scratch, but based on Alpino’s exist-

ing disambiguation component, which already tackled lexical sparseness

issues to a large degree. We also found that many errors made by the parser

could not be solved by means of generalization alone. The generalization

effects that interested us could also be studied in data-driven parsers which

are in general more heavily lexicalized than Alpino (cf. Plank (2011)); in

those, the overall improvement in parsing accuracy might be larger.

While the human-crafted concept representations have several attrac-

tive properties like interpretability, sense specificity and hierarchical orga-

nization, we found that many word types were not covered by the resource.

An additional problem of wordnets might be their excessive sense differen-

tiation. Also, sense disambiguation of word occurrences can be challeng-

ing and error-prone. For these reasons, we decided to explore distribu-

tional word representations in the remaining parts of the thesis.

In Chapters 6 and 7 of Part III, we addressed the research question Q2

that concerned the usefulness of syntactic context in learning of word rep-

resentations. We focused on incorporating different kinds of syntactic in-

formation in Brown clustering and Hidden Markov models. The extension
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of Brown clustering with a dependency language model proved successful

for Dutch. We obtained clusters that were closer to human-built classes of

semantically related words than those obtained with bigram-based Brown

clustering. Also, as we showed later, they performed well as features in

named entity recognition for Dutch. We then proceeded with a more com-

plex model by relying on the following reasoning. First, Brown cluster-

ing makes a simplifying assumption that a word may only belong to one

cluster, and in this way fails to account for the polysemy of words. Sec-

ond, certain experiments in cluster induction from Chapter 6 suggested

that, instead of relying solely on dependency structures without labels, it

might be preferable to refine the word contexts by including the informa-

tion about dependency labels. We implemented this idea in Chapter 7, in

which we studied syntactic variants of Hidden Markov models. Our ap-

proach included a model in which syntactic functions were added as addi-

tional observed variables. Based on the extrinsic evaluation for Dutch and

English, the findings were twofold. First, we established that the addition

of syntactic functions in most cases yielded representations of better qual-

ity than those obtained from sequential and unlabeled-tree HMM models,

thus supporting our reasoning about the need to represent syntactically

different contexts with separate model parameters. Secondly, somewhat

disappointingly, the quality of word representations obtained from those

latent-variable models was inferior to that of the baseline systems that in-

cluded Brown clusters and word embeddings, especially for English. Com-

pared to Brown clusters, the most apparent benefit of HMMs is that they

model a soft relationship between words and states, and provide context-

sensitive representations. In practice though, the advantage over Brown

clusters was not always evident. Furthermore, HMM word representations

are computationally more expensive to obtain and need a more intensive

exploration of the parameter space to work well. The upshot of our ex-

ploration in Part III is therefore that both unlabeled and labeled syntactic

structures can lead to a more precise and informative definition of context

than plain sequences. However, since the benefit was not observed univer-
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sally, factors like the language and the model complexity should be taken

into account. In future, one would then need to examine more closely how

the language choice influences the effect of syntactic context on the quality

of word representations (e.g. what is it precisely that makes the syntac-

tic contexts more beneficial for Dutch than for English?). Another avenue

for future research is to study the discrimination between context types in

other word representation frameworks (cf. Wang et al. (2015) and Ling et al.

(2015)). Also, since both Brown clustering and the latent-variable models

rely on automatically acquired syntactic analyses, a natural area for explo-

ration is the role of parsing mistakes on the quality of learned representa-

tions.

In the last part of the thesis, we studied neural word embeddings. The

models we proposed are capable of distinguishing between word senses,

similarly to HMM representations from the previous chapter. Using an

autoencoding approach, we estimated iteratively and in an unsupervised

manner the sense distributions for words and the embedding component.

