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Abstract

Neural Named Entity Recognition and Temporal Relation
Extraction
Meizhi Ju

A thesis submitted to The University of Manchester
for the degree of Doctor of Philosophy, 2020

Automatically identifying information of interest from texts is one of the most

difficult challenges. One crucial step towards information extraction is named en-

tity recognition, where many entities are embedded in other entities (i.e., nested

entities). Nested entities contain rich fine-grained information, which is essential

in understanding texts. However, most work ignored nested entity recognition

though they are common in many domains. In addition to the semantic infor-

mation expressed in named entities, temporal information conveyed by named

entities is another important dimension in understanding texts. Temporally clas-

sifying the relations (e.g., before) between entities is known as temporal relation

extraction, which is required in many tasks such as text summarisation.

The thesis is the first comprehensive research focusing on nested entity recog-

nition for information extraction using neural network methods. In this research,

we describe our work on (1) neural nested entity recognition; (2) evaluation on

different domains of corpora; (3) task-specific evaluation including (a) neuro-

science entity extraction; (b) screening reference documents; (c) extraction of

medication and adverse drug information; (d) and extraction of chronic obstruc-

tive pulmonary disease phenotypes. In addition to nested entity recognition,

we further investigate neural temporal relation extraction, which focuses on the

extraction of both intra-sentence and inter-sentence temporal relations.
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Chapter 1

Introduction

1.1 Motivation

Texts written in human (natural) languages such as scientific articles are a rich

source for information extraction (IE), which targets the automatic extraction of

structured information from unstructured texts. Computational techniques such

as natural language processing (NLP), machine learning (ML) have been widely

used to automatically process and analyze massive natural language data, saving

time and human effort. With these techniques, one of the most important steps

towards IE is to extract entities of interest (e.g., organisations, places, people)

from texts. Such a task is known as named entity recognition (NER), which

serves as the first step in many NLP downstream tasks such as entity linking

(Gupta et al., 2017), relation extraction (Miwa and Bansal, 2016; Christopoulou

et al., 2018), event extraction (Feng et al., 2016) and co-reference resolution

(Fragkou, 2017; Stone and Arora, 2017; Trieu et al., 2018). As a result, NER has

been receiving constant attention from the community (Grishman and Sundheim,

1996; Scheffer et al., 2001; Mohit and Hwa, 2005; Sasaki et al., 2008; Tsuruoka

et al., 2008; Lample et al., 2016; Shardlow et al., 2018; Ju et al., 2019b).

Due to the properties of natural language, many entities are embedded in other

entities, which are referred to as nested entities. For example, Figure 1.1 contains

three inner entities, which are nested within the outermost entity “Reporter Carl

Dinnon of Britain’s ITN”.

Nested entities are quite common in many domains. The GENIA corpus

(Kim et al., 2003), one of the most popular biomedical corpora, contains 16.7%

of nested entities (Gu, 2006). In the general domain, around 24% of entities in

22
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Reporter︸ ︷︷ ︸
PER

Carl Dinnon of Britain︸ ︷︷ ︸
GPE

’s ITN︸ ︷︷ ︸
ORG︸ ︷︷ ︸

PER

fielded this report.

Figure 1.1: A sentence from ACE2005 (Walker et al., 2006) containing nested
entities. “PER”, “GPE” and “ORG” represent person, geo-political entity and
organization, respectively.

ACE2005 corpus (Walker et al., 2006) are nested (Ju et al., 2018). However,

most work on NER copes with only non-nested entities (i.e., flat entities) and

neglects nested ones. This leads to information loss since nested entities contain

fine-grained information, which is crucial in understanding texts. There were

only a few efforts in addressing nested NER. Approaches focused on nested NER

either require hand-crafted features (Gu, 2006; Finkel and Manning, 2009; Lu

and Roth, 2015; Muis and Lu, 2017) or ignore the dependencies among nested

entities (Xu et al., 2017b; Li et al., 2017a). Dependencies refer to the occurrence

of outer entities depend on the occurrence of inner entities.

In addition to the entity semantics, temporality between entities is another

important dimension in understanding natural language. Many NLP tasks such as

question answering (Llorens et al., 2015; Meng et al., 2017), text summarization

(Ng et al., 2014; Wang et al., 2017) and causality (Mirza and Tonelli, 2014;

Mirza, 2014; Ning et al., 2018) require the extraction of temporal information. For

example, to understand the disease progression, we need the temporal information

such as the starting time points of symptoms, drug frequencies and other disease

history. Meanwhile, when summarizing the storyline from news reports, it is

necessary to know the development of events over time, requiring timestamping

or temporally ordering them. The process of identifying such information in time

dimension is defined as temporal information extraction (TIE), which in general

includes the extraction of time expressions (timexes), events, and relations (e.g.,

before, after) between any of them.

According to TimeML (Boguraev et al., 2005), events are textual spans that

describe things are happening (e.g., “reading”) and timexes are spans that rep-

resent explicit temporal expressions, such as times, dates (e.g., “3rd of July”).

These events in combination with timexes are called temporal entities, which can
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be nested within each other. The process of identifying the temporal relation

between any pair of temporal entities is known as temporal relation extraction

(TRE), which has been remaining a challenging task because of the following two

factors. The first one is that temporal information is often explicitly expressed in

texts, requiring inference from additional information such as linguistic tenses and

context-independent prior knowledge. For example, the event “jump” is punctual

while the event “know” can be long-lasting. Such knowledge reflects the lasting

time of events, which is informative in timestamping events. Moreover, the prior

knowledge includes natural temporal orders such as people are injured first and

then they will die. Context-independent knowledge, as described in these exam-

ples, is tough to be automatically modelled by computers. The other factor is the

global dependencies, requiring models to consider both intra- and inter-sentence

information.

With the advances in neural networks (NNs), many NLP tasks have achieved

state-of-the-art (Miwa and Bansal, 2016; Zhang et al., 2018b) by adopting neural

models such as convolutional neural networks (LeCun et al., 1999), long short-

term memory networks (Hochreiter and Schmidhuber, 1997) and attention mech-

anisms (Vaswani et al., 2017b), which remove the dependence on both hand-

crafted feature engineering and external knowledge bases (Lample et al., 2016;

Song et al., 2018). Under this circumstance, we take advantage of NNs in our

research to address the tasks: nested named entity recognition and temporal

relation extraction. The outcome of our research will help the investigation of

downstream tasks, which depend on the extraction of nested entities and their

relations in time dimension. In addition, the proposed approaches can represent a

useful means to populate resources such as knowledge bases and data annotation.

1.2 Research Questions and Hypotheses

To address the issues mentioned above, we have raised the following research

questions:

RQ1 What are the state-of-the-art methods in extracting both flat and nested

entities?

RQ2 How nested NER can be improved using NNs?

RQ3 How to measure the model generalisation ?
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RQ4 How to temporally relate named entities?

In particular, we decompose the last question into the following sub questions:

RQ4-1 What are the state-of-the-art methods for TRE?

RQ4-2 How TRE can be improved using NNs?

RQ4-3 How to measure the ability of the TRE model in extracting both

sentence- and document-level temporal relations?

We undertake this research by making a comprehensive investigation of work

dealing with NER including both flat and nested NER. Then, we propose a novel

neural model for nested NER without depending on external knowledge resources

and hand-crafted linguistic features. To prove its effectiveness in coping with

nested entities, we experiment with different domains of corpora. Moreover, we

apply the model to different tasks, which evaluate the model by plugging it into

other components designed for the corresponding NLP task. To temporally relate

the entities of interest, we walk through the history of temporal information ex-

traction and propose a neural approach to extract both intra- and inter-sentence

temporal relations. We formulate the tasks in the following two research hypothe-

ses in combination with their research objectives:

H1 Utilisation of inner entities can improve the detection of outer entities using

NNs.

RO1 To conduct a comprehensive literature review including methods, re-

sources and tools for NER.

RO2 To design neural NER models without feature-engineering and external

knowledge bases.

RO3 To conduct evaluations in the settings of different domains and task-

specific applications.

H2 Incorporation of latent information (i.e., event arguments) between tempo-

ral entities can improve TRE.

RO4 To conduct a comprehensive literature review focusing on temporal

entity and their relation extraction.
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RO5 To design a novel model to extract temporal relations including both

intra- and inter-sentence relations.

RO6 To conduct evaluations in the settings of both intra- and inter-sentence

temporal relations.

We detail in the succeeding chapters how each objective was achieved. Chap-

ters 2 and 3 focus on RO1 and RO2, respectively. Chapter 4 details how RO3 is

accomplished. Chapter 5 describes how RO4 and RO5 are fulfilled.

1.3 Contributions

The contributions of this research are summarised as follows:

• Propose a novel neural approach for nested NER without relying on hand-

crafted features or external knowledge resources. Chapter 3 presents the

model details.

• Employ the proposed model in the neuroscience domain under flat NER

setting to help curation of neuroscience entities. We present this work in

Section 4.2.1 of Chapter 4.

• Develop non-neural methods in combination with our model to identify

pertinent and complex information about chronic obstructive pulmonary

disease phenotypes from clinical textual data. This work is detailed in

Section 4.2.2 of Chapter 4.

• Introduce subword units to the proposed model to extract adverse drug

event and medication information from clinical records. With subword

units, the model improves the extraction of sparse entities without depend-

ing on any external knowledge resources and hand-crafted features. We

discuss this work in Section 4.2.3 of Chapter 4.

• Develop a PICO model for recognizing elements of patient/population (P),

intervention (I), comparator (C), and outcomes (O). The PICO model was

further used in the task of scientific abstract screening in combination of

biomedical and health domains. Section 4.2.4 of Chapter 4 gives details of

this work.
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Publication Venue Chapter

A Text Mining Pipeline Us-
ing Active and Deep Learning
Aimed at Curating Information
in Computational Neuroscience
(Shardlow et al., 2018)

Neuroinformatics Chapter 4

A Neural Layered Model for
Nested Named Entity Recogni-
tion (Ju et al., 2018)

Proceedings of the 2018 Con-
ference of the North American
Chapter of the Association for
Computational Linguistics: Hu-
man Language Technologies

Chapter 3, 4

An Ensemble of Neural Models
for Nested Adverse Drug Events
and Medication Extraction with
Subwords (Ju et al., 2019a)

Journal of the American Medical
Informatics Association

Chapter 4

Annotating and Detecting Phe-
notypic Information for Chronic
Obstructive Pulmonary Disease
(Ju et al., 2019b)

Journal of the American Medical
Informatics Association Open

Chapter 4

Improving Reference Prioritisa-
tion with PICO Recognition
(Brockmeier et al., 2019)

BMC Medical Informatics and
Decision Making

Chapter 4

Table 1.1: Publications published during the course of the PhD.

• Propose a novel neural model to extract both intra- and inter-sentence

temporal relations using latent information between temporal entities. We

present this work in Chapter 5.

A significant proportion of the thesis is already published. Table 1.1 presents

a list of the publications, as well as their correspondence to the thesis chapters.

The contents of most publications can be replicated with our released codes.



Chapter 2

Background

In this chapter, we present the following regarding named entity recognition:

• Explain definitions of named entities, named entity recognition and their

related concepts

• Summarise related work towards named entity recognition

• Summarise the existing available data sources and tools for named entity

recognition

• Summarise the evaluation of named entity recognition

2.1 Introduction

The term named entity (NE) was first coined in 1995 in the Sixth Message Under-

standing Conference (MUC-6) (Grishman and Sundheim, 1996), which aimed to

extract structural information of company and military activities from unstruc-

tured text, such as news articles. When identifying such information, researchers

noted that it is crucial to recognise information units such as names of peo-

ple, location and organisation, temporal expressions (e.g., time and dates) and

other numeric expressions including money and percentage expressions. The pro-

cess of identifying such information units (i.e., named entities) was defined as

named entity recognition (NER). As a follow-up of MUC-6, MUC-7 (Marsh and

Perzanowski, 1998) focused on the topics of airplane crashes and aircraft launches.

After MUC, there have been shared tasks to deal with language-independent

28
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NER, such as Conference on Natural Language Learning 2002 (CoNLL-2002)

(Tjong Kim Sang, 2002) and information retrieval and information extraction

(IREX) (Sekine and Isahara, 2000), CoNLL-2003 (Tjong Kim Sang and De Meul-

der, 2003). The Automatic Content Extraction (ACE) program aimed to develop

information extraction technology to support automatic processing of source lan-

guage data including newswire, broadcast news, telephone conversations (Con-

sortium et al., 2004). The 2004 edition of ACE included seven entity categories:

person (PER), organisation (ORG), location (LOC), geo-political entity (GEO),

facility (FAC), vehicle (VEH) and weapon (WEA), which are widely used for de-

veloping NER tools and annotating corpora in the general domain. Those entity

categories are kept in the more targeted data including weblogs, broadcast news,

newsgroups, broadcast conversation in the 2005 edition of ACE program (Walker

et al., 2006). An example of annotated named entities from ACE2005 is shown in

Figure 2.1 where the boundaries of entity spans are marked with square brackets

and the categories of entities are in subscript.

Besides general domain tasks, NER has also been tackled in other domains

such as biomedicine, pharmacy, chemistry, etc. Common entity categories in

biomedicine include but are not limited to genes, gene products, chemicals, drugs,

numeric expressions (e.g., drug dosage, frequencies, temporal expressions) and

diseases. One of the most common corpora for biomedical NER is the GENIA

corpus (Kim et al., 2003) which contains 1,999 abstracts from PubMed database.

A biomedical example of annotated named entities from GENIA is shown in

Figure 2.1 where the boundaries of entity spans are marked with square brackets

and the categories of entities are in red.

Due to the properties of natural language, many entities are nested within

other entities: embedded names which are included in other entities (i.e., nested

entities), as illustrated in Figure 2.2. In comparison with nested entities, we refer

to non-nested named entities as flat entities. GENIA (Kim et al., 2003) was the

first corpus to include nested entity annotations, which account for 16.7% among

all entities (Gu, 2006). The process of dealing with the extraction of both nested

and flat entities is referred to as nested NER.

In the next section, we present an overview of the state-of-the-art NER. Our

literature review focuses on methods, resources, tools and evaluation metrics for

both flat and nested NER. We individually describe each topic in the following

sections.
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ACE2005 [The federal government]GPE will not appeal the [court]ORG ruling
that cleared the way for [same-sex]PER unions.

GENIA [IL-2 gene]DNA expression and [NF-kappa B]protein activation
through [CD28]protein requires reactive oxygen production by [5-
lipoxygenase]protein.

Figure 2.1: Sentences with named entity annotations.

The premier of the western Canadian︸ ︷︷ ︸
LOC

province of British Columbia︸ ︷︷ ︸
GPE︸ ︷︷ ︸

GPE︸ ︷︷ ︸
PER

. . .

Figure 2.2: A sentence from ACE2005 (Walker et al., 2006) containing the nested
four entities.

2.2 Overview of Flat NER

In the 1990s, work on flat NER mainly depended on domain terminologies and

hand-crafted linguistic features to extract entities. These feature sets depended

on domain experts with expertise in specific domains. One way to reduce such

dependence is to utilise machine learning (ML) based methods (i.e., learning-

based methods). ML is an area that studies algorithms to automatically make

task-specific decisions/predictions with patterns and inference (Bishop, 2006).

Learning-based methods most often use a rich set of hand-crafted features (prop-

erties/attributes of texts), which are subsequently fed into the ML algorithms.

