53 research outputs found

    Myanmar named entity corpus and its use in syllable-based neural named entity recognition

    Get PDF
    Myanmar language is a low-resource language and this is one of the main reasons why Myanmar Natural Language Processing lagged behind compared to other languages. Currently, there is no publicly available named entity corpus for Myanmar language. As part of this work, a very first manually annotated Named Entity tagged corpus for Myanmar language was developed and proposed to support the evaluation of named entity extraction. At present, our named entity corpus contains approximately 170,000 name entities and 60,000 sentences. This work also contributes the first evaluation of various deep neural network architectures on Myanmar Named Entity Recognition. Experimental results of the 10-fold cross validation revealed that syllable-based neural sequence models without additional feature engineering can give better results compared to baseline CRF model. This work also aims to discover the effectiveness of neural network approaches to textual processing for Myanmar language as well as to promote future research works on this understudied language

    Extracting information from radiology reports by Natural Language Processing and Deep Learning

    Get PDF
    This work was supported by the NLP4RARE-CM-UC3M, which was developed under the Interdisciplinary Projects Program for Young Researchers at University Carlos III of Madrid. The work was also supported by the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M17), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    Machine learning model for clinical named entity recognition

    Get PDF
    To extract important concepts (named entities) from clinical notes, most widely used NLP task is named entity recognition (NER). It is found from the literature that several researchers have extensively used machine learning models for clinical NER.The most fundamental tasks among the medical data mining tasks are medical named entity recognition and normalization. Medical named entity recognition is different from general NER in various ways. Huge number of alternate spellings and synonyms create explosion of word vocabulary sizes. This reduces the medicine dictionary efficiency. Entities often consist of long sequences of tokens, making harder to detect boundaries exactly. The notes written by clinicians written notes are less structured and are in minimal grammatical form with cryptic short hand. Because of this, it poses challenges in named entity recognition. Generally, NER systems are either rule based or pattern based. The rules and patterns are not generalizable because of the diverse writing style of clinicians. The systems that use machine learning based approach to resolve these issues focus on choosing effective features for classifier building. In this work, machine learning based approach has been used to extract the clinical data in a required manne

    On the Use of Parsing for Named Entity Recognition

    Get PDF
    [Abstract] Parsing is a core natural language processing technique that can be used to obtain the structure underlying sentences in human languages. Named entity recognition (NER) is the task of identifying the entities that appear in a text. NER is a challenging natural language processing task that is essential to extract knowledge from texts in multiple domains, ranging from financial to medical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a relatively little-used technique in NER systems, since most of them have chosen to consider shallow approaches to deal with text. In this work, we study the characteristics of NER, a task that is far from being solved despite its long history; we analyze the latest advances in parsing that make its use advisable in NER settings; we review the different approaches to NER that make use of syntactic information; and we propose a new way of using parsing in NER based on casting parsing itself as a sequence labeling task.Xunta de Galicia; ED431C 2020/11Xunta de Galicia; ED431G 2019/01This work has been funded by MINECO, AEI and FEDER of UE through the ANSWER-ASAP project (TIN2017-85160-C2-1-R); and by Xunta de Galicia through a Competitive Reference Group grant (ED431C 2020/11). CITIC, as Research Center of the Galician University System, is funded by the Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF/FEDER) with 80%, the Galicia ERDF 2014-20 Operational Programme, and the remaining 20% from the Secretaría Xeral de Universidades (Ref. ED431G 2019/01). Carlos Gómez-Rodríguez has also received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, Grant No. 714150)
    corecore