The emphasis in this part was to study the effect of crosslingual (i.e. second-

language) contexts obtained from parallel corpora on the sense encoder for

the first language. By evaluating in a variety of semantic similarity tasks,

we established that the second-language signal often led to improvements

compared to the model that only had access to monolingual contexts. This

means that we can answer our third research question (Q3) positively: The

bilingual corpora can offer the supervision that leads to improved multi-

sense representations in the embedding framework. On a related note, we

also found that multi-sense representations outperformed generic, single-

sense representations in the intrinsic tasks. Surprisingly, this was not the

case in our extrinsic task (POS tagging). Therefore, some questions that

remain are whether multi-sense representations can be useful in other

downstream tasks, and specifically, how and in what sort of predictor they

should be included to be beneficial. A related question is whether infor-

mation about polysemy can be effectively encoded in generic representa-

tions and then recovered as needed (cf. Nalisnick and Ravi (2015)). Also,
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while we have not found any strong link between the choice of the language

that provided the supervisory signal and the quality of the sense encoding

component (or the resulting embeddings), further experiments would be

needed to arrive at a more definite conclusion.

Finally, although we have worked in this thesis in several representa-

tion frameworks and addressed different research questions that are im-

portant for understanding word representations, the scope of investigation

was throughout limited to words only. One question that is pertinent to

any representation method is how do the word representations and our

knowledge about them convey to the understanding of larger units such

as phrases, sentences and documents (Manning, 2016; Kiros et al., 2015; Le

and Mikolov, 2014; Grave et al., 2014; Blacoe and Lapata, 2012).





Appendices

175





APPENDIX A

Dependency Brown

clustering objective

A.1 Simplifying the objective function

Our dependency Brown clustering objective is based on a class-based de-

pendency language model, defined in section 6.3 as:

L(ST ;σ, T ) =
m∏
i=1

p(wi|σ(wi))p(σ(wi)|σ(wπ(i)), T ), (A.1)

where S is a lexicalization of the tree T with a word ordering 〈wi〉mi=1, wi ∈
V . The functions π and σ are the parent- and cluster-assigning functions,

respectively.

The objective can be rewritten in terms of mutual information (Brown

et al., 1992), which is the criterion actually used for optimizing the cluster-

ing function. From now on, we will work with a normalized binary log-

arithm of the probability, and we will omit the symbol T from the condi-

tioning in the right-hand side of equations. The rewriting steps follow the
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exposition in the lecture notes1 of Jan Hajič , but we use the dependency in-

stead of the bigram class-based language model. Slightly different rewrite

sequences can be found in Brown et al. (1992) and Liang (2005).

L(ST , σ, T ) =
1

m

m∑
i=1

log(p(wi|σ(wi))p(σ(wi)|σ(wπ(i)))) (A.2)

=
1

m

m∑
i=1

log

⎛
⎝p(wi|σ(wi))p(σ(wi))

p(σ(wi)|σ(wπ(i)))

p(σ(wi))

⎞
⎠

(A.3)

=
1

m

m∑
i=1

log

(
p(wi, σ(wi))

p(σ(wi)|σ(wπ(i)))

p(σ(wi))

)
(A.4)

=
1

m

m∑
i=1

log(p(wi)) +
1

m

m∑
i=1

log

(
p(σ(wi)|σ(wπ(i)))

p(σ(wi))

)
(A.5)

= −H(W ) +
1

m

m∑
i=1

log

⎛
⎜⎝
p(σ(wi)|σ(wπ(i)))p(σ(wπ(i)))

p(σ(wπ(i)))p(σ(wi))

⎞
⎟⎠
(A.6)

= −H(W ) +
1

m

m∑
i=1

log

⎛
⎝ p(σ(wi), σ(wπ(i)))

p(σ(wπ(i)))p(σ(wi))

⎞
⎠ (A.7)

= −H(W ) +
∑
d,e∈C

p(d, e) log

(
p(d, e)

p(d)p(e)

)
(A.8)

= −H(W ) + I(D,E) (A.9)

In each step, we use dashed underlining to mark the new or the changed

term. The steps rewrite equation (A.2) to arrive at the entropy of the word

distribution (first term in equations (A.5)–(A.9)) and the mutual informa-

tion I over the variables D and E, representing the classes of words in a

1http://www.cs.jhu.edu/~hajic/courses/cs465/cs46511/ppframe.htm.
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child-parent relationship (second term in equations (A.8)–(A.9)).

We are interested in finding the clustering function σ that maximizes

the objective L:

σ′ = argmax
σ

L(σ, T ). (A.10)

Since the entropy of the word distribution in equation (A.9) does not de-

pend on the clustering function σ, we are seeking to optimizing I(D,E)

only.