Feature selection is an empirical process, which mainly relies on linguistic intu-

ition and task-specific error analysis, making it time consuming and expensive. To

avoid hand-crafted feature engineering, neural networks (NNs) have been widely

used to enable automatic extraction of high-level and abstract features. We de-

note methods that employ NNs and non-neural ML methods to conduct NER as

neural-based and conventional learning-based methods, respectively. Therefore,

learning-based methods are split into neural-based methods and conventional

learning-based methods. In general, we roughly divide methods of flat NER into

three categories: rule-based, conventional learning-based and neural-based meth-

ods. We present methods in each category in the following sections.
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Feature Example (Manchester)

Whether the word contains Greek
letters

0

Whether the word contains digits 0
Whether the word contains symbols 0
Whether the word in dictionary(e.g.
gazetteer)/terminology

1

Part-of-speech tag Noun
The word itself Manchester
The lowercase of the word manchester
The character 3-grams that compose
the word

Man, anc, nch, che, hes,est, ste, ter

The character 4-grams that compose
the word

Manc, anch, nche, ches, hest, este, ster

Word’s capitalization pattern Xxxxxxxxxx
Word length 10
Weather the word contains a dash 0
Whether the word is inside double
quote marks

0

Whether the word is part of any en-
tity

1

Table 2.1: Common feature sets used in earlier NER work. 0 and 1 represent
“False” and “True”, respectively.

2.2.1 Rule-based Methods

Earlier work on flat NER was mostly based on gazetteers and linguistic hand-

engineered rules (Nadeau and Sekine, 2007). Common rules are based on ortho-

graphical, lexical and syntactic patterns, which reflect the properties of linguistic

knowledge. Table 2.1 shows examples of common features. The development of

rules requires researchers to have domain-specific expertise and linguistic knowl-

edge. Moreover, the performance of rule-based systems heavily relies on the cov-

erage of rules, making it difficult to learn new entity mentions. In addition, rules

in general are domain-specific, thus can not be easily adapted to other domains.

These limitations greatly restrict the generalization and adaptation abilities of

rule-based systems. To alleviate this issue, researchers investigated ML methods

that enable automatic learning to make decisions.
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Sequence The federal government will not appeal the court ruling
that cleared the way for same-sex unions.

BIO sequence B-GPE, I-GPE, I-GPE, O, O, O, O, B-ORG, O, O , O,
O , O, O, B-PER, O, O

BIOLU sequence B-GPE, I-GPE, L-GPE, O, O, O, O, U-ORG, O, O , O,
O , O, O, U-PER, O, O

Figure 2.3: A sentence with different labelling schemes.

2.2.2 Conventional learning-based Methods

Conventional learning-based methods for flat NER can be roughly divided into

four categories: fully-supervised, semi-supervised, active learning and unsuper-

vised methods. Our research investigates NER methods with supervision, we

therefore focus on the first three categories and present the related work for each

category in the following sections.

2.2.2.1 Fully-supervised Methods

Fully-supervised methods aim to learn from a labelled data set to produce an

inferred function that maps new input to a predefined label (Russell and Norvig,

2010). Such labelled data sets are called training data, which is a prerequisite

condition to apply supervised ML algorithms. Given unlabelled texts, supervised

ML systems generally start from text preprocessing (e.g., sentence splitting, word

segmentation), and then is followed by hand-crafted feature engineering, auto-

matic pattern learning. Those learnt patterns are subsequently used for inferring

new entities. In particular, sentence splitting refers to the process of splitting the

textual data into a list of sentences based on a set of punctuations that mark the

linguistic boundary of sentences. Word segmentation is the process of segmenting

a sentence into tokens.

Fully-supervised ML methods generally formalise flat NER as a sequence la-

belling problem that is to assign one of the B (Beginning of the entity), I (Inside of

the entity), and O (Outside of the entity) labels to each word which corresponds

to the ACE2005 sentence in Figure 2.1.

In addition to BIO, label L (last word of the entity) and U (entity contains

only one single word) are introduced to indicate the span boundary of entities,

constituting the BIOLU tagging scheme (Ratinov and Roth, 2009). Figure 2.3
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shows the label sequence annotated with BIOLU tagging scheme. A sequence is

composed of a set of words of arbitrary length. Therefore, one sentence or the

whole paragraph can be considered as one sequence. In earlier stages of NER,

one of the common approaches was to employ a list of entity mentions derived

either from a corpus or existing gazetteers (Mikheev et al., 1999; Stevenson and

Gaizauskas, 2000; Toral and Munoz, 2006; Kazama and Torisawa, 2008), where

entities were recognised in a dictionary lookup manner, which significantly limited

the ability in identifying new entities. To better identify new entities, researchers

started to investigate ML algorithms coupled with hand-crafted features and do-

main knowledge.

For example, Borthwick and Grishman (1999) and Bender et al. (2003) em-

ployed maximum entropy (Berger et al., 1996) driven by features including lexi-

cal, dictionary and word-surface features (e.g. number of digits contained in the

word) to identify entities. Lin et al. (2004), Finkel et al. (2004) and Ahmed and

Sathyaraj (2015) adopted this method coupled with specific features, improv-

ing the performances of biomedical flat NER (Tsuruoka and Tsujii, 2004; Sasaki

et al., 2008). In addition, McCallum and Li (2003), Settles (2004), Klinger and

Friedrich (2009), Özkaya and Diri (2011) and Nguyen et al. (2019) utilised condi-

tional random fields (CRFs) (Lafferty et al., 2001) to identify entities, showing the

effectiveness of CRFs in different domains. Furthermore, hidden markov model

(HMM) (Malouf, 2002; GuoDong, 2004; Liu et al., 2005) were also commonly

utilised coupled with hand-crafted linguistic features and various knowledge re-

sources to identify entities. Support vector machine (SVM) (Cortes and Vapnik,

1995), another widely used algorithm (Kazama et al., 2002; Takeuchi and Collier,

2002, 2005; Singh et al., 2009) were also investigated to enable automatic entity

extraction.

2.2.2.2 Semi-supervised Methods

Fully-supervised methods depend on annotated corpora (i.e., a collection of tex-

tual data) to design ML models. However, such corpora are not always available

as they are labor-intensive, time-consuming and even might not be available for

some languages. Therefore, it is desirable for ML algorithms to work with semi-

supervision, which exploits the unlabelled data besides limited labelled data to

improve learning performance. One of the most common approaches in semi-

supervision is bootstrapping (Abney, 2002), which generally starts training with
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only a small set of labelled data serving as a small degree of supervision to de-

velop models. Specifically, a NER model firstly searches the sentences containing

the names that are included in the given seed set. The model then identifies con-

textual clues where these names appear and attempts to search other instances

of these names that share similar contexts. Such a process is reapplied to new in-

stances to discover new related contexts. The model repeats this process, yielding

a large number of both names and contexts. The first semi-supervised work deal-

ing with NER was from Collins and Singer (1999), who developed the following

seven seed rules, which provided the only supervision in their study:

• full string = New York –>Location

• full-string = California –>Location

• full-string = US. –>Location

• contains (Mr.) –>Person

• contains (Incorporated) –>Organization

• full-string = Microsoft –>Organization

• full-string = I.B.M. –>Organization

Riloff et al. (1999) presented a multi-level bootstrapping approach, which si-

multaneously generated a semantic lexicon and extracted patterns based on the

requirements of dictionaries. A mutual bootstrapping technique was developed to

alternately select the best extraction pattern for the category and bootstrap its

extraction into the semantic lexicon, which is used for selecting the next extrac-

tion pattern. Furthermore, more attempts were made to improve bootstrapping

methods (Cucchiarelli and Velardi, 2001; Etzioni et al., 2005; Elsner et al., 2009),

which had been widely adopted to reduce the dependencies on labelled data for

NER (Mohit and Hwa, 2005; Kozareva, 2006; Liao and Veeramachaneni, 2009;

Han et al., 2015; Mishra and Diesner, 2016). Note that most work in this category

only dealt with entity categorisation, which assumes that entities are given.

Another popular approach in semi-supervised NER is distant supervision,

which leverages knowledge bases to populate training data without human cost.

In a naive distant supervision NER setting, if a string in textual data is included

in a predefined dictionary of entities, the string might be an entity. Such straight
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forward string matching introduces noisy as well as incomplete entities. To ad-

dress the noise, Bing et al. (2015) presented a pipeline system that contained

three steps: (1) identified lists of semantically-related items using lexico-syntactic

patterns, (2) used distant supervision in combination with a label-propagation

method to find entity mentions that can be confidently labelled and (3) used

these entity mentions to train classifiers to label more entity mentions. Similarly,

Tu et al. (2017) proposed an approach that leveraged the conjunction and comma

writing style as the list constraint to enlarge the set of training instances. Those

constraints were further incorporated into a unified discriminative learning frame-

work for NER, showing effectiveness in extracting drugs from clinical documents.

Besides, Lee et al. (2016b) presented a method that used distant supervision to

generate labelled training data, whose labels were refined using a bagging-based

active learning method. We detail NER with active learning in the next section.

2.2.2.3 Active Learning Methods

Fully-supervised methods significantly benefit from the size and quality of anno-

tated data sets. In general, the larger the training set is, the better the accuracy

the model can achieve. As mentioned above, annotating a large corpus is a time-

consuming and expensive process. One way to obtain annotated training data

with saving cost is crowdsourcing, which outsources the unlabelled data to a

crowd of workers for labelling. In practice, some workers may be “adversaries”

or “spammers” (e.g., robots) or lack enough expertise for the annotation task.

These factors lead to inaccurate supervision returned by the crowd, thus nega-

tively affecting the learning performance.

Another alternative way to obtain annotated training data is to annotate only

the data which are helpful to improve the overall accuracy. It resulted in the active

learning (Settles, 2009), which gives the learner a degree of control by allowing it

to select the most informative instances to add to the training set. Compared with

semi-supervised learning, active learning assumes that the ground-truth labels of

unlabelled instances can be queried from a human annotator (Zhou, 2017). A

typical active learner begins with a small labelled set L, selects one or more

informative mention instances from a large unlabeled pool U , learns from these

labelled mentions (which are then added to L), and then repeats the process.

In this way, the learner aims to achieve high accuracy with minimum labelling

effort, thus enabling flat NER in the domains where only limited annotated data
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is available.

Active learning methods were mostly based on uncertainty sampling, which

selects instances with least uncertainty (Scheffer et al., 2001; Culotta and Mc-

Callum, 2005; Kim et al., 2006) or chooses the most confident instance based

on multiple learners (Dagan and Engelson, 1995). Earlier work such as Schef-

fer et al. (2001) selected “difficult” unlabeled instances by querying the instance

with the smallest margin between the posteriors for its two most likely labels.

In addition to considering only the uncertainty of the models (learners), Kim

et al. (2006) further incorporated the diversity of the corpus in their uncertainty

sampling strategy, to select the most informative instances, showing effectiveness

in reducing human effort in the biomedical data. Similarly, Shen et al. (2004)

proposed a multi-criteria technique including informativeness, representativeness

and diversity, aiming to maximise the contribution of the selected instances, thus

minimising the human annotation efforts during the selection of examples for la-

belling. They demonstrated the advantage in reducing labelling effort required

in flat NER without harming its performance. To find the optimal stopping

criteria in selecting informative instances, Laws and Schätze (2008) proposed a

gradient-based stopping criterion, which was able to stop active learning with

high reliability, but can achieve comparable optimal flat NER performance which

only needed around 20% training data compared to exhaustive labelling.

The common drawback of the above-mentioned methods is that their work

assumed that the annotation cost for each sentence was the same, which is not

the case. For example, informative sentences might differ from each other, such

as in terms of sentence lengths, thus requiring different annotation efforts. This

assumption could inevitably lead to the underestimation of manual effort, espe-

cially for tasks that require a massive corpus. To address the assumption, online

learning was designed for massive data training when computing resources are

limited. Compared to batch learning that aims to induce an optimal model by

training on all the available labelled data, online learning generates a model based

on every single fresh random sample in the massive data, but could obtain better

performances (Bottou and Cun, 2004).

Active learning assumes that labels from human annotators are always correct,

which is invalid. In addition, every annotator is paid equally regardless of their

different levels of expertise. To relax such unrealistic assumptions, proactive

learning (Donmez and Carbonell, 2008, 2010), a generalisation of active learning,
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was proposed to allow the existence of fallible annotators who are accordingly paid

based on their expertise. In a proactive learning NER setting, the annotation

of unlabelled data is similar to active learning except that proactive learning

considers the reliability of each annotator in annotating each selected instance.

The first attempt at proactive learning methods for NER was Li et al. (2017b),

who proposed a batch sampling method that assigned the tough instances to

the reliable experts while the remaining instances were presented to the fallible

annotators.

2.2.3 Neural-based Methods

Neural networks (NNs) are a family of powerful ML algorithms, introduced in

1943 when Warren McCulloch and Walter Pitts used electrical circuits to model

how neurons work in brain functions, which was used to simulate intelligent be-

haviour (McCulloch and Pitts, 1943). Compared with traditional ML algorithms

(e.g., SVM), neural network (NN) systems consist of an input layer, an output

layer and hidden layers, as shown in Figure 2.4. As shown in Figure 2.5, each

layer is composed of a set of neurons, each of which conducts a weighted sum

of input from the previous layer and then passes the result into the next layer

through non-linear operations. The computation process that the input flows

from the lower to upper layers is referred to as the forward pass computation. To

allow the networks to be aware of the feedback, the neural model subsequently

takes the forward pass computation results as input and computes their gradients

following the derivative chain from top to bottom of the architecture, as shown

in Figure 2.6. Such a computation process is called backward pass computation

(i.e., backward propagation). Through forward and backward pass computations,

NN models are able to learn high-level and abstract features in the form of vec-

tors/representations, which encode semantic and syntactic properties from the

raw texts. We present the common NN models in NLP in the next section.

2.2.3.1 Common Neural Networks

Convolutional neural network (CNN) (LeCun et al., 1999) is one type of

NNs, which represents a feature function that is used to learn representative

1https://medium.com/datadriveninvestor/letting-neural-networks-be-weird-6792ea587d67
2https://i.stack.imgur.com/gzrsx.png
3http://2017.igem.org/Team:Heidelberg/Software/DeeProtein
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Figure 2.4: A typical neural network architecture.1

Figure 2.5: Operation in one neuron.2

Figure 2.6: A forward and backward pass through a neural network.3
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Figure 2.7: An example of CNN-based model for flat NER (Collobert et al.,
2011a).

features from a word-level or character-level sequence. These abstract features

have been widely used for various natural language processing (NLP) tasks such

as NER (Ma and Hovy, 2016; Lample et al., 2016; Gridach, 2017), entity linking

(Gupta et al., 2017), and co-reference resolution (Fragkou, 2017; Stone and Arora,

2017). Figure 2.7 shows an example of feature extraction using a CNN network.

In CNN-based methods, the first step towards sentence modelling is to tokenize

sentences into words, which are further transformed into a word embedding ma-

trix (i.e., embedding layer). Then, convolutional filters are applied on the word

embeddings to extract features, which are subsequently fed into a max-pooling

layer to obtain the most representative feature from each filter. Concretely, the

function of a max-pooling layer is to get the maximum value from each filter

to produce a fix-sized output, which is the final representation for the given se-

quence. CNN-based methods are capable of learning latent semantic patterns of

the data but fail to preserve sequential order and model long-distance contextual

information. Such information, however, can be taken into account by recurrent

neural networks, which are described in the next paragraph.
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Figure 2.8: An example of RNN-based method for flat NER (Li et al., 2018b).

