3,203 research outputs found

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Towards the text compression based feature extraction in high impedance fault detection

    Get PDF
    High impedance faults of medium voltage overhead lines with covered conductors can be identified by the presence of partial discharges. Despite it is a subject of research for more than 60 years, online partial discharges detection is always a challenge, especially in environment with heavy background noise. In this paper, a new approach for partial discharge pattern recognition is presented. All results were obtained on data, acquired from real 22 kV medium voltage overhead power line with covered conductors. The proposed method is based on a text compression algorithm and it serves as a signal similarity estimation, applied for the first time on partial discharge pattern. Its relevancy is examined by three different variations of classification model. The improvement gained on an already deployed model proves its quality.Web of Science1211art. no. 214

    Two-stage procedure based on smoothed ensembles of neural networks applied to weed detection in orange groves

    Get PDF
    The potential impacts of herbicide utilization compel producers to use new methods of weed control. The problem of how to reduce the amount of herbicide and yet maintain crop production has stimulated many researchers to study selective herbicide application. The key of selective herbicide application is how to discriminate the weed areas efficiently. We introduce a procedure for weed detection in orange groves which consists of two different stages. In the first stage, the main features in an image of the grove are determined (Trees, Trunks, Soil and Sky). In the second, the weeds are detected only in those areas which were determined as Soil in the first stage. Due to the characteristics of weed detection (changing weather and light conditions), we introduce a new training procedure with noisy patterns for ensembles of neural networks. In the experiments, a comparison of the new noisy learning was successfully performed with a set of well-known classification problems from the machine learning repository published by the University of California, Irvine. This first comparison was performed to determine the general behavior and performance of the noisy ensembles. Then, the new noisy ensembles were applied to images from orange groves to determine where weeds are located using the proposed two-stage procedure. Main results of this contribution show that the proposed system is suitable for weed detection in orange, and similar, groves
    corecore