A naïve implementation would run inO(|V |5) time, namely, for each of

O(|V |)word types and for each ofO(|V |2) possible cluster pairs to merge it

would need to evaluate the resulting clustering quality, which would sum

over O(|V |2) terms. This makes the algorithm far too impractical to run

for typical vocabularies whose size is in the order of tens or hundreds of

thousand of words. With several optimization and tricks, the running time

can be brought down toO(k2|V |), where k is the number of clusters chosen

prior to clustering. We refer the reader to Liang (2005) for the details.





APPENDIX B

Sum-product message

passing

B.1 Background

In a Hidden Markov tree model with an additional observed variable, like

the one we have introduced in Chapter 7, we work on an undirected tree

with nodes V and edges E, in which each node s ∈ V except the root has

associated discrete random observed variables—in our case, words ws ∈
W and syntactic functions rs ∈ R—as well as a discrete random hidden

variable cs ∈ C . We are given the data as {(w1, r1), . . . , (wM , rM)} ⊆
W×R, whereM is the size of the dataset in sentences, andw1

s , for example,

is then the word at some node in the first sentence. In this chapter, we omit

the conditioning on the tree to avoid overcrowded notation, and simplify

by assuming that this information is already encoded by r.

The model consists of transition and emission parameters θ = (T,O).

Once the parameters are learned, we can use them to obtain word repre-

sentations as described in section 7.4.2. Intuitively, a good θ is one that fits

the data well, i.e. maximizes its likelihood. In unsupervised learning of

HMMs, we can use EM to find maximum likelihood solutions.
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When working in the log domain, the learning objective is to minimize

the negative log-likelihood of the data:

L(θ) = − log p(W |R; θ) (B.1)

= − 1

M

M∑
m=1

log
∑
cm

p(W = wm, C = cm|R = rm; θ). (B.2)

Because of the hidden variables, the likelihood contains a sum over all pos-

sible hidden structures c, which makes it hard to compute. We therefore

use EM and the inference procedure described next, which will allow us to

fill in the missing states using the knowledge of observed data and current

parameters.

The goal in this chapter is to show how to compute the posterior prob-

abilities that we need in order to collect the pseudo-counts (equation (7.3)),

used in the maximization step of EM to estimate the (new) maximum like-

lihood parameters θ′ at each iteration. We are concerned with computing

two different types of posterior probabilities. One is the state posterior dis-

tribution p(cs|w, r) over the states in a certain node given the observations;

another is the transition posterior distribution p(cs, cπ(s)|w, r), which are

the probabilities of each transition between a node and its parent given the

observations. All the quantities needed to calculate these posteriors can be

obtained with the sum-product message passing algorithm.

B.2 Message passing

We now describe the sum-product message passing, or the belief propaga-

tion algorithm1 (Pearl, 1988), which can be used to compute the posterior

1Note that some authors make a distinction between the two, e.g. Murphy (2012),

depending on whether the top-down messages depend on the bottom-up messages

along the same edge or are independent. Our presentation follows the sum-product

version, in which, like in the forward-backward recursions (Stratonovich, 1960; Rabiner,

1989), the top-down messages are computed independently of the bottom-up ones.
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z

t

u

u2u1

s

s2s1

x−
s,t, r

−
s,t

(a) Bottom-up phase.

z

t

u

u2u1

s

s2s1

x+
s,t, r

+
s,t

(b) Top-down phase.

Figure B.1: Message passing on a tree, rooted at z. The direction of

message passing is shown with arrows. The visible evidence is denoted

with ws,t and rs,t, and by using superscript − and + to indicate the

downstream and the upstream side of the tree. The illustration is based

on Murphy (2012).

probabilities of the hidden states in graphical models in general. In de-

scribing the algorithm for tree HMMs, we follow Murphy (2012), with a

difference that we have an extra observed variable accounting for the syn-

tactic functions, which in our model modulates both the hidden, “semantic

class” variable and the observed word forms. The algorithm will allow us

to find posterior marginals p(cs|w, r) for all nodes s ∈ V in the tree, and

transition marginals p(cs, cπ(s)|w, r) for all edges (s, π(s)) ∈ E, where w

and r stand for the full word and syntactic function observations.