Recurrent neural network (RNN) (Goller and Kuchler, 1996), is a spe-

cial type of NN architecture that connects each neuron in a temporal order. In

a RNN model, each neuron corresponds to an instance (e.g. word, character)

of the input sequence, as shown in Figure 2.8. The input sequence of RNN is

typically represented by a matrix where each row corresponds to the vector of

instance, which is fed sequentially (one by one) to a chain of recurrent units that

are temporally connected. Given an input sequence, a RNN recursively com-

putes the output of each neuron and uses that result to compute the output of

next neuron, thus enabling memorizing sequential information and long-distance

contextual dependencies of the input sequence. Vanilla RNNs suffer from the gra-

dient exploding/vanishing problem arising in backward pass computation, where

gradients from the upper layers have to go through continuous matrix multipli-

cations to propagate the lower layers. During backward pass computation, if the

gradients are less than one, they shrink exponentially until they vanish. This

phenomenon is called gradient vanishing. Similarly, if the gradient values are

larger than one, they get larger and eventually blow up and crash the model,

this is the gradient exploding. Gradient vanishing/exploding problem makes the

training and tuning processes extremely difficult. Variants of RNN such as long

short-term memory network (LSTM) and gated recurrent unit network (GRU)

(Cho et al., 2014) were introduced to address the gradient exploding/vanishing

problem.

Long short-term memory networks (LSTMs) (Hochreiter and Schmid-

huber, 1997) use three gates (input, forget, and output gates) to calculate the

output of each neuron through a combination of these three gates. Given an input

sequence X = x1, x2, . . . , xn where xi represents a word/character, the output at
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time t is computed using the following equations:

ft = σ(Wfxt + Ufht−1 + bf ) (2.1)

it = σ(Wixt + Uiht−1 + bi) (2.2)

ot = σ(Woxt + Uoht−1 + bo) (2.3)

ct = ft · ct−1 + it · σ(Wcxt + Ucht−1 + bc) (2.4)

ht = ot · σ(ct) (2.5)

where ft, it, ot, ct, ht represent the values of forget gate, input gate, output

gate, cell state and hidden state at time t. ct−1, ht−1 represent the values of cell

state and hidden state at time t − 1. W , U , b are parameters and · represents

element-wise multiplication.

Similarly to LSTMs, gated recurrent unit networks (GRUs) also use the gate

mechanism that consists of one input gate and forget gate, thus is more compu-

tationally efficient as it removes the output gate. The selection between GRUs

and LSTMs is decided by the availability of computational resources. For flat

NER, LSTM-based models have been widely used in many work (Ma and Hovy,

2016; Lample et al., 2016; Lin et al., 2017a; Muis and Lu, 2017; Ju et al., 2018).

Attention mechanisms were originally used in the context of neural ma-

chine translation. Machine translation is the task of translating text or speech

from one language to another, formalised as a sequence to sequence problem.

Models designed for machine translation are called seq2seq models, which are

generally composed of one encoder stacked with one decoder. Figure 2.9 shows

a typical seq2seq model. The encoder, generally RNN-based frameworks, copes

with processing the input sequence and encodes the last hidden state of the cal-

culated output into a fix-sized context vector. This representation is expected to

be a good summary of the entire input sequence. The decoder, generally RNN-

based, uses the context vector as the initial state to generate the translated output

sequence. When producing the context vector, traditional seq2seq models used

only the last hidden state of the encoder but ignored the remaining hidden rests,
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resulting in information loss when summarising longer sequences. To address the

information loss issue, attention mechanisms are introduced to allow the decoder

to calculate its weighted sum from all hidden states of the encoder, thus enabling

better summary of context vector. Note that the weights are varied for each unit

(e.g., word) composed in the transformed output sequence. Such a mechanism

significantly benefits tasks that require an alignment between input and output.

Attention mechanisms have achieved great success in many tasks such as ma-

chine translation (Luong et al., 2015; Liu et al., 2016; Malaviya et al., 2018), text

summarisation (Rush et al., 2015; Kryściński et al., 2018; Cohan et al., 2018),

dialogue generation (Mei et al., 2017; Pasunuru and Bansal, 2019; Zhou et al.,

2018; Huang et al., 2018), and aspect-based sentiment analysis (He et al., 2017;

Saeidi et al., 2016; Ruder et al., 2016; Hazarika et al., 2018).

Figure 2.9: A typical architecture of seq2seq model.

Transformers (Vaswani et al., 2017a) are based on the attention mechanism

to look at an input sequence and decide at each step which other parts of the

sequence are important. Figure 2.10 shows the architecture of the transformer,

which is composed of an encoder-decoder. The encoder and decoder are composed

of a stack of blocks, which are described by Nx in Figure 2.10. Unlike the en-

coder, each block in the decoder additionally incorporates one more layer besides

the two layers. The core of the transformer is multi-head self-attention. Each

head is trained to encode the context information from different aspects such as

semantics, syntax (Voita et al., 2019). Self-attention is the scaled dot-product

attention whose output is a weighted sum of the word representations, where the

weight assigned to each word representation is determined by the dot-product of
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Figure 2.10: The architecture of transformer (Vaswani et al., 2017a). Q, K and
V represent the query, key and its corresponding value. N x is the number of
identical layers, each of which has a multi-head self-attention layer and a fully
connected feed-forward network.

the word with the sequence. Given the input sentence, the transformer firstly cal-

culates the position information of each word to obtain its position embeddings,

which carry the sequential order information. To get contextualised word repre-

sentations, the encoder uses the multi-head self-attention mechanism to calculate

a weighted sum of the input sentence to obtain the representation for the current

word.

Based on the initial transformer idea, Radford et al. (2018) proposed the single

directional generative pretrained transformer (GPT) for language understanding

tasks. Moreover, Devlin et al. (2019) proposed bidirectional encoder representa-

tions from transformers (BERT) by incorporating both left and right context in

all layers. Figure 2.11 describes the difference between GPT and BERT models.

Transformer models use the attention mechanism as an alternative to the RNN

family.
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Figure 2.11: Differences between BERT, OpenAI GPT (Devlin et al., 2019). In
both models, E, Trm and T represent input, transformers and output.

2.2.3.2 Components of Neural NER Models

In flat NER tasks, neural-based models generally include three components: word

encoder, context encoder and label decoder. The word encoder deals with the

preparation of input while the context encoder is used to capture contextual

features by taking the output from the word encoder. The label decoder is re-

sponsible for decoding the output from context encoder into a label sequence. We

present each component in the following sections.

Word Encoders

The function of a word encoder is to transform a sequence of words into vectors

and then optionally concatenate other types of representations (e.g., character-

level representation) to augment the word representation. In a flat NER task,

there are four types of representations: word-level representation, character-level

representation, subword-level representation and their combination.

Word-level Representations

One straightforward way to represent a word is to use a one-hot vector, which

assigns an orthogonal vector to each unique word. However, one-hot vector rep-

resentation fails to represent the semantic meaning between words such as “king”

and “queen” which share semantic meaning. One effective solution is to use low

dimensional vectors for word representations, which are called word embeddings.

There are mainly two approaches to obtain word embeddings, namely continuous

bag-of-words (CBOW) and continuous skip-gram algorithms, as shown in Figure

2.12. In the CBOW architecture, the model predicts the word based on the given
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surrounding context words. However, the skip-gram model targets on predict-

ing the neighbouring words for the given word. Pre-trained word embeddings

are obtained from an extensive collection of text data (e.g., Wikipedia) using

either of these models. Pre-trained word embeddings have been proved effec-

tive in many tasks (Lample et al., 2016; Ma and Hovy, 2016; Miwa and Bansal,

2016). In the general domain, common pre-trained word embeddings include

Google Word2Vec4, Stanford GloVe (Pennington et al., 2014), Facebook fastText

(Mikolov et al., 2018) and SENNA5. In biomedicine, Moen and Ananiadou (2013)

trained word embeddings on the PubMed6 and PMC texts and their combina-

tion using the Google Word2Vec7. Besides, Chen et al. (2018) trained large word

embeddings using the abstracts from PubMed and clinical notes in MIMIC III

Clinical database (Johnson et al., 2016).

Figure 2.12: CBOW and continuous skip-gram models (Suleiman et al., 2017).

Character-level Representations

In addition to word-level representations, another effective way to augment

word-level representations is the character-level representation, which encodes

the morphological features of a word such as prefix and suffix. There are two

popular approaches to obtain character-level representations, namely: CNN and

RNN models, as shown in Figure 2.13. In both models, each word is considered

as a sequence of characters. Given one word, these models first assign a vector to

4https://code.google.com/archive/p/word2vec/
5https://ronan.collobert.com/senn
6https://www.ncbi.nlm.nih.gov/pubm
7https://code.google.com/archive/p/word2vec/
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Figure 2.13: CNN-based and RNN-based (LSTM) architectures for character
representations (Reimers and Gurevych, 2017).

each character through a dictionary lookup. These vectors are generally randomly

initialized. In the CNN model, one CNN is applied to the matrix where each row

is the corresponding vector of the character. Convolutional operations are applied

to the matrix, and then the output goes through a max pooling function, whose

outputs are further concatenated to produce the character-level representation.

Earlier work (Ma and Hovy, 2016; Chiu and Nichols, 2016) mainly used one CNN

to generate character-representations. More recently, Peters et al. (2018) used

a weighted sum of the output generated from two-layer bidirectional language

models with character convolutions.

Unlike CNN models, LSTM is the most popular model for RNN models.

Figure 2.13 shows an example of the RNN model to obtain character-level repre-

sentations. Lample et al. (2016) applied one LSTM to compute the forward and

backward representation of the given character sequence and then concatenated

with last hidden state from each direction as the character-level representation.

This approach has been widely used in other work (Rei et al., 2016; Gridach,

2017; Ju et al., 2018), demonstrating its effectiveness in capturing morphological

information. Instead of focusing on the characters on word level, Kuru et al.

(2016) treat the sentence as a sequence of characters and applied LSTM for

flat NER. Furthermore, Akbik et al. (2018) used the pre-trained character em-

beddings obtained from character-level language modelling for flat NER. These

character-level pre-trained embeddings encode syntactic-semantic word features

contextualized by their surrounding text, meaning that the embeddings of the

same word differ depending on its context.



2.2. OVERVIEW OF FLAT NER 47

Subword-level Representations

The idea of subwords is used to represent unseen and rare words using byte

pair encoding (Sennrich et al., 2016), which represents words by iteratively merg-

ing the most frequent adjacent/consecutive characters into longer character se-

quences (i.e., subwords). Similarly to character-level representations, subword-

level representations can be obtained from the usage of CNN and RNN models.

Sheng and Natarajan (2018) and Ju et al. (2019a) used subword-level representa-

tions as input and assign the predicted label to each subword instead of a word.

When merging the subword labels into their corresponding word labels, the first

subword label is kept as their word label. Benefiting from contextualized repre-

sentations (Kuru et al., 2016; Peters et al., 2018; Radford et al., 2018), Devlin

et al. (2019) proposed a new model that takes the subword sequences as input and

learns bidirectional contextualized representations of the sequence. In flat NER,

an additional layer is stacked on top of BERT (Devlin et al., 2019) to fine-tune

the representations.

Hybrid Representations

To improve task-specific performance, other representations such as part-of-

speech (POS) tags are additionally concatenated with the above mentioned rep-

resentations, serving as input for neural models. Huang et al. (2015) gained

improvement of flat NER by incorporating spelling and gazetteer features in ad-

dition to word-level representations. Likewise, Chiu and Nichols (2016) included

features such as word capitalization to improve the performance. In addition, Wei

et al. (2016) appended POS tags, chunking and word-shape features to the word

embeddings to augment word representations, yielding better performances. Fea-

tures including word shape, syntactic features (e.g., POS tags, dependency roles,

morphological features) have been shown helpful in flat NER (Strubell et al.,

2017; Lin et al., 2017a), showing their effectiveness in augmenting information.

Context Encoders

The context encoder takes in the output from word encoder and outputs rep-

resentations that encode context information. Popular context encoders in flat

NER include CNN, LSTM, RNN, transformer-based models (e.g., BERT (Devlin

et al., 2019)). We briefly introduce each in the following sections.

CNN

The typical CNN-based context encoder is shown in Figure 2.7. Given the
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output from word encoder, the CNN-based context encoder applies convolutional

operations on the output to generate local features around the word, forming a

vector with maximum/average operation. The number of words taken into con-

sideration depends on the filter window size. The results are concatenated and

then used as the input for the label decoder to compute all possible labels for

each word. Such context encoder has been applied in different domains (Collobert

et al., 2011a; Yao et al., 2015). Based on CNN, Strubell et al. (2017) proposed

iterated dilated convolutional neural networks (ID-CNNs) to enable faster com-

putation without sacrificing the performance.

RNN Family

Compared with CNN, there are more studies which adopt RNN family net-

works (RNN, GRU and LSTM) especially their bidirectional versions to capture

both left and right context information. The typical bidirectional RNN-based

context encoder used in flat NER is shown in Figure 2.8, which takes in the rep-

resentation from the word encoder and iteratively calculates each hidden state

conditioned on the previous states. The concatenation of hidden state at each

time step (i.e., word position) constitutes the context representation, which is

subsequently fed into a label decoder for label prediction.

Transformers

A transformer-based context encoder takes in the representation from one

word encoder and produces an output by using multi-head self-attention. Another

approach to use transformer context encoders is to stack an additional layer on

top of BERT (Devlin et al., 2019) to fine-tune the intermediates from earlier

layers.

Label Decoders

The label decoder takes in the output from a context encoder and decodes the rep-

resentation into a label sequence. We discuss the commonly used label decoders:

softmax and CRFs in the following parts.

Softmax

The softmax formalises label decoding as a multi-class task. Given the context

representation from context encoder, the softmax layer calculates the distribution

scores for each label class of each word. The label with the maximum probability

is selected as the final label for the word. Softmax has been widely used in many

studies (Collobert et al., 2011a; Strubell et al., 2017; Xu et al., 2017c; Wang and
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Lu, 2018), showing its effectiveness in decoding labels in flat NER.

CRFs

In flat NER, the most popular label decoder is CRF, which has achieved state-

of-the-art performance on flat NER coupled with LSTM (Ma and Hovy, 2016;

Lample et al., 2016) on CoNLL2003. Moreover, Zhuo et al. (2016) proposed

a gated recursive semi-Markov CRF for segment-level sequence tagging tasks

without adopting a tagging scheme, thus enabling label decoding on the segment

level. Furthermore, Ye and Ling (2018) proposed a novel hybrid semi-Markov

CRF model to enable label prediction on the segment level by employing word-

level and segment-level information simultaneously.

With these neural NER components, we split neural-based flat NER work

into four categories: transfer learning, active learning, multi-task learning and

attentive methods.

2.2.3.3 Neural Transfer Learning

The idea of transfer learning is to take advantage of the knowledge acquired from

one task and transfer it to another task where training data is limited. Data lim-

itation could be due to the data being rare, the data being expensive to collect

and label, or the data being non-available (Weiss et al., 2016). The typical way

to transfer knowledge is to use the trained model from one task as the starting

point for training the model in another task, thus avoiding learning from scratch,

especially when the data is insufficient. In NLP, transfer learning is also called

domain adaptation. In learning-based methods for flat NER, bootstrapping is

the most popular method for flat NER (Kozareva, 2006; Jiang and Zhai, 2007;

Wu et al., 2009). However, in neural-based methods, related work also considers

sharing the parameters of neural architectures in addition to transferring knowl-

edge. Pan et al. (2013) proposed a transfer joint embedding method that embeds

both labels (outputs) and features (inputs) from different domains (i.e., a source

domain and a target domain) for cross-domain flat NER. Their method is able

to fully exploit the relationships between classes (labels), and reduce domain dif-

ference in data distributions for domain adaptation. Besides, Lee et al. (2017a)

transferred the model trained on a large labelled corpus to alleviate the label spar-

sity issue in de-identifying clinical notes. As observed by Qu et al. (2016), related

named entity types from different domains often share lexical and context fea-

tures, which are helpful in transfer learning NER. Based on this observation, Qu
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Figure 2.14: The model architectures for mention detection and classification. a)
Single-task model. b) Multi-task model with domain adaptions. (Zhao et al.,
2018).

et al. (2016) presented a method where, given training data in a related domain

with similar (but not identical) entity types and a small amount of in-domain

training data, they used transfer learning to learn a domain-specific NER model.

In addition, Yang et al. (2017) utilised annotations (e.g., POS) from one task

to improve flat NER where annotations are fewer, showing the effectiveness in

transfer knowledge across domains. Based on Yang et al. (2017), von Däniken

and Cieliebak (2017) incorporated additional labelled data, which are different

from the entity labels in the target task and then improved the performance on

Twitter data (WNUT2017 Named Entity Recognition challenge) by considering

sentence-level features. Recently, Zhao et al. (2018) proposed a multi-task model

which was based on the LSTM-CRF architecture for transfer learning. As shown

in Figure 2.14, two fully connected layers are stacked on top of a LSTM context

encoder, and they are jointly trained to address data heterogeneity between tar-

get and source data sets. The output from each fully connected layer is further

fed into its cascading CRF label decoder, which additionally incorporates an ex-

ternal knowledge base that contains entity aliases built from Wikipedia articles

(Radford et al., 2015; Dalton et al., 2014) to guide the decoding process at the

document level.

2.2.3.4 Neural Active Learning

Classic active learning algorithms are well studied and achieved encouraging per-

formances (Settles and Craven, 2008; Dasgupta et al., 2005; Laws and Schätze,
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2008; Kim et al., 2006), which generally employ a range of heuristic procedures

to select examples with least uncertainty. However, these heuristic rules are not

well generalized to neural network-based models which can achieve state of the

art in flat NER. Furthermore, classic active learning requires retraining the model

during each iteration as it augments new examples with least uncertainty, making

neural models highly computationally expensive when combining active learning

algorithms. To address this, Shen et al. (2017) proposed the maximum normalised

log-probability (MNLP) method, which calculates the maximum log-probability

normalised on sentence lengths. MNLP ranks unlabeled sentences based on the

uncertainty in their predictions. To speed up the iterative retraining, Shen et al.

(2017) used CNN-based word encoder and label decoder in their model, which

was updated only on the new incremental data in a batch rather than retraining

from scratch. Taking advantage of MNLP, their use of active learning combined

with NNs achieved state of the art with much less training data. As an extension,

Lowell et al. (2018) further proved the effectiveness of MNLP on random sam-

pling from the native inference model. However, they also observed that MNLP

non-native models are not suitable for active learning.

2.2.3.5 Neural Multi-task Learning

Multi-task learning (MTL) is defined as: “Given m learning tasks T m
i=1 where

all the tasks or a subset of them are related, multi-task learning aims to help

improve the learning of a model for task Ti by using the knowledge contained in

the m tasks. (Zhang and Yang, 2017). Instead of modelling each task individually,

MTL deals with all tasks at once through exploiting commonalities and differences

across all tasks and then leverage them to each task. MTL has been widely used

in NLP (Miwa and Bansal, 2016; Dong et al., 2015; Søgaard and Goldberg, 2016;

Stratos, 2017; Liu et al., 2018; Przybya et al., 2019). As the pioneering work

in neural flat NER, Collobert et al. (2011a) proposed a window-based neural

method that used the last layer which was task-specific to jointly model POS

tagging, chunking, NER, and semantic role labelling on the sentence level. To

enable joint training, the losses from all tasks were averaged, which collected

the information of each task, and then the information was further propagated

across tasks. Instead of using the last layer for task-specific purposes, Søgaard and

Goldberg (2016) presented a multi-task learning architecture which uses different

layers for tasks with different levels. That is, they used lower layers to model
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lower-level tasks (POS tagging) and the upper layer to model higher-level tasks

(chunking and combinatory categorial grammar (CCG) super tagging). This

design was consistently proven helpful in their experimental results, providing

a new way to make use of the shared representation of the lower-level tasks in

higher-level tasks. In another empirical study, Changpinyo et al. (2018) showed

that jointly learning all eleven tasks improves upon either independent or pairwise

learning of the tasks. Furthermore, they observed that representations produced

by their MTL approaches could reveal the natural clustering of semantic and

syntactic tasks.

In addition to modeling flat NER with other sequence labelling tasks (e.g.,

POS tagging), joint model flat NER and its downstream task such as relation

extraction, co-reference resolution are helpful for all tasks (Cai and Strube, 2010;

Miwa and Bansal, 2016; Lee et al., 2017b; Kolitsas et al., 2018; Le and Titov,

2018). More recently, Luan et al. (2019) proposed a general framework to jointly

extract entities, their relations and co-references, achieving state-of-the-art per-

formance.

2.2.3.6 Neural Attentive Methods

An attention mechanism allows the model to consider each instance (e.g., word)

representation composed in the input with different weights when making a deci-

sion, thus enabling the model to focus on the parts that contribute most to deci-

sion making. There are many studies that introduce attention mechanisms for flat

NER (Rei et al., 2016; Zhang et al., 2018a; Cao et al., 2018; Zukov-Gregoric et al.,

2017). Attention can be applied to produce better input representations or enrich

context representation. To produce better input representation, Rei et al. (2016)

employed attention to dynamically decide how much information to use from a

word- or character-level component. Zhang et al. (2018a) employed attention to

incorporate information on the document level besides the sentence-level local

information to augment input representations which are further fed to the con-

text encoder. To better encode context representation, Luo et al. (2017) stacked

one attention layer on top of the LSTM-based context encoder, to incorporate

document-level global information thus achieving tagging consistency across mul-

tiple instances of the same token in a document. To incorporate document-level

information, Xu et al. (2018b) proposed a novel architecture which is composed

of three components: one embedding layer as the word encoder, a stacked LSTM
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as the context encoder which introduced a language model to obtain document-

level information, and the CRF label decoder. Specifically, after using the first

LSTM layer which takes the output from word encoder to obtain the local context

representation, another language model is employed to produce the representa-

tion for each sentence in the document. Subsequently, an attention mechanism

is used to calculate the global context representation, which is a weighted sum of

all the sentence representations. The global context in the document can supply

extra useful information to each word. Then, the global context representation

is concatenated with the local context representation for each word. As a result,

each word representation encodes both sentence- and document-level information,

which is further fed to the second LSTM layer to produce the output. Finally,

the typical CRF label decoder is used to predict the label for each word. Beyond

text information, Zhang et al. (2018c) proposed a novel multi-modal model for

tweets flat NER, which considers the image posted by users through an adaptive

co-attention network to decide whether to attend to the image and to which re-

gions of the image. With the advent of BERT (Devlin et al., 2019)which achieves

the state of art in many NLP tasks, many studies use it by stacking one more

tack-specific layer on top of BERT or downstream tasks including NER, obtaining

state-of-the-art performance.

2.3 Overview of Nested NER

Nested entities are quite common in many domains (Alex et al., 2007; Byrne,

2007; Wang, 2009; Màrquez et al., 2007). Although flat NER was proposed in

1995 (Grishman and Sundheim, 1996), nested NER was first addressed in Shen

et al. (2003). Note that nested NER is different from nested automatic term

recognition which in general requires only location of terms without categorisation

(Marciniak and Mykowiecka, 2015). In particular, nested terms are lexical units of

smaller units within a larger lexical unit (Vintar, 2004). They are selected based

on their frequencies in the specific corpus. Entities, however, can be defined as

customised and their frequencies are unnecessarily top in the corpus. Early work

focused on nested NER mainly used conventional learning-based methods coupled

with hand-designed rules to extract nested entities. Such methods are referred to

as hybrid methods. Rules designed for nested NER are generally expensive and

time-consuming to obtain. Some studies adopted ML algorithms coupled with
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feature sets to extract those cascaded entities. In addition, related shared tasks

(Benikova et al., 2014; Ji et al., 2015, 2016) were held to advance the state of the

art in nested NER. Later on, the success of neural-based methods has boosted the

performance of flat NER (Lample et al., 2016; Ma and Hovy, 2016; Gridach, 2017;

Strubell et al., 2017) without any hand-crafted features and external knowledge

resources. This greatly encouraged the NLP community to adopt neural-based

methods for nested NER. Contrary to flat NER, less emphasis has been placed

on nested NER. Existing work towards nested NER can be roughly divided into

three categories, namely: hybrid, conventional learning-based and neural-based

methods. We present each category in the following sections.

2.3.1 Hybrid Methods

Hybrid methods towards nested NER generally employed ML algorithms to ex-

tract inner entities and then used rule-based methods to obtain outer entities.

Shen et al. (2003) firstly dealt with nested entities by adopting the HMM model

to biomedicine based on the GENIA corpus (Kim et al., 2003) to extract flat

entities. Then 102 manually designed rules were developed to classify cascaded

entities. Similarly, Zhou et al. (2004) applied an HMM-based method to recog-

nize inner/embedded and flat entities and then employed a pattern-based post-

processing step to automatically extract rules from the training data to deal with

the cascaded entities that contain the flat entities as substrings. In the GENIA

corpus, the patterns designed by Zhou et al. (2004) were listed as follows:

• <ENTITY>:= <ENTITY>+ head noun, e.g. <PROTEIN>binding motif

→ <DNA>

• <ENTITY>:= modifier + <ENTITY>, e.g. anti <PROTEIN>→ <PRO-

TEIN>

• <ENTITY>:=<ENTITY>+<ENTITY>, e.g. <LIPID><PROTEIN>→
<PROTEIN>

• <ENTITY>:=<ENTITY>+ word +<ENTITY>, e.g. <VIRUS>infected

+ <MULTICELL>→ <MULTICELL>

• <ENTITY>:= modifier + <ENTITY>+ head noun

• <ENTITY>:= <ENTITY>+ <ENTITY>+ head noun
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Similarly to Zhou et al. (2004), Zhang et al. (2004) also applied an HMM-based

model to extract innermost and flat entities and designed a similar set of patterns

which help recognize the outermost entities based on the embedded ones. They

used the top four patterns shown above as a basis and combined them iteratively

to automatically construct the rules from the training corpus. In addition to the

rule-based method, they also proposed an HMM-based model to extract outer-

most entities by reconstructing the corpus where inner entities are normalised

with the corresponding entity types. Experimental results in Zhang et al. (2004)

showed that the rule-based method outperformed the HMM method in extracting

the outermost entities since there were not enough outermost/cascaded entities to

train the HMM-based method. However, the HMM method is more general and

its performance can be improved when more data is available while the rule-based

method is neither flexible nor easily adaptable to new domains.

2.3.2 Learning-based Methods

Unlike hybrid methods, learning-based methods rely on ML algorithms to extract

cascaded entities. McDonald et al. (2005) formulated the cascaded entity extrac-

tion as a structured multi-label classification problem, where each word composed

of entities can be assigned with multiple labels. One drawback of this method

was that the label assigned to each word was decided for the instance in hand,

which leads to exponential label decisions when a word is part of a nested entity.

To address this problem, Gu (2006) instead modelled it as a binary classification

task with SVM, using a one-vs-rest scheme. Gu (2006) trained two separate SVM

classifiers, one for outermost entity extraction and the other one for inner entity

extraction. All the mentioned methods failed to consider the interactions between

inner entities and their outer ones. Interactions mean that occurrences of inner

entities are informative indicators for the occurrence of outer entities. To consider

such interactions, Alex et al. (2007) designed the cascading approach, which first

grouped one or more entity types and then cascaded separate CRFs to train each

group by using the output from previous CRFs as features for the current CRFs,

yielding the best performance. The main drawback of their approach was that

it failed to handle nested entities sharing the same entity type, which are quite

common in natural language. Another drawback was that the grouping of entity

types requires extensive experimentation to decide the best combination/group.

Apart from the cascading approach, they additionally built an inside-out and
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outside-in layer CRFs, where each level of nesting was modelled as a separate

BIO problem without incorporating the interactions between entities on different

nesting levels. In the layer approach, entities on higher nesting levels were more

difficult to model due to the sparsity issue.

Finkel and Manning (2009) proposed a discriminative constituency tree to

represent each sentence where the root node was used for connecting the entire

sentence. All entities were treated as phrases and represented as subtrees fol-

lowing the whole tree structure. To encode those features, Finkel and Manning

(2009) used a CRF-based approach driven by entity-level features to detect nested

entities.

More recently, Lu and Roth (2015) proposed novel mention hypergraphs

to compactly represent mention candidates, which enable the joint learning of

boundaries, entity types and head information of candidates. A mention hyper-

graph is a type of conventional graph, whose edge (i.e., hyperedge) consists of

nodes that represent semantic types and boundaries. Every sentence is repre-

sented as a complete hypergraph, where each mention candidate constitutes a

subset of the hypergraph i.e., sub-hypergraph. Figure 2.15 provides an example

of such a sub-hypergraph, which represents two nested entity mentions. Driven

by a set of features including POS tags, word n-grams, bags of words, word pat-

terns, a CRF-like log-linear method was applied to extract nested and flat entities.

One problem with their approach was the spurious structures of hypergraphs as

they enumerate combinations of nodes, types and boundaries to represent enti-

ties. Moreover, they failed to encode the interactions among embedded entities

using hyper-graphs. To overcome spurious structures, Muis and Lu (2017) further

incorporated mention separators along with features to yield better performance

on nested entities. Both Lu and Roth (2015) and Muis and Lu (2017) relied

on hand-crafted features to extract nested entities without incorporating hidden

dependencies in nested entities.

2.3.3 Neural-based Methods

Utilizing the ability of neural models in extracting features, Xu et al. (2017b) pio-

neered neural-based nested NER with the fixed-size ordinally-forgetting encoding

(FOFE) (Zhang et al., 2015) for text span representations, as shown in Figure

2.16. Given a sequence of words S = w1, w2, · · · , wT , FOFE represents each word

wt using a 1-of-K representation et, which accumulates information from the first
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Figure 2.15: An example sub-hypergraph structure for jointly representating all
the three entities contained in the sentence. “He also talked with the Egyptian
president. For simplicity and the ease of illustration, we assume there are only
two possible mention types: PER and GPE (Lu and Roth, 2015).

word (t = 1) to the last word (t = T ) of the sentence, based on the following

recursive formula (with z0 = 0):

zt = α · zt−1 + et(1 ≤ t ≤ T ) (2.6)

where zt denotes the FOFE code for the partial sequence up to wt, and α(0 <

α < 1) is a constant forgetting factor to control the influence of the history on the

current position. All the possible entity candidates (length is up to n words) along

with their contexts were represented using this novel tagging scheme. Unlike the

extensively used LSTM-RNNs in sequence labelling task, a feed-forward neural

network was used to predict labels on entity level for each fragment in any of the

given sequences.

Additionally, Li et al. (2017a) used the model proposed in Lample et al. (2016)

to extract both flat entities and components composed in nested and discontin-

uous entities. Then, another LSTM was applied to combine the components to

get nested and discontinuous entities. However, these methods failed to capture

and utilize the inner entity representation to facilitate outer entity detection.

More recently, Katiyar and Cardie (2018) represented each tag sequence in

the single hypergraph structure of Figure 2.17 and then designed an LSTM-based

method that produces the correct nested entity hypergraph for a given input

sentence. Wang and Lu (2018) proposed to use neural networks to produce seg-

mental hypergraph representations to model overlapping entity mentions. Wang
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Figure 2.16: The model architecture (Xu et al., 2017b). The window currently
examines the fragment of “Toronto Maple Leafs”. The window will scan and
scrutinize all fragments up to K words.

et al. (2018a) introduced a scalable transition-based method to model the nested

structure of mentions. With this method, a sentence with nested mentions is

firstly mapped to a designated forest where each mention corresponds to a con-

stituent of the forest, shown in Figure 2.18. Based on the shift-reduce parser for

constituency parsing (Watanabe and Sumita, 2015), a shift-reduce based system

was then used to learn to construct the forest structure in a bottom-up man-

ner through an action sequence whose maximal length is guaranteed to be three

times of the sentence length. Based on Stack-LSTM, which is employed to effi-

ciently and effectively represent the states of the system in a continuous space,

our system is further incorporated with a character-based component to capture

letter-level patterns. Sohrab and Miwa (2018) enumerated all possible regions or

spans as potential entity mentions and classified them with deep NNs. To reduce

the computational costs and capture the information of the contexts around the

regions, the model represents the regions using the outputs of shared underly-

ing the LSTM. Marinho et al. (2019) designed a hierarchical model based on a

transition-based parser that is able to recognize hierarchical and nested mentions

with undefined levels of complexity.