In message passing, we can in principle pick any of the tree nodes and

designate it as the root, and we can also identify all the leaves of the tree by

orienting all the edges away from the root. In our case, however, a depen-

dency tree gives us an already predefined root node, which is also special

in that it is not associated with any observed variable. An example tree

structure is shown in Figure B.1. The method consists of propagating mes-

sages from the leaves towards the root in a bottom-up phase, as in B.1a,
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and from the root towards the leaves in a top-down phase, as in B.1b. A

message m can be seen as a real-valued function passed along edges and

between nodes. It holds a summary of the evidence for the subtree from

which it originates. A node can send a message to its parent once it has

received all messages from its children. The message passing is performed

recursively until messages have been propagated along every edge. We

will use an auxiliary quantity, called belief, to represent the local evidence

at a node.

Our Hidden Markov tree model with syntactic functions can be fac-

tored as

p(w, c|r) =
∏
s∈V

ψs(cs, ws, rs)
∏

(s,π(s))∈E

ψs,π(s)(cs, ct, rs), (B.3)

where ψs(cs, ws, rs) = p(ws|cs, rs) is the potential of the local evidence

(emission) at node s, and ψs,π(s)(cs, cπ(s), rs) = p(cπ(s)|cs, rs) is the edge

(transition) potential at (s, π(s)). We use the “potential” notation to con-

form with the literature (Murphy, 2012; Barber, 2012; Wainwright and Jor-

dan, 2008).

We start by picking a node from Figure B.1a, say t, and compute its

belief state to hold the evidence encountered at or or below t:

bel−t (ct) � p(ct, w
−
t |r−t ) = ψt(ct, wt, rt)

∏
t′∈B(t)
\{π(t)}

m−
t′→t(ct), (B.4)

where B(t) is the set of immediate neighbors of t, i.e. the children and the

parent: {t′ ∈ V |(t, t′) ∈ E}. In words, the bottom-up belief at node t

is the product of the local emission potential and the incoming messages

from the children of t. It can be interpreted as the probability of being in

a certain state at the node t and having observed all the words given the

syntactic functions on the downstream.

The computation of messages, which we show next, itself relies on the



B.2. Message passing 185

downstream belief states. It is in this sense that the algorithm is recursive:

m−
s→t(ct) =

N∑
i

ψs,t(cs = i, ct, rs)bel−s (cs = i), (B.5)

where we sum over all N hidden variable elements. As we can see, the

belief lower in the tree (at s) gets converted to belief higher in the tree (at t)

by including the edge potential at (s, t), as well as the local node potential

at t.

Once the upward phase reaches the root z, all nodes have been seen, so

the local belief state can be computed:

bel−z (cz) � p(cz, w
−
t |r−t ) =

∏
z′∈B(z)

m−
z′→z(cz). (B.6)

Because in our model we do not associate any emission potential with the

root node z and since the root does not have a parent, the only belief-update

information is the product of incoming messages from its children. Since

we have seen all the evidence in the tree, the belief state of the root can be

interpreted as the probability of the observed tree, p(w−
t |r−t ) = p(w|r).

In the second phase, the messages are passed from the root towards

the leaves. In the computation of the top-down message from t to s, we

assume, by recursion, that the top-down messages further upstream have

already been calculated:

m+
t→s(cs) � p(w+

s,t|cs, r+s,t) =
N∑
i

ψs,t(cs, ct = i, rs)ψt(ct = i, wt, rt)m
+
π(t)→t(ct = i)

∏
t′∈B(t)
\{π(t),s}

m−
t′→t(ct = i).

(B.7)

The top-down message represents the probability of observing all up-
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stream words given the observed upstream syntactic functions and being

in a certain state at the node s. The message holds all the information from

the upstream side of the edge (s, t), including all the edge potentials and

the node potentials, the top-down message from t’s parent as well as the

bottom-up messages to t originating from children other than s. Working

like this through the tree, we obtain the top-down messages for all edges in

the tree. These, together with the bottom-up node beliefs, make it possible

to compute the state posteriors:

p(cs|w, r) = p(cs, w|r)
p(w|r) =

bel−s (cs)m
+
t→s(cs)

p(w|r) , (B.8)

and the transition posteriors:

p(cs, ct|w, r) =
1

p(w|r)bel−s (cs)ψs,t(cs, ct, rs)ψt(ct, wt, rt)m
+
z→t(ct)

∏
t′∈B(t)
\{π(t),s}

m−
t′→t(ct).