2.4 Resources and Tools

There are many resources including data, knowledge bases and systems that are

built for neural NER. We summarised the common data sets in Table 2.2. Table

2.3 lists the tools for flat and nested NER.



2.4. RESOURCES AND TOOLS 59

Corpus Text Source URL

MUC-6 Wall Street Journal
texts

https://catalog.ldc.upenn.edu/
LDC2003T13

MUC-7 New York Times news https://catalog.ldc.upenn.edu/
LDC96T10

CoNLL2003 Reuters news https://www.clips.uantwerpen.
be/conll2003/ner/

GENIA MEDLINE abstracts http://www.geniaproject.org/
home

GENETAG MEDLINE abstracts http://www.geniaproject.org/
home

ACE2004 Transcripts, news https://catalog.ldc.upenn.edu/
LDC2005T09

ACE2005 Transcripts, news https://catalog.ldc.upenn.edu/
LDC2006T06

OntoNotes Magazine, news, con-
versation, web

https://catalog.ldc.upenn.edu/
LDC2013T19

JNLPBA MEDLINE abstracts http://www.nactem.ac.uk/
tsujii/GENIA/ERtask/report.
html

NYT New York Times texts https://catalog.ldc.upenn.edu/
LDC2008T19

FSU-PRGE PubMed and MED-
LINE

https://julielab.de/Resources/
FSU PRGE.html

NCBI-Disease PubMed https://www.ncbi.nlm.nih.gov/
CBBresearch/Dogan/DISEASE/

BC5CDR PubMed http://bioc.sourceforge.net/
COPD PubMed full-text arti-

cles
http://www.nactem.ac.uk/
COPD/index.php

NeuroScience PubMed abstracts https://github.com/nactem/
TM4NS

Quaero
Broadcast
News

news and broadcast
conversation

http://catalog.elra.info/
en-us/repository/browse/
ELRA-S0349/

Quaero Old
Press

newspaper issues, ex-
tracted pages in text
format

http://catalog.elra.info/
en-us/repository/browse/
ELRA-W0073/

Table 2.2: Available corpora in NER. Corpora that contain nested entities are in
bold.
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Figure 2.17: A directed hypergraph. Curved edges represent hyperarcs and
straight edges are normal edges (Katiyar and Cardie, 2018).

Figure 2.18: An example sentence of nested mentions represented in the struc-
ture of forest. PER:Person,ORG:Organization, GPE:Geo-Political Entity (Wang
et al., 2018a).

Tool URL

StanfordCoreNLP https://stanfordnlp.github.io/CoreNLP/
OSU Twitter NLP https://github.com/aritter/twitter nlp
Illinois NLP http://cogcomp.org/page/software/
NeuroNER http://neuroner.com/
NERSuite http://nersuite.nlplab.org/
Polyglot https://polyglot.readthedocs.io/
Gimli http://bioinformatics.ua.pt/gimli

spaCy https://spacy.io/
NLTK https://www.nltk.org/
OpenNLP https://opennlp.apache.org/
LingPipe http://alias-i.com/lingpipe-3.9.3/
AllenNLP https://allennlp.org/models
IBM Watson https://www.ibm.com/watson/

Table 2.3: Available tools in NER.

2.5 Evaluation Metrics

To examine the performances of models/systems in both flat and nested NER,

several sets of evaluation metrics are employed for model measurement.

https://stanfordnlp.github.io/CoreNLP/
https://github.com/aritter/twitter_nlp
http://cogcomp.org/page/software/
http://neuroner.com/
http://nersuite.nlplab.org/
https://polyglot.readthedocs.io/
http://bioinformatics.ua.pt/gimli
https://spacy.io/
https://www.nltk.org/
https://opennlp.apache.org/
http://alias-i.com/lingpipe-3.9.3/
https://allennlp.org/models
https://www.ibm.com/watson/
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2.5.1 Precision, Recall and F-score

Precision, recall and F-score are calculated based on the numbers of true posi-

tives (TP), false positives (FP) and false negatives (FN), as shown in the follow-

ing equations. TP and FP are the numbers of instances in the data set which

are correctly and incorrectly identified by models/systems, respectively. FN is

the number of instances in the data set which are incorrectly rejected by mod-

els/systems. Precision reflects how many predictions of the model/system are

correct while recall measures how many gold entities are corrected predicted by

the model/system. F1-score is the harmonic mean of precision and recall.

Precision (P) =
TP

TP + FP
(2.7)

Recall (R) =
TP

TP + FN
(2.8)

F1-score (F1) = 2× P ×R
P +R

(2.9)

2.5.2 Strict and Lenient Matching

One entity is considered as correct only if its text span and boundary are matched

against the corresponding gold standard. This matching manner is referred to

as strict matching. CoNLL2003 (Tjong Kim Sang and De Meulder, 2003) and

JNLPBA (Kim et al., 2004a) are examples of strict matching. To better measure

how well the model can make decisions of entity boundaries regardless of semantic

types, the MUC-6 (Grishman and Sundheim, 1996) defined the lenient matching,

which additionally considers predictions that are partially overlapping with the

gold standard as correct.

2.5.3 Macro and Micro Metrics

Micro-averaged metrics are calculated by summing up all TP, FP, and FN of the

model for different sets of predictions (e.g. different sets of entity types) and are

further used to compute precision, recall and F-score, namely Micro-averaged pre-

cision, Micro-averaged recall, and Micro-averaged F-score, respectively. Different

from Micro metrics, the calculation of Macro-averaged is quite straightforward,
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which is the corresponding average of a set of metrics. For example, the Macro-

average precision is the average of the set of precisions.

2.5.4 Cross Validation

To evaluate the generalization ability of the model to an unseen data set, one

approach is to split the data into K (K is an integer) chunks, and then keep one

chunk for model validation while the remaining is for training. This process is

repeated for each chunk, known as K-fold cross-validation. The common value of

K is 10, which has been widely used in many studies (Ekbal and Bandyopadhyay,

2007; Wang and Patrick, 2009; Ekbal and Bandyopadhyay, 2010; Xu et al., 2015).

2.5.5 Extended Metrics

To investigate the effectiveness of layered models on different nested levels of

entities, Ju et al. (2018) proposed the layer-wise evaluation. Under this setting,

entities which are predicted in previous layers during evaluation are removed.

Predictions and gold entities from the corresponding layer are collected to cal-

culate precision, recall and F-score. Since predicted entities on a specific layer

might be from other layers, Ju et al. (2018) defined extended precision (EP),

extended recall (ER) and extended F-score (EF1) to measure the performance.

In detail, EP is calculated by comparing the predicted entities in a specific layer

with all the gold entities, and ER is calculated by comparing the gold entities in

a specific layer with all the predicted entities. EF1 is calculated in the same way

as F-score. The calculation of extended evaluation metrics are shown as follows:

Extended Precision (EP) =
TPe

TPe + FPe

(2.10)

Extended Recall (ER) =
TPe

TPe + FNe

(2.11)

Extended F1-score (EF1) = 2× EP × EF
EP + EF

(2.12)

where TPe, FPe and FNe are defined as: TPe: the number of instances

from the corresponding layer which are correctly predicted by models/systems;

FPe: the number of instances from the corresponding layer which are incorrectly

predicted by models/systems; FNe: the number of instances in the corresponding
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layer which are incorrectly rejected by models/systems. Extended metrics are

lenient metrics that reflect the model to layer-wise ability in predicting different

nesting levels of entities.

2.6 Summary

In this chapter, we have provided an overview of related work for both flat and

nested NER including resources, tools, methodologies in terms of timeline. The

detailed evaluation metrics were also discussed. One of the drawbacks in related

work is that most NER work only deal with flat entities but ignore nested ones.

This leads to information loss as nested entities contain rich and fine-grained

information, thus negatively impacting downstream NLP tasks. There are some

efforts to deal with nested entities. However, they ignored the interactions be-

tween nested entities, which convey informative clues. To consider such clues, we

describe our methodology in the next chapter.



Chapter 3

Methodology

In response to our second research question (RQ2 ) and the corresponding hy-

pothesis (H1 ):

RQ2: How nested NER can be improved using NNs?

H1: Utilisation of inner entities can improve the detection of outer entities using

NNs.

we describe our methodology of nested named entity recognition (NER). The

method described in this chapter has been published at 2018 NAACL-HLT (Ju

et al., 2018).

3.1 Introduction

Work on nested NER, which was studied before our research, ignored the depen-

dencies between nested entities, which are informative clues for detecting nested

entities. Dependencies refer to the occurrences of inner entities are informative

indicators to the occurrences of outer entities. In other words, when inner enti-

ties appear in the texts, outer entities only appear in the places that cover inner

entities as their substrings. For example, in Figure 3.1, the innermost entities

“western Canadian” and “British Columbia” are indicators of the outer entity

“the western Canadian province of British Columbia”. Similarly, the outer entity

“the western Canadian province of British Columbia” is the indicator of outer-

most entity “The primier of the western Canadian province of British Columbia”.

Based on this observation, we hypothesize that interactions between nested en-

tities are helpful in detecting nested entities. Neural approaches have enabled

64
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LOC

PER

GPE

GPE

The premier of the western Canadian province of British Columbia ...

LOC

PER

GPE

GPE

The premier of the western Canadian province of British Columbia ...

Figure 3.1: A sentence from ACE2005 (Walker et al., 2006) containing the nested
4 entities nested 3 levels deep.

NER without depending on hand-crafted engineering and external knowledge re-

sources. Therefore, we take advantage of neural networks (NNs) to design our

model. We cast nested NER as a sequence labelling problem and detail the model

in the next section.

Our nested NER model is designed based on a sequential stack of flat NER

layers that detects nested entities in an end-to-end manner. Figure 3.2 provides

the overview of our model. Our flat NER layers are inspired by the state-of-

the-art model proposed in Lample et al. (2016). The layer utilises one single

BiLSTM layer to represent word sequences and predict flat entities by putting

one single CRF layer on top of the LSTM layer. Therefore, we refer to our model

as layered-BiLSTM-CRF model. If any entities are predicted, a new flat NER

layer is introduced and the word sequence representation of each detected entity

by the current flat NER layer is merged to compose a representation for the entity,

which is then passed on to the new flat NER layer as its input. Otherwise, the

model terminates stacking and hence finishes entity detection. Our model enables

sequentially stacking flat NER layers from bottom to top and identifying entities

in an end-to-end manner. The number of stacked layers depends on the level of

entity nesting and dynamically adjusts to the input sequences as the nested level

varies from different sequences.

Next, we provide the description of the model architecture: the flat NER layers

and their stacking, the word encoder (i.e., embedding layer) and their training.

3.2 Flat NER Layer

A flat NER layer contains two components: an LSTM-based context encoder and

a CRF label decoder. The LSTM-based context encoder captures the bidirec-

tional context representation of sequences and subsequently feeds it to the label
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Figure 3.2: Overview of our layered model architecture. “interleukin-2” and
“interleukin-2 receptor alpha gene” are nested entities.

decoder to globally decode label sequences. The details of LSTM and context en-

coder are described in 2.2. CRFs are used to globally predict labels for any given

sequences. Given an input sequence X = (x1, x2, . . . , xn) which is the output from

the LSTM context encoder, we maximise the log-probability during training. In

decoding, we set transition costs between illegal transitions, e.g., transition from

O to I-PER, as infinite to restrict illegal labels. The expected label sequence

y = (y1, y2, . . . , yn) is predicted based on maximum scores in decoding. Please

refer to Section 2.2 for the detail of label decoder.

3.3 Stacking Flat NER Layers

We stack a flat NER layer on the top of the current flat NER layer, aiming to

extract outer entities. Specifically, we average the current context representation
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g e e genen

Characters Word

LSTM LSTMLSTM LSTM

Word representation

Figure 3.3: Word representation of a word ‘gene’. We concatenate the outputs of
character embedding from LSTM and word embedding to obtain its final word
representation. The embedding layer is our word encoder.

of the regions composed of the detected entities, as described in the following

equation:

mi =
1

end− start+ 1

end∑
i=start

zi, (3.1)

where zi denotes the representation of the i-th word from the flat NER layer, and

mi is the merged representation for an entity. The region starts from a position

start and ends at a position end of the sequence. This merged representation

of detected entities allows us to treat each detected entity as a single token, and

hence we are able to make the most of inner entity information to encourage

outer entity recognition. If the region is detected as a non-entity, we keep the

representation without any processing. The processed context representation of

the flat NER layer is used as the input for the next flat NER layer.

3.4 Word Encoder

The input for the first NER layer is different from the remaining flat NER layers

since the first layer has no previous layers. We thus represent each word by

concatenating character sequence embeddings and word embeddings for the first

flat NER layer. Figure 3.3 describes the architecture of the embedding layer to
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produce the word representation.

Following the successes of Ma and Hovy (2016) and Lample et al. (2016)

in utilising character embeddings on the flat NER task, we also represent each

word with its character sequence to capture the orthographic and morphological

features of the word. Each character is mapped to a randomly initialized vector

through a character lookup table. We feed the character vectors comprising a

word to a bidirectional LSTM layer and concatenate the forward and backward

representation to obtain the word-level embedding.

Unlike the character sequence embeddings, the pretrained word embeddings

are used to initialise word embeddings. When evaluating or applying the model,

words that are outside of the pretrained embeddings and training data set are

mapped to an unknown (UNK) embedding, which is randomly initialised during

training. To train the UNK embedding, we replace words whose frequency is 1

in the training data set with the UNK embedding with a probability 0.5.

3.5 Model Variants

When preparing the input for each flat NER layer, we also designed another

two different ways, resulting in two different models. The first model variant,

depicted in Figure 3.4 is called layered-BiLSTM-CRF w/o layered out-of-entities

(LBCWLE) which uses the input of the current flat NER layer for out-of-entity

words. We name the second model as layered-BiLSTM-CRF w/o layered LSTM

(LBCWLL) as it skips all intermediate LSTM layers and only uses the output

of the embedding layer to build the input for the next flat NER layer. In the

LBCWLL model, depicted in Figure 3.5, we merge and average representations

following Equation 3.1. For the predicted non-entity words, however, we skip the

LSTM layer and directly use their corresponding representation from the input

rather than the output context representation.

3.6 Training

We prepare the gold labels based on the conventional BIO (Beginning, Inside,

Outside of entities) tagging scheme to represent a label attached to each word.

Please refer to Section 2.2 of Chapter 2 for the details of BIO scheme. As our

model detects entities from inside to outside, we keep the same order in preparing
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Figure 3.4: Overview of the layered-BiLSTM-CRF w/o layered out-of-entities
(LBCWLE) architecture with skipping representation for non-entity words.
“interleukin-2” and “interleukin-2 receptor alpha gene” are nested entities.

the gold labels for each word sequence. We call it the detection order rule. Mean-

while, we define that each entity region in the sequence can only be tagged once

with the same entity type, referred to as the non-duplicate rule. For instance,

in Figure 3.2, “interleukin-2” is tagged first while “interleukin-2 receptor alpha

gene” is subsequently tagged following the above two rules. When assigning the

label O to non-entity regions, we only follow the detection order rule. As a result,

two gold label sequences {O, B-Protein, O, O, O, O} and {O, B-DNA, I-DNA,

I-DNA, I-DNA, O} are assigned to the given word sequence “Mouse interleukin-

2 receptor alpha gene expression” as shown in Figure 3.2. With these rules, the
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Figure 3.5: Overview of the layered-BiLSTM-CRF w/o layered LSTM
(LBCWLL) architecture with skipping representation for the whole sequence.
“interleukin-2” and “interleukin-2 receptor alpha gene” are nested entities.

number of labels for each word equals the nested level of entities in the given

word sequence.

We employ mini-batch for training. For each sentence in one mini-batch,

we accordingly pad label sequences (i.e., a sequence of label ‘O’) based on the

maximum nesting level in the current mini-batch. In other words, each sentence in

the mini-batch has the same number of label sequences. The maximum number of

stacking flat NER layers equals one plus the maximum nesting level in the training

set. To avoid spurious flat NER layers, we set the upper limit of stacking flat

NER layers that the model can stack during training.1

1Although we set the upper limit of stacking flat NER layers, our model always generates
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We update the model parameters using back-propagation through time (Wer-

bos, 1990) with Adam (Kingma and Adam, 2015). The model parameters in-

clude weights, bias, transition costs, and embeddings of characters. We disable

updating the word embeddings.2 During the training stage, early stopping, L2-

regularization and dropout (Hinton et al., 2012) are used to prevent over-fitting.

Dropout is employed to the input of each flat NER layer. Hyper-parameters

including batch size, number of hidden units in LSTM, character dimensions,

dropout rate, Adam learning rate, gradient clipping and weight decay (L2) are

all tuned with Bayesian optimization (Snoek et al., 2012).

3.7 Comparison

In this chapter, we describe our novel nested NER model which extracts nested

entities in an end-to-end manner, without depending on external knowledge bases.

In comparison with related work3, our model identifies nested entities through

automatic high-level and abstract feature learning while related work requires

feature-engineering (Byrne, 2007; Wang, 2009; Finkel and Manning, 2009). In

addition, our layered model extracts outer entities by using inner entities from

previous layers while other layered approaches (Alex et al., 2007) developed sepa-

rate models for each nesting level of entities without considering the interactions

between nested entities. To incorporate such interactions, Alex et al. (2007)

additionally cascaded the models to extract nested entities by using previous

predictions as features. However, they failed to extract nested entities that share

the same entity type. Such entities are considered as special nested entities in

our model. Moreover, Alex et al. (2007) fixed the number of models to be trained

to extract nested entities while our model dynamically decides the number of

stacking layers based on the predictions from previous layers.

3.8 Summary

In this chapter, we describe our novel nested NER model which extracts nested

entities in an end-to-end manner, without depending on external knowledge bases

the same or fewer layers than the maximum nesting level in the training set.
2We tried updating and disabling updating word embeddings. The former trial did not work.
3We only compared with work that was done before our work.
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and hand-crafted feature-engineering. The idea of the model is to make the most

of dependencies of nested entities in our model to encourage outer entity recog-

nition by automatic learning of high-level and abstract features from sequences.

To evaluate the general ability and effectiveness of the model, we evaluate our

model with different different domains of datasets (i.e., data-based evaluation).

In addition, we further evaluate our model with the task-specific setting to vali-

date its applicability in NLP tasks. Those settings will be discussed in the next

chapter.



Chapter 4

Evaluation

In this chapter, we evaluate our layered BiLSTM-CRF model with different set-

tings. Specifically, we first evaluate the model under flat and nested NER settings

with different domains of data sets. Then, we further evaluate our model in dif-

ferent tasks to demonstrate its applicability in NLP tasks.

4.1 Data-based Evaluation

In this section, we present the experimental settings, performances and discussion

of our model under flat and nested NER settings. Work presented in this section

has been included in Ju et al. (2018).

4.1.1 Flat NER Setting

4.1.1.1 Evaluation Setting

Precision, recall and F1-score were used as the evaluation metrics in flat NER.

Please refer to Section 2.5 in Chapter 2 for the details of evaluation metrics.

4.1.1.2 Data Sets

We employed JNLPBA (Kim et al., 2004b) for evaluation. JNLPBA defines both

training and testing sets. These two data sets are composed of 2,000 and 404

MEDLINE abstracts, respectively. JNLPBA is derived from the GENIA corpus

(Kim et al., 2003). However, only flat and topmost entities in JNLPBA are kept

while nested and discontinuous entities are removed. Following the same settings

as in (Gridach, 2017), we collapsed all DNA subcategories as DNA. The same

73



74 CHAPTER 4. EVALUATION

Item Train Development Test

Sentences 16,691 1,855 3,856
Split percentage 90% 10% -
DNA 8,649 884 1,056
RNA 863 88 118
Protein 27,263 3,006 5,067
Cell Line 3,459 371 500
Cell Type 6,045 673 1,921
Overall entities 46,279 5,022 8,662

Table 4.1: Statistics of the JNLPBA corpus.

setting was applied to RNA, protein, cell line and cell type categories. As a

result, only five entity types were finally preserved. We randomly chose 90% of

the sentences of the original training set as our training set and the remaining as

our development set. Each sentence in the JNLPBA data set has already been

tokenised, so we did not apply any other preprocessing. The statistics of the flat

corpus (JNLPBA) are described in Table 4.1.

4.1.1.3 Model Setting

Our model was implemented with Chainer (Tokui et al., 2015a). We initialised

word embeddings in JNLPBA with pre-trained embeddings trained on MEDLINE

abstracts (Chiu et al., 2016a). We trained our flat model that only kept the first

flat NER layer and removed the following stacking layers. We follow Lample et al.

(2016) for hyper-parameter settings in flat NER evaluation.

4.1.1.4 Result and Discussion

Compared with the state-of-the-art work on JNLPBA test set (Gridach, 2017)

which achieved 75.87% in terms of F1-score, our model obtained 75.55% F1-score.

Since both the model by Gridach (2017) and our flat model are based on Lample

et al. (2016), it is reasonable that both models were able to get comparable

performance.
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4.1.2 Nested NER Setting

4.1.2.1 Evaluation Setting

Precision (P), recall (R) and F1-score (F1) were used as the evaluation metrics

in nested NER. The extended set of precision (EP), recall (ER) and F1-score

(EF1) described in Section 2.5 of Chapter 2 were additionally used for nested

NER evaluation. We define that if the numbers of gold entities and predictions

are all zeros, the evaluation metrics all equal one hundred percent.

4.1.2.2 Data Sets

We employed two data sets for evaluation: GENIA (Kim et al., 2003), ACE2005

(Walker et al., 2006). The GENIA corpus contains 36 fine-grained entity cate-

gories among total 2,000 MEDLINE abstracts. Following the same task settings

as in Finkel and Manning (2009) and Lu and Roth (2015), we applied the same

preparation to collapse entity types into five entity types. We used same test por-

tion as Finkel and Manning (2009), Lu and Roth (2015) and Muis and Lu (2017)

for direct comparison. The ACE2005 corpus (Walker et al., 2006) contains 7

fine-grained entity categories. We made same the modifications described in Lu

and Roth (2015) and Muis and Lu (2017) by keeping files from broadcast news

(bn), broadcast conversation (bc), newswire (nw) and weblog (wl) and splitting

them into training, development and testing sets at random following the same

ratio 8:1:1, respectively.

We used NERSuite (Cho et al., 2010) for GENIA to perform tokenisation while

Stanford CoreNLP (Manning et al., 2014) was used for ACE2005. Statistics of

nested corpora (GENIA, ACE2005) are described in Table 4.2.

For GENIA, we had to manually resolve two issues, in addition to the above

preprocessing. One of the issues is the removal of discontinuous entities during

parsing. In the GENIA XML file, each flat entity is annotated with “lex” (lexical)

and “sem” (semantics) attributes while discontinuous and nested entities may

have none, one or two attributes when these entities embed with each other,

making it difficult to extract the strictly nested ones. For example, in Figure

4.1, the sentence contains two flat entities and four discontinuous entities. We

extract these two entities based on the symbol “*” appeared in the “lex” attribute

which is a connection indicator of the separated texts in discontinuous entities.

Meanwhile, each of the separated texts has no “sem” attribute unless itself is an
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GENIA Train Dev. Test

Documents 1,599 189 212
Sentences 15,022 1,669 1,855
Split percentage 81% 9% 10%
DNA 7,921 1061 1,283
RNA 730 140 117
Protein 29,032 2,338 3,098
Cell Line 3,149 340 460
Cell Type 6,021 563 617
Outermost entity 42,462 4,020 4,942
Nested level 4 3 3
Entities in level 1 42,846 4,060 4,991
Entities in level 2 3,910 381 569
Entities in level 3 91 1 15
Entities in level 4 1 0 0
Entity avg.
length

2.87 3.13 2.93

Multi-token
entity

33951 3554 4203

Overall entities 46,853 4,442 5,575

ACE2005 Train Dev. Test

Documents 370 43 51
Sentences 9,849 1,221 1,478
FAC 924 83 173
GPE 4,725 486 671
LOC 763 81 69
ORG 3,702 479 559
PER 13,050 1,668 1,949
VEH 624 81 66
WEA 652 94 67
Outermost entity 18,455 2,285 2,724
Nested level 6 4 5
Entities in level 1 19,676 2,429 2,936
Entities in level 2 3,934 448 505
Entities in level 3 731 85 102
Entities in level 4 90 10 10
Entities in level 5 7 0 1
Entities in level 6 2 0 0
Entity avg.
length

2.28 2.33 2.28

Multi-token
entity

10,577 1,323 1,486

Overall entities 24,440 2,972 3,554

Table 4.2: Statistics in GENIA and ACE2005.

innermost entity. Unfortunately, there are some inconsistent cases such as “c-fos

and c-jun transcripts” where symbol “*” should be in the “lex” attribute as the

discontinuous entity “c-fos transcript” is connected by “c-fos” and “transcript”

while “c-jun transcript” is connected by “c-jun” and “transcript”. These two

entities share the same text “transcript”. However, each of them is annotated

with two attributes: “lex” and “sem”, following the same annotation for flat

entities. Although it is possible to ignore the latter entity based on “lex” attribute

and its belonging sentence, this rule fails to deal with entity “c-jun gene” in the

example of “c-fos and c-jun genes” as the “lex” of “c-jun gene” is mistaken as

“c-jun genes”. Therefore, in this case, we ignored “c-fos transcript” and instead

kept the “c-jun transcripts” as a flat entity.

Another issue is the incomplete tokenisation. We assigned the label to each

word on the word-level instead of character level, but there are entities that

correspond to parts of words. An example is “NF-YA subunit”, which contains

two protein entities: “NF-Y” and “A subunit”. To cope with this problem, we

treat both entities as false negative entities in training set as there are only 13

such entities in the training set.
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Figure 4.1: An annotated sentence in XML format.

4.1.2.3 Model Setting

Our model was implemented with Chainer (Tokui et al., 2015a). We initialised

word embeddings in GENIA with the pre-trained embeddings trained on MED-

LINE abstracts (Chiu et al., 2016a). For ACE2005, we initialised each word with

the pre-trained embeddings which are trained by Miwa and Bansal (2016). Ex-

cept for the word embeddings, parameters of word embeddings were initialized

with a normal distribution. For the LSTM, we initialized hidden states, cell state

and all the bias terms as 0 except for the forget gate bias that was set as 1.

For other hyper-parameters, we chose the best hyper-parameters via Bayesian

optimization. For nested NER experiments, the settings of the hyper-parameters

of the models and Bayesian optimisation are listed in Table 4.3 and Table 4.4,

respectively.

For ablation tests, we compared with our layered-BiLSTM-CRF model with

two model variants that produce the input for next flat NER layer in different

ways.

4.1.2.4 Results and Discussion

Table 4.5 presents the comparisons of our model with related work including

the state-of-the-art feature-based model by Muis and Lu (2017). Our model
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Hyper Parameters Range Best (GENIA) Best (ACE2005)

Batch size [16 – 256] 67 91
No. of hidden units [200, 250, 300] 200 200
Dim. of char. emb. [15 – 50] 35 28
Dropout rate [0.1 – 0.5] 0.2144 0.1708
Learning rate [0.001 – 0.02] 0.00754 0.00426
Gradient clipping [5 – 50] 27 11
Weight decay (L2) [10-8 – 10-3] 4.54-5 9.43-5

Table 4.3: Value range and best value of tuned hyper parameters in GENIA and
ACE2005, respectively.

Hyper Parameters Initialized Value

Acquisition Function gp hedge
n-calls 10
n random state None
n random starts 10
Acquisition Optimizer lbfgs
n restarts optimizer 100
noise gaussian
n points 50000
xi 0.1
n jobs 1

Table 4.4: Hyper parameters used of Bayesian Optimization.

outperforms the state-of-the-art models with 74.7% and 72.2% in terms of F1-

score, achieving a new state-of-the-art in the nested NER tasks. For GENIA, our

model gained more improvement in terms of recall, which enabled extracting more

nested entities without reducing precision. On ACE2005, we improved recall with

12.2 percentage points and obtained 5.1% relative error reductions. Compared

with GENIA, our model gained more improvements in ACE2005 in terms of F1-

score. Two possible reasons account for it. One reason is that ACE2005 contains

deeper nested entities (maximum nested level is 5) than GENIA (maximum nested

level is 3) on the test set. This allows our model to capture the potentially

“nested” relations among nested entities. The other reason is that ACE2005 has

more nested entities (37.45%) compared with nested ones of GENIA (21.56%).

Table 4.6 shows the results of models on the development sets of GENIA and

ACE2005, respectively. From this table, we can see that our model, which only

utilises context representation for preparation of input for the next flat NER
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Settings GENIA ACE2005
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Finkel and Manning
(2009)

75.4 65.9 70.3 - - -

Lu and Roth (2015) 72.5 65.2 68.7 66.3 59.2 62.5
Muis and Lu (2017) 75.4 66.8 70.8 69.1 58.1 63.1
Our model 78.5 71.3 74.7 74.2 70.3 72.2

Table 4.5: Comparisons of our model with the state-of-the-art models on nested
NER.

Settings GENIA ACE2005
P
(%)

R
(%)

F1
(%)

P
(%)

R
(%)

F1
(%)

Layered-BiLSTM-CRF 78.27 75.97 77.10 75.37 69.41 72.27

Layered-BiLSTM-CRF w/o lay-
ered non-entities (LBCWLE)

76.55 77.01 76.78 72.90 65.54 69.02

Layered-BiLSTM-CRF w/o lay-
ered LSTM (LBCWLL)

75.76 74.60 75.18 69.94 61.94 65.70

Table 4.6: Performances of ablation tests on development sets.

layer, performs better than the other models. This demonstrates that introduc-

ing input of the current flat NER layer such as skipping either representation

for any non-entity or words or all intermediate LSTM layers hurts performance.

Compared with the layered-BiLSTM-CRF model, the drop of the performance

in the LBCWLE model reflects the skip of representation for out-of-entity words

leading to the decline in performance. This is because the representation of non-

entity words did not incorporate the current context representation as we used

the input rather than the output to represent them. By analogy, the LBCWLL

model skips the representation for both entities and non-entity words, resulting

in performance decrease. This is because, when skipping all intermediate LSTM

layers, input of the first flat NER layer, i.e., word embeddings, is passed to the

remaining flat NER layers. Since word embeddings do not contain contextual

representation, we fail to incorporate the context representation when we use the

word embeddings as the input for the flat NER layers.

Table 4.7 and Table 4.8 describe the performance for each entity type in GE-

NIA and ACE2005 test datasets, respectively. In GENIA, our model performed

best in recognizing entities with type RNA. This is because most of the entities

pertaining to RNA mainly end up either with “mRNA” or “RNA”. These two

words are informative indicators of RNA entities. For entities in the other entity
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Entity type P (%) R (%) F1 (%)

DNA 74.43 69.68 71.98
RNA 90.29 79.48 84.54
Protein 80.48 73.20 76.67
Cell Line 77.83 65.65 71.22
Cell Type 76.36 68.07 71.97
Overall 78.59 71.33 74.79

Table 4.7: Results of all entities for each type in GENIA test set.