(B.9)

The running time of the message passing algorithm is linear in the num-

ber of tree nodes |V | and quadratic in the number of hidden states N .
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Individual semantic

similarity results from

Chapter 8
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Benchmark Sg Mu BiMu

WS-353 47.85 47.83 53.59
WS-353-SIM 56.56 56.34 63.27
WS-353-REL 42.31 44.93 48.26
MC-30 53.24 48.46 61.55
RG-65 43.62 46.95 53.79
Rare-Word 37.28 38.04 40.96
MEN 38.93 47.71 51.23
MTurk-287 41.99 52.18 59.06
MTurk-771 39.01 41.01 45.18
YP-130 8.6 16.14 18.59
SimLex-999 19.04 23.04 23.04
Verb-143 25.37 31.26 37.18
Average 37.82 41.16 46.31

Table C.1: Individual results: RU-EN.

Benchmark Sg Mu BiMu

WS-353 48.04 44.23 48.92
WS-353-SIM 55.23 54.84 58.56
WS-353-REL 41.6 36.2 37.28
MC-30 41.28 43.15 45.82
RG-65 40.94 43.33 43.62
Rare-Word 42.29 40.83 40.34
MEN 46.21 47.92 51.69
MTurk-287 48.16 47.92 54.17
MTurk-771 42.22 45.09 43.27
YP-130 27.48 19.48 32.14
SimLex-999 15.88 13.95 15.76
Verb-143 25.33 6.29 31.35
Average 39.56 36.94 41.91

Table C.2: Individual results: CZ-EN.
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Benchmark Sg Mu BiMu

WS-353 51.91 46.73 48.85
WS-353-SIM 64.1 58.65 62.38
WS-353-REL 42.65 38.09 40.3
MC-30 53.55 46.93 43.55
RG-65 52.63 44.27 44.24
Rare-Word 43.31 39.54 42.32
MEN 52.58 51.68 51.11
MTurk-287 59.03 59.42 60.12
MTurk-771 47.91 45.59 45.99
YP-130 31.56 31.22 36.6
SimLex-999 26.92 24.59 25.24
Verb-143 29.6 16.89 21.77
Average 46.31 41.97 43.54

Table C.3: Individual results: FR-EN.

Benchmark Sg Mu BiMu

WS-353 29.19 37.82 41.94
WS-353-SIM 43.4 48.03 53.92
WS-353-REL 23.44 35.43 36.52
Rare-Word 22.38 25.24 34.46
MEN 24.14 17.54 22.85
MTurk-287 8.92 29.34 24.85
MTurk-771 26.04 30.43 32.42
YP-130 -6.62 15.43 27.04
SimLex-999 7.47 7.71 10.36
Verb-143 20.17 25 27.31
Average 19.85 27.20 31.17

Table C.4: Individual results: ES-EN (NC).
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Benchmark Sg Mu BiMu

News-de
WS-353 32.12 42.18 46.67
WS-353-SIM 50.45 49.79 54.71
WS-353-REL 23.74 38.4 42.95
Rare-Word 18.56 30.31 26.65
MEN 23.14 20.73 17.89
MTurk-287 4.68 27.8 29.82
MTurk-771 22.44 30.64 35.66
YP-130 5.73 9.79 16.73
SimLex-999 8.13 9.49 11.57
Verb-143 17.87 25.1 25.59
Average 20.69 28.42 30.82

Table C.5: Individual results: DE-EN (NC).

Benchmark Sg Mu BiMu

WS-353 31.93 38.43 37.77
WS-353-SIM 47.98 44.92 47.23
WS-353-REL 25.5 33.26 30.08
Rare-Word 19.54 22.89 33.8
MEN 25.7 21.37 24.17
MTurk-287 -0.91 29.72 24.49
MTurk-771 21.61 26.07 35.46
YP-130 -2.73 17.57 16.55
SimLex-999 5.57 7.41 8.77
Verb-143 18.88 31.63 25.33
Average 19.31 27.33 28.37

Table C.6: Individual results: RU-EN (NC).
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Benchmark Sg Mu BiMu

WS-353 27.46 36 39.8
WS-353-SIM 44.22 48.29 49.6
WS-353-REL 20.8 31.84 35.2
Rare-Word 9.98 25.64 24.98
MEN 22.03 18.72 20.32
MTurk-287 -8.31 28.16 10.4
MTurk-771 17.55 33.6 30.41
YP-130 0.9 4.78 18.57
SimLex-999 2.78 8.88 6.46
Verb-143 20.92 30.42 18.31
Average 15.83 26.63 25.41

Table C.7: Individual results: CZ-EN (NC).

Benchmark Sg Mu BiMu

WS-353 30.91 37.32 40.26
WS-353-SIM 44.78 46.06 49.42
WS-353-REL 25.15 33.88 34.09
Rare-Word 18.97 31.05 33.93
MEN 21 20.49 21.4
MTurk-287 -2.48 21.05 26.21
MTurk-771 19.93 32.04 35.71
YP-130 -2.86 15 11.05
SimLex-999 6.59 7.31 5.95
Verb-143 16.78 15.78 17.7
Average 17.88 26.00 27.57

Table C.8: Individual results: FR-EN (NC).





Bibliographical abbreviations

We use the following abbreviations for the proceedings of conferences and

workshops:

AAAI → Conference on Artificial Intelligence

ACL → Conference of the Association for Computational Linguistics

ANLC → Conference on Applied Natural Language Processing

CIKM → ACM International Conference on Conference on Information

and Knowledge Management

COLING → International Conference on Computational Linguistics

CoNLL → Conference on Computational Natural Language Learning

EACL → Conference of the European Chapter of the Association for Com-

putational Linguistics

EMNLP → Conference on Empirical Methods in Natural Language Pro-

cessing

GWC → Global WordNet Conference

HLT → Conference on Human Language Technology

ICASSP → International Conference on Acoustics, Speech, and Signal Pro-

cessing

ICLR → International Conference on Learning Representations

ICML → International Conference on Machine learning

IJCNLP→ International Joint Conference on Natural Language Processing

IWPT → International Conference on Parsing Technologies
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LREC → Language Resources and Evaluation Conference

NAACL → Conference of the North American Chapter of the Association

for Computational Linguistics

NIPS → Neural Information Processing Systems Conference

NLPLING → Workshop NLP and Linguistics

NODALIDA → Nordic Conference on Computational Linguistics

*SEM → Joint Conference on Lexical and Computational Semantics

SemEval → International Workshop on Semantic Evaluation

SP-Sem-MRL → Joint Workshop on Statistical Parsing and Semantic Pro-

cessing of Morphologically Rich Languages

TALN → French Conference on Natural Language Processing

TLT → International Workshop on Treebanks and Linguistic Theories

TSD → International Conference on Text, Speech and Dialogue

WDS → Week of Doctoral Students Conference

WMT → Workshop on Statistical Machine Translation
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Nederlandse samenvatting

Natuurlijke-taalverwerking is de analyse van natuurlijke taal door middel

van computationele methoden. Om een hoog niveau van het begrijpen van

de natuurlijke taal in praktische toepassingen te bereiken is taalanalyse ver-

eist op allerlei niveaus, waaronder de analyse van de betekenis van woor-

den: de lexicale semantiek. Centraal in dit proefschrift staan verschillende

benaderingen voor het verkrijgen van representaties van de betekenis van

woorden als wiskundige objecten. Deze benaderingen zorgen voor een effi-

ciënte computationele behandeling en interpreteerbaarheid, en maken het

mogelijk om complexere taalverwerkingstaken uit te voeren. Steeds terug-

kerende problemen bij de verwerking van natuurlijke taal zijn de nieuwe

situaties en contexten die steeds weer voorkomen, ook wanneer computa-

tionele modellen worden gebouwd op basis van zeer grote hoeveelheden

tekst. De rol van woordrepresentaties is om deze nieuwe situaties doeltref-

fend aan te pakken door overeenkomsten met eerder voorgevallen situaties

te benutten.