Entity type P (%) R (%) F1 (%)

PER 78.82 77.37 78.09
LOC 54.54 43.47 48.38
ORG 63.25 54.20 58.38
GPE 76.92 78.98 77.94
VEH 61.53 48.48 54.23
WEA 66.66 53.73 59.50
FAC 49.19 35.26 41.07
Overall 74.27 70.34 72.25

Table 4.8: Results of all entities for each type in ACE2005 test set.

types, their performances are close to the overall performance. One possible rea-

son is that there are many instances to model them. This also accounts for the

high performances of entity types such as PER, GPE in ACE2005. The small

amounts of instances of entity types like FAC in ACE2005 is one reason for their

under overall performances.

When evaluating our model on top level which contains only outermost en-

tities, the precision, recall and F1-score were 78.19%, 75.17% and 76.65% on

GENIA test set. For ACE2005, the corresponding precision, recall and F1-score

were 68.37%, 68.57% and 68.47%. Compared with the overall performance listed

in Table 4.5, we obtained higher top level performance on GENIA but lower per-

formance in ACE2005. We discuss the details of those results in the following

tables.

Table 4.9 shows the performances of each flat NER layer in GENIA test

dataset. Among all the stacking flat NER layers, our model resulted in the best

performance regarding standard evaluation metrics on the first flat NER layer

which contains the predictions for the gold innermost entities. When the model
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Layer P
(%)

R
(%)

F1
(%)

EP
(%)

ER
(%)

EF1
(%)

#Predicted
Entities

#Gold
Entities

Layer 1 72.86 69.82 71.31 78.46 71.06 74.57 4,783 4,991
Layer 2 56.88 27.59 37.15 81.15 73.98 77.39 276 569
Layer 3 0.00 0.00 0.00 0.00 60.00 0.00 1 15

Table 4.9: Results of layer evaluation on GENIA test set.

went to deeper flat NER layers, the performance dropped gradually as the num-

ber of gold entities decreased. However, the performance for predictions on each

flat NER layer was different in terms of extended evaluation metrics. For the first

two flat NER layers, the performance of extended evaluation is better than the

performance of standard evaluation. It indicates that gold entities corresponding

to some of the predictions on the specific flat NER layer are from other flat NER

layers. This may lead to the zero performances for the last flat NER layer. In

addition, performance on the second flat NER layer was higher than it was on the

first flat NER layer in terms of extended F1-score. This demonstrates that our

model is able to obtain higher performance on top level of entities than innermost

entities.

Table 4.10 lists the results of each flat NER layer on ACE2005 test set. Similar

to GENIA, the first flat NER layer achieved better performance than the rest

flat NER layers. Performances decreased in a bottom-to-up manner regarding

model architecture. This phenomenon was the same with the extended evaluation

performances, which reflects that some of the predictions in a specific flat NER

layer were detected in other flat NER layers. The extended F1-score dropped

when the number of layers increased, which accounts for the fact that the F1-score

on the top level was lower than that on the first flat NER layer. Unlike GENIA,

our model on ACE2005 stopped stacking layers before reaching the maximum

nested level of entities. It indicates that our model failed to model nested levels

corresponding to the layers. This is one of the reasons that account for the zero

predictions on the last flat NER layer. The sparse entities with high nesting levels

could be another reason that resulted in the zero performances on the last flat

NER layer.

4.1.2.5 Error Analysis

Based on the experimental results, we gained 3.9 and 9.1 percentage point im-

provements regarding F1-score over the state-of-the-art feature-based model on
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Layer P
(%)

R
(%)

F1
(%)

EP
(%)

ER
(%)

EF1
(%)

#Predicted
Entities

#Gold
Entities

Layer 1 74.46 73.39 73.92 75.84 73.77 74.79 2,894 2,936
Layer 2 60.28 50.49 54.95 66.19 58.41 62.05 423 505
Layer 3 51.02 24.51 33.11 51.02 37.25 43.06 49 102
Layer 4 0.00 0.00 0.00 0.00 10.00 0.00 0 10
Layer 5 0.00 0.00 0.00 0.00 0.00 0.00 0 1

Table 4.10: Results of layer evaluation on ACE2005 test set.

Whether that is true now, we︸︷︷︸
Annotation(ORG)︸ ︷︷ ︸
Prediction(PER)

can not say.

Figure 4.2: A sentence containing the annotations and predictions. “ORG”
represents organization while “PER” means “person”.

two nested entity corpora: GENIA and ACE2005, showing the effectiveness in

utilising dependencies between nested entities for nested NER.

Furthermore, we conducted error analysis on test sets of GENIA and ACE2005,

respectively. Specifically, we randomly selected 200 sentences from each test set

and showed the error types coupled with the statistics in terms of entities and

layers.

On ACE2005 test set, 28% of predictions were incorrect in the 200 sentences.

Among these errors, 39% of them were because their text spans were assigned to

other entity types. We call this type of errors type error. The main reason is that

most of them are pronouns and co-refer with other entities which are absent in

the sentence. Taking the sentence in Figure 4.2 as an example, “we” is annotated

as ORG while our model labeled it as PER. Lack of context information such as

the absence of co-referent entities leads our model to make the wrong decisions.

In addition, 30% of the errors were because predictions were labeled as only parts

of gold entities with correct entity types. This error type is referred to as partial

prediction error. This might be because these gold entities tend to be considered

as clauses or independent sentences, thus possibly containing many modifiers.

For example, in Figure 4.3, our model extracted only parts of the annotation as

the prediction.

Predictions from the 200 sentences only involve the first three flat NER layers.

When analyzing errors on the first flat NER layer, we got 41% of type error and

11% of partial prediction error. Apart from this, our model recognized predictions
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A man who has been to Baghdad many times︸ ︷︷ ︸
Prediction (PER)

and can tell ... Baghdad

︸ ︷︷ ︸
Annotation (PER)

- Judy.

Figure 4.3: A sentence containing the annotations and predictions. “PER”
represents “person”.

from other flat NER layers, leading to 5% errors. We define this error type as

layer error. On the second flat NER layer, 26% of errors were caused by partial

prediction error. 17% of the errors belong to type error. 22% errors were due to

the layer error. As for the last flat NER layer, 40% errors were caused by partial

prediction error. The remaining errors were different from the mentioned error

types. One possible reason is that we have fewer gold entities to train the last

flat NER layer compared with previous flat NER layers. Another reason might

be the error propagation from its bottom layers.

On GENIA test set, we had 20% errors of predictions in the subset of 200

sentences. Among these errors, 17% and 24% of errors were separately due to

type error and partial prediction error. Predictions in the subset were from the

first two flat NER layers. In terms of layer errors, 24% of the predictions on the

first flat NER layer were incorrect. Among them, the top error types were layer

error, partial prediction error and type error, accounting for 21%, 18% and 13%,

respectively. Errors on the second flat NER layer were mainly caused by type

error and partial prediction error.

4.2 Task-specific Evaluation

In this section, we present task-specific evaluation with flat and nested NER set-

tings, where our model was used as one of the steps in each task. In detail, we

conducted NER in the neuroscience domain under flat NER setting to help cu-

ration of neuroscience entities. For nested NER setting, we evaluated the model

by identifying pertinent and potentially complex information about chronic ob-

structive pulmonary disease phenotypes from textual data in clinical domain. In

addition, we applied our model to extract adverse drug event and medication

information from clinical records. We also adopted the model to extract elements

of patient/population, intervention, comparator, and outcomes, which were fur-

ther used in the scientific abstract screening task. We detail each task-specific



84 CHAPTER 4. EVALUATION

evaluation in the following sections.

4.2.1 Entity Extraction for Neuroscience

The curation of neuroscience entities is crucial to ongoing efforts in neuroin-

formatics and computational neuroscience, such as those being deployed in the

context of continuing large-scale brain modelling projects. However, manually

sifting through massive articles for new information about modelled entities is a

time-consuming and tedious task. To aid the systematic extraction of relevant

information from this literature, Shardlow et al. (2018) proposed a method that

contains two steps. Specifically, two computational neuroscientists annotated

a corpus of entities pertinent to neuroscience using active learning techniques

(Settles, 2009) to enable swift, targeted annotation. Then ML models including

CRF-based, neural-based and rule-based methods were developed to recognise

the annotated entities. As one of the co-authors in Shardlow et al. (2018), we

contributed to the second step by developing a neural-based model. To give a

detailed overview, we present the following:

• Background of the task and its related work

• Results of our model under flat NER setting

• Discussion of the results

4.2.1.1 Background

Large projects such as the Swiss Blue Brain Project, the European Human Brain

Project, the Allen Brain Observatory, and the American BRAIN initiative have

recently emerged in neuroscience and are pushing traditional neuroscience toward

the big science paradigm (Underwood, 2016). These projects make the most of

big data to model in great detail the functioning of the brain, down to the level

of the individual neuron types. The data-driven approach adopted for such large-

scale modelling requires characterization of numerous entities, such as neuron

types, synapses, and ion channels. Laboratory experiments are in general used

for evaluating these entities in terms of structure and function. However, it

is extremely challenging to comprehensively evaluate these entities due to the

complexity and cross-scale of the modelled phenomena. Thus, experimental data

must be complemented with the scientific knowledge accumulated world-wide
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and recorded in the scientific literature. Such situation results in the urgent

need for large and high-quality databases of literature-curated information about

neuroscience entities.

To promote traceability and reusability of systematic curation for data-driven

modelling of the brain, O’Reilly et al. (2017) presented a new manual framework

that requires a group of curators to sift through abstracts and full texts to identify

new entities and their properties. This is a time-consuming and painstaking

process, which requires a curator to maintain domain knowledge alongside the

informatics knowledge to be able to discover all the relevant documents for a new

entity. Moreover, the meaning of terms may shift over time and new terms may

be created to understand the field changes as new material is published. One

effective approach to lift the burden of informatics from the curator is to employ

text mining, which allows them to focus on applying their own domain knowledge

to the entities in question. Müller et al. (2008) presented the Textpresso, a text

mining framework for neuroscience, to help search through neuroscience research

papers by providing a semantic search interface. Users can enter names of entities

from predefined categories and are shown documents which contain their entity

of choice. The system also handles relations, allowing a user to filter documents

based on entities occurring in a number of relation types. One drawback of

Textpresso is that it relies on dictionaries to match against the text of documents

to identify named entities, thus failing to identify new entities or variants of

entities.

To enable neuroscience NER, one of the common approaches is to employ CRF

models (French et al., 2009a; French and Pavlidis, 2012) coupled with features

including POS, lemma and other word surface features. French et al. (2009b)

developed a large corpus of brain region mentions and built a custom CRF-based

approach to identify their entities. They used context features which determined

whether a given word was likely to occur before or after an annotation, as well as

features encoding structural information about the words. As an enhancement,

Richardet et al. (2015a) added features, which encode the presence of species and

measurements, to the CRF-based model, leading to better performance. More

recently, neural-based methods have greatly improved performance on a num-

ber of NLP tasks (Huang et al., 2015; Ma and Hovy, 2016; Lin et al., 2017a;

Luo et al., 2017). Based on neural models, we proposed an approach that uses

LSTM (Hochreiter and Schmidhuber, 1997) besides the CRF model (Shardlow
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Entity Type Statistics Entity Type Statistics

Brain Region 1,055 Neuron Type 767
Model Organism 299 Ion Channel 201
Ion Current 339 Ion Conductance 76
Value 594 Unit 507
All 3,838 – –

Table 4.11: Statistics of entities in the corpus.

et al., 2018) for curating neuroscience entities. Our method helped the curator

to quickly survey the literature for papers of interest through automatic entity

extraction. In addition, when processing a paper to extract relevant experimental

values, the curator benefited from these entities to speed-up the identification of

characterisation of the context surrounding such experimental values (e.g., cell

type, species, brain regions). In addition, our method covers more neuroscience

entity types than other work which focused only on the identification of brain

regions (French et al., 2009c, 2012), neuron types (Ambert et al., 2013), brain

connectivity (Vasques et al., 2015; Richardet et al., 2015b), and entities related

to spinal cord injuries (Stöckel et al., 2015).

4.2.1.2 Experimental Setting

In this task, the corpus used for NER is available at https://github.com/nactem/

TM4NS. It contains eight entity types, whose statistics are shown in Table 4.11.

We split the corpus into train, development and test chunks with a ratio of 75%,

15% and 15%, respectively. We trained the neural model for each entity type

using the training set, tuned the hyper parameters on the development set and

then tested on the test set. We used precision (P), recall (R) and F1-score (F1)

as model evaluation metrics. In comparison with related work, we applied our

model to the available corpus that contains entities “BrainRegion” only (French

et al., 2009b) with both strict and lenient matching evaluation metrics.

We initialised word embeddings using the pre-trained embeddings from Chiu

et al. (2016b). In addition, Adam (Kingma and Adam, 2015) was used for model

optimisation. We fixed the dimensions of word and character embeddings with

200 and 50 respectively. In addition, the dropout rate (Hinton et al., 2012)

was set to 0.5. For learning rate and weight decay, we tuned them using the

grid/exhaustive searching method on the validation set. The batch size and epoch

number were set as default values specified by Chainer (Tokui et al., 2015b). Table

https://github.com/nactem/TM4NS
https://github.com/nactem/TM4NS
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Hyper Parameter Value Hyper Parameter Value

Epoch 20 Character embedding dimension 25
Batch Size 10 Word embedding dimension 200
Dropout rate 0.5 Character-based word embedding 250
Learning Rate 0.013 Weight decay 0.0001

Table 4.12: The hyper parameters that were used during training of our model.

Method Strict Matching Lenient Matching
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

French et al. (2009b) 81.3 76.1 78.6 91.6 85.7 88.6
Richardet et al. (2015a) 84.6 78.8 81.6 88.4 81.0 84.6
Ours 82.1 81.5 81.8 93.4 92.7 93.1

Table 4.13: Our results compared to previously published NER tools for Brain
Regions.

4.12 summarises the value of hyper parameters used in the training stage.

4.2.1.3 Results and Discussion

Table 4.13 shows the comparisons between our model and related work on the

corpus provided by French et al. (2009b). Compared with related work, our neural

model was able to achieve comparable performances in terms of strict matching

and higher performances in terms of lenient matching.

Table 4.14 shows that the pattern-based method (Shardlow et al., 2018), which

uses rules in combination with dictionaries, produced the lowest performances,

which are mainly due to the following reasons. Firstly, dictionaries in pattern-

based method did not contain sufficient cases to capture the wide scope of entities

that were present in the corpus. Secondly, the wide variation of terms restricts the

pattern-based method, which depends on limited dictionaries to cover the term

variations. Compared with the pattern-based method, the CRF-based method

performs much better, indicating that contextual information is important for

neuroscience NER. Our neural model outperforms the CRF-based method in

most entity types, achieving the highest F1-score for all entity types except Ex-

perimental Value. The CRF and neural models outperformed the pattern-based

method, demonstrating that the CRF and neural models are both capable of

learning features from the data that are helpful for extracting entities.