In het proefschrift motiveren we het gebruik van woordrepresentaties

in het eerste deel, en we geven een overzicht van de relevante theoretische

kaders en bestaande evaluatiemiddelen om de effectiviteit van de resulte-

rende modellen te kunnen toetsen. Daarna volgt de empirische studie. In

hoofdstuk 5 onderzoeken we hoe lexicale informatie kan worden gebruikt

door een zinsontleder voor het Nederlands. We onderzoeken in meer de-

tail het gebruik van lexicale voorkeuren om betere syntactische analyses op

te leveren. Omdat de lexicale voorkeuren worden bepaald voor woorden
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in een syntactische relatie (zoals onderwerp of lijdend voorwerp), bepalen

we door middel van statistische technieken voor welke syntactische rela-

ties het incorporeren van lexicale voorkeuren het grootste effect heeft op

de ontledingskwaliteit. Voor deze relaties vervangen we in een experiment

de betreffende woorden door hun semantische klassen uit het Nederlandse

Wordnet. Door zowel fijne als grove semantische klassen te gebruiken kun-

nen we aantonen dat onze aanpak betere ontledingen oplevert in een aantal

gevallen, maar uiteindelijk verbetert de algehele nauwkeurigheid van de

ontleder niet.

In de hoofdstukken 6 en 7 werken we met woordrepresentaties die

niet uit een bestaande, door de mens ontworpen bron (zoals Wordnet) zijn

verkregen maar geheel automatisch op basis van grote corpora worden be-

paald. De belangrijkste bijdrage van hoofdstuk 6 en 7 is dat de syntacti-

sche relatie tussen woorden en de aard van de syntactische relatie tussen

woorden nuttig kunnen zijn voor het verkrijgen van preciezere woordre-

presentaties. Meer bepaald onderzoeken wij twee modellen. In het eerste

model wordt de semantiek van het woord bepaald door zijn lidmaatschap

van één van de clusters die op basis van de data automatisch zijn geleerd.

Hierbij meten wij de kwaliteit van een woordcluster door de semantische

overeenkomsten tussen woorden in hetzelfde cluster te vergelijken met de

overeenkomsten tussen die woorden in Wordnet.

In het tweede model wordt de semantiek van het woord gezien als af-

hankelijk van de context waarbij dus verschillende contexten van hetzelfde

woord tot verschillende semantische representaties kunnen leiden. Deze

laatste eigenschap wordt bereikt door het gebruik van het framework van

latente variabelen. Om tot een preciezer onderscheid tussen woorden te

komen onderzoeken we in hoofdstuk 7 niet alleen of woorden in een syn-

tactische relatie tot elkaar voorkomen, maar we kijken ook naar de aard van

die syntactische relatie; we gebruiken dus gelabelde syntactische relaties.

De resulterende woordrepresentaties worden getest in twee toepassingen

en daarbij wordt het voordeel van het gebruik van gelabelde syntactische

relaties bevestigd. In beide hoofdstukken stellen we vast dat het voordeel
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van het gebruik van syntactische relaties afhankelijk is van de taal van het

onderzoek. Uit onze resultaten blijkt dat het Nederlands meer gebaat is bij

syntactische informatie dan het Engels.

In hoofdstuk 8 richten we ons op het leren van woordrepresentaties

over de taalgrenzen heen. Om de informatie uit een andere taal mee te ne-

men stellen we een techniek voor die geïnspireerd is op neurale netwerken.

In dit hoofdstuk nemen we ook de polysemie van woorden serieus door de

introductie van verschillende representaties voor elk van de betekenissen

van een woord. Dit bereiken we door te beginnen met willekeurige repre-

sentaties voor elk van de betekenissen die we daarna op iteratieve wijze

verfijnen op basis van corpora. De hoofdbijdrage hierbij is dat de infor-

matie uit gealigneerde corpora (d.w.z. vertalingen) kan worden gebruikt

om woordbetekenissen betrouwbaarder te selecteren, waardoor de kwali-

teit van de resulterende representaties verbeterd wordt. We concluderen

dat meertalige informatie bijzonder nuttig kan zijn voor het verkrijgen van

goede woordrepresentaties. Al zijn de resultaten van het gebruik van deze

woordrepresentaties voor het automatisch toekennen van woordsoorten

niet eenduidig, uit de evaluatie van de woordrepresentaties op een aantal

standaard datasets waarbij de modellen worden ingezet om woordparen

te selecteren die semantische overeenkomst vertonen blijken de nieuwe re-

presentaties duidelijk beter te presteren.
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