Our neural model performed better than the CRF-based method, indicating

that the neural-based method was able to access more information about each
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Entity Type Pattern-based
Method (%)

CRF-based
Method (%)

Ours (%)

P R F1 P R F1 P R F1

Brain Region 32.4 30.4 31.4 88.0 77.2 82.2 85.6 83.3 84.4
Neuron Type 22.5 33.6 26.9 86.4 67.3 75.7 87.8 76.0 81.4
Model Organism 59.9 36.5 43.5 92.7 77.6 84.4 86.0 87.8 86.9
Ion Channel 32.2 24.4 27.8 64.3 56.3 60.0 73.7 87.5 80.0
Ion Current 12.8 10.9 11.8 85.3 58.0 69.0 87.2 68.0 76.4
Ion Conductance 5.6 9.2 7.0 100 22.2 36.4 92.9 72.2 81.3
Value 26.4 32.0 28.9 89.7 83.9 86.7 89.5 82.8 86.0
Unit 25.6 54.4 34.8 91.5 94.2 92.9 90.4 95.7 93.0
Micro all 27.2 28.9 26.5 87.2 67.1 73.4 86.6 81.7 83.7

Table 4.14: The results of our methods to identify the entities in our corpus. The
pattern-based and CRF methods are from Shardlow et al. (2018).

named entity, and use this information to make better decisions on which words

corresponded to named entities. This is expected as the neural-based method

uses word embeddings as its input, which encode deep contextual information

about each word and are richer than the features passed to the CRF. Our model

outperforms the CRF-based method in terms of recall for seven out of eight

classes (all except for Experimental Value). However, for precision, the neural

model only outperforms the CRF-based method in three out of eight cases (see

Table 4.14). When these two statistics are combined to calculate the F1-score,

our neural model outperforms the CRF-based method in all entity types except

“Experimental Value”.

To highlight the differences between neural and pattern-based methods, we

have collected several examples from the data that highlight the differences be-

tween a pattern-based approach and our neural model. These sentences focus on

the annotation of brain regions and are presented in Figure 4.4. In each case,

the neural model was able to get the same results as our gold standard manual

annotations (even though it has never seen these examples before), whereas the

pattern-based method made some mistakes. In the first example, our model and

the human annotator both extracted the text “rostral pole of the ventral pos-

teromedial nucleus” as the brain region that was being mentioned. However, the

pattern-based method missed the first part of the annotation, only getting “ven-

tral posteromedial nucleus”. Whilst this is usually a brain region, in this case it

is not the brain region being described and would be misleading if it was accepted

as correct. The pattern-based method was not able to detect this complex term,
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1. around the rostral pole of the ventral posteromedial nucleus︸ ︷︷ ︸
Pattern Prediction︸ ︷︷ ︸

Annotation︸ ︷︷ ︸
Neural Prediction

2. other population projected mainly to orbital or cingulate areas︸ ︷︷ ︸
Annotation︸ ︷︷ ︸

Neural Prediction

3. rat ventrobasal complex︸ ︷︷ ︸
Pattern Prediction︸ ︷︷ ︸

Annotation︸ ︷︷ ︸
Neural Prediction

( VB︸︷︷︸
Annotation︸ ︷︷ ︸

Neural Prediction

) and posterior nucleus︸ ︷︷ ︸
Pattern Prediction︸ ︷︷ ︸

Annotation︸ ︷︷ ︸
Neural Prediction

( POm︸ ︷︷ ︸
Annotation︸ ︷︷ ︸

Neural Prediction

)

Figure 4.4: A comparison of rule-based recognition of brain regions to the neural
model. The manual annotation of the texts, which we used to judge our methods
performance against, is also included. The rule-based is from Shardlow et al.
(2018).

instead deferring to a simpler term which was already in the dictionary. Our

neural model has been able to use information about the context and structure

of the sentence to correctly assign the whole part of the annotation as a brain

region. In the second example, the human annotator and the neural model both

picked out the phrase “orbital or cingulate areas” as a brain region of interest.

The pattern-based method, however, did not find any brain region in this area.

In this case, the specific phrase is not in the dictionary we used, and therefore

was not picked up by the rule-based method. In the final example, the human

annotator and the neural model have both picked out the following brain regions:

“ventrobasal complex”, “VB”, “posterior nucleus” and “POm”. The pattern-

based method, however, has picked out the following brain regions: “ventrobasal

complex” and “nucleus”. Whilst the first brain region picked by the pattern-

based method is correct, it has missed both the acronyms and has only found

half of the second annotation (missing the word “posterior”). We were able to

detect some acronyms using the pattern-based method (as shown in Example 1),

however this did not have as high accuracy as for the neural model. For sentence

3, the acronyms were not part of the dictionary and could not be resolved to the

text, therefore they were not annotated. The neural model has been able to learn

something about the context of these acronyms that has allowed it to correctly

identify them as brain regions.
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4.2.2 Chronic Obstructive Pulmonary Disease Phenotype

Extraction

In this section, we describe the task-specific evaluation of our neural model (i.e.,

layered BiLSTM-CRF) under nested NER setting in the clinical domain. The task

was to identify pertinent and potentially complex information about chronic ob-

structive pulmonary disease (COPD) phenotypes from textual data. Specifically,

it requires three steps: corpus annotation which contains COPD phenotypes, an-

notation normalisation and the nested NER to detect fine-grained COPD pheno-

typic information. Our contribution was the first step, which has been published

at JAMIA Open (Ju et al., 2019b). To give a clear overview, we present the

following:

• Background of the task and its related work

• Results of our neural model under nested NER setting

• Discussion of the results

4.2.2.1 Background

COPD is “a common, preventable and treatable disease that is characterized

by persistent respiratory symptoms and airflow limitation that is due to airway

and/or alveolar abnormalities usually caused by significant exposure to noxious

particular gases” (cop). It is rapidly becoming one of the major causes of mor-

bidity and mortality worldwide (Naghavi et al., 2017). COPD is a multifactorial

and heterogeneous disease and not every patient responds to all available drugs

(Miravitlles et al., 2013; Segreti et al., 2014; Cazzola et al., 2017). Due to the high

prevalence and heterogeneity of COPD, improved deep phenotyping strategies are

required. Such in-depth phenotyping can pave the way for personalised treatment

regimens (Miravitlles et al., 2012), ensuring that the most suitable therapies are

provided (Wouters et al., 2017; Heaney and McGarvey, 2017).

A phenotype can be broadly defined as “any observable characteristic of an

organism” (Gkoutos et al., 2017), while Han et al. (2010) defines a COPD phe-

notype more specifically as “a single or combination of disease attributes that

describe differences between individuals with COPD as they relate to meaningful

outcomes (symptoms, exacerbations, response to therapy, rate of disease pro-

gression, or death)”. Identifying such phenotypes (also described as phenotypic
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traits) allows grouping of patients according to their prognostic and therapeutic

characteristics (Han et al., 2010). Early classification of the COPD sub-type will

facilitate superior healthcare provision and early intervention where it is most

required for example, patients with rapid disease progression or frequent ex-

acerbations. Although pinpointing relevant information in large, heterogeneous

text repositories can be time-consuming, applying neural-based methods to se-

mantically analyse these repositories (Zeng et al., 2018) can significantly reduce

the time needed by clinicians and researchers for tasks such as finding relation-

ships amongst concepts (e.g., genotype-phenotype (Van Driel et al., 2006; Singhal

et al., 2016), gene-disease (Piñero et al., 2016; Thompson and Ananiadou, 2017;

Bundschus et al., 2008), disease-phenotype (Kocbek and Groza, 2017; Sarntivijai

et al., 2016)), diagnosis categorisation (Carroll et al., 2011) or recruiting patients

for trials and studies (Wu et al., 2018; Ni et al., 2014)).

The potential complexity of COPD phenotype description, is exemplified in

Figure 4.5, where the phrase “elevation of pulmonary arterial pressures” is iden-

tified as a phenotype, and is assigned the category TestOrMeasureResult, since

it describes the outcome of a measurement. Analysing the internal structure of

this phenotype reveals the specific measurement undertaken (“pulmonary arterial

pressures”) and anatomical entity involved (“pulmonary artery”). The annota-

tions correspond to both complete phrases that constitute COPD phenotypes

and other types of concepts frequently mentioned within them, and/or within

their context. Such embedding (nesting) of shorter entity mentions within longer

(outermost) phenotype descriptions is fairly common (29% of annotations in the

COPD corpus are embedded). The detailed nature of the phenotype mentions in

the corpus aims to facilitate the development of automated tools supporting the

exploration of COPD phenotypic information in text from multiple perspectives.

This will allow not only the location and categorisation of COPD phenotypes, in-

cluding those identified through tests, or those constituting risk-raising individual

behaviours (e.g., smoking), but will also permit detailed investigations about the

nature of these phenotypes, including finding those affecting specific anatomical

locations, or those concerning different results of specific tests. To demonstrate

the full potential of the corpus for developing NER tools, our neural method

is specifically employed to recognise nested entities. To the best of our knowl-

edge, this is the first attempt to apply such an approach to detecting phenotypic

information.
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These processes cause elevation of pulmonary arterial︸ ︷︷ ︸
AnatomicalConcept

pressures

︸ ︷︷ ︸
TestOrMeasure︸ ︷︷ ︸

TestOrMeasureResult

.

Figure 4.5: Example of a phenotype that includes other concepts nested within
it.

4.2.2.2 Related Work

Previous approaches to phenotype NER depended on dictionaries (Friedman

et al., 1994; Friedman and Hripcsak, 1998; Savova et al., 2017; Groza et al.,

2015), possibly coupled with rules to improve accuracy and/or to handle the

potentially complex structure of phenotype descriptions (Khordad et al., 2011;

Afzal et al., 2018; Breitenstein et al., 2018; Mao et al., 2016; Collier et al., 2015a).

Whilst some such approaches performed poorly on phenotype recognition (Oell-

rich et al., 2015), an optimised combination of the outputs of these methods can

be beneficial (Collier et al., 2015b). However, combining or replacing rules with

ML tends to achieve superior performance (Khordad et al., 2012; Collier et al.,

2013; Brbić et al., 2017). Conventional ML approaches such as CRFs (Lafferty

et al., 2001) have been applied to many NER tasks, including detecting CHF

phenotypes (Alnazzawi et al., 2015) and recognising nested entities (Finkel and

Manning, 2009; Lu and Roth, 2015; Muis and Lu, 2017). CRF-based methods

generally require hand-crafted feature engineering for each new task, to deter-

mine the optimal set of textual features for predicting entities. Features include

semantic information from domain-specific terminological resources or the output

of linguistic processing tools, which can be time-consuming to apply to massive

document collections.

Recently, however, representational methods have improved phenotype ex-

traction performance (Gehrmann et al., 2018; Beaulieu-Jones et al., 2016; Che

et al., 2015) by using word embeddings, which remove the need for hand-crafted

feature engineering, linguistic processing or terminological resources (Collobert

and Weston, 2008), and character embeddings, which encode word morphology

information. However, they ignored nested phenotypic information, which was

considered in our work (Ju et al., 2018). We describe our experimental setting in

the next section.
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4.2.2.3 Experimental Setting

Evaluation Setting

Our experiments evaluate performance variations of each model when entities

with different levels of nesting are considered. We consider innermost entities,

outermost entities and all entities in the test data set. Innermost entities are the

most deeply nested entities, while outermost entities are non-nested entities. In

Figure 4.5, elevation of pulmonary arterial pressures is the outermost entity, while

pulmonary arterial is the innermost entity. Entities without nesting (e.g., dysp-

nea) are included in both the innermost and outermost sets. Precision (P), recall

(R) and F1-score (F1) were used for the evaluation metrics in all models. The

extended set of precision (EP), recall (ER) and F1-score (EF1) were additionally

used for the evaluation of our nested model. We define that if the numbers of

gold entities and predictions are all zeros, the evaluation metrics all equal one

hundred percent.

Data Setting

The COPD corpus consists of 30 full-text scientific articles, which are an-

notated using the hierarchical scheme (Fu et al., 2015) (guidelines available at:

http://www.nactem.ac.uk/COPD/download.php) to allow entities to be nested

within each other. We randomly split the corpus into three different parts: four-

fifths for training, one-tenth for development, and one-tenth for testing. Table

4.15 lists the statistics of the COPD corpus.

Model Setting

For the CRF and non-layered (i.e., flat) BiLSTM-CRF, we trained separate

models to recognise only innermost and outermost entities. In contrast, our

layered BiLSTM-CRF was trained to recognise entities at all levels of nesting.

Based on previous studies (Manda et al., 2018; Yang et al., 2018a), deciding

on an optimal neural model, and whether to combine it with CRF, appears to be

influenced by the task at hand. Using the layered architecture outlined above, we

trained different deep learning models using different algorithms (BiRNN, BiGRU

and BiLSTM), both in isolation and in combination with CRF.

We also compared our layered BiLSTM-CRF model to a CRF model and a

flat BiLSTM-CRF model. We used NERSuite (Cho et al., 2010) to implement

http://www.nactem.ac.uk/COPD/download.php
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Hyper
Parame-
ters

Layered
BiLSTM-
CRF

Layered
BiRNN-
CRF

Layered
BiGRU-
CRF

Layered
BiLSTM

Layered
BiRNN

Layered
BiGRU

Batch Size 121 92 65 94 92 114
Learning
Rate

0.008696 0.004173 0.004009 0.010222 0.004173 0.002182

Weight
Decay

0.000293 0.00592 0.000861 0.000010 0.000592 0.000075

Dropout
Rate

0.430745 0.095110 0.219963 0.330216 0.095110 0.359987

Gradient
Clipping

29 28 49 16 28 29

Table 4.16: Hyperparameters used in neural models which are tuned on the
development set.

Parameters Initialisation Parameters Initialisation

minimizer gp minimizer nCalls 10

randomstate -1 acqFunc gp hedge

noise -1 nRandomStarts 10

nRestartOpt 100 acqOpt lbfgs

nPoints 50000 xi 0.01

Table 4.17: Parameters used in initialising Bayesian optimisation.

the model, whose features include contextual information such as n-grams (i.e.,

up to three words either side of the entity), parts-of-speech, syntactic chunks

and word base forms (Ni et al., 2014). In contrast, the flat BiLSTM-CRF used

only word and character-level embeddings instead of features, as described above.

All neural-based models were tuned on the development data set using Bayesian

optimization (Snoek et al., 2012). The hyper parameter values and the settings

of the Bayesian optimization are shown in Table 4.16 and 4.17.

4.2.2.4 Results and Discussion

Table 4.18 shows the performance of each model. The flat BiLSTM-CRF per-

forms best for innermost entities, demonstrating how embeddings can successfully

replace the multiple linguistic features used by the CRF. At this level, however,

the layered BiLSTM-CRF has lower performance than the flat BiLSTM-CRF.

For the layered model, we consider only the output of its first layer, which is

expected to recognise only innermost entities. However, error analysis revealed

that there is actually not a one-to-one correspondence between model layers and

entity nesting levels, i.e., the first layer sometimes detects entities belonging to
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other (i.e., not innermost) entity levels. Conversely, higher layers of the model

may detect entities that belong to the innermost nesting level. For outermost

entities, the flat BiLSTM-CRF still outperforms the CRF, reinforcing the advan-

tages of deep learning. However, in contrast to innermost entities, the layered

BiLSTM-CRF outperforms the flat model in detecting outermost entities. This

clearly demonstrates how the layered models use of information about lower-level

entities improves recognition of higher-level entities. The higher performance of

the layered BiLSTM-CRF for outermost entities also provides evidence that in-

nermost entities are successfully recognised by lower levels of the model. This is

confirmed by its superior performance to the other models in detecting all en-

tities in the test data set. Although there is no exact correspondence between

the recognition of specific levels of entities and layers of the model, the complete

model is still able to exploit the output of previous layers to achieve a high level

of performance in detecting both outermost and nested entities. Detailed per-

formance statistics for the layered BiLSTM-CRF by entity type are provided in

Table 4.19. In Table 4.19, the performance of ConstituentConcept phenotypes

is 100%. This is because there are no entities with this semantic type in the

test data set and our model also did not predict any entities with this seman-

tic type. In contrast, we obtained 0% performance for MicrobiologicalTest and

PhysiologicalTest semantic types due to their sparsity in the testing data set.

Level Model P (%) R (%) F1 (%)

Innermost CRF 77.19 68.78 72.74*
Flat BiLSTM-CRF 73.93 73.38 73.56*
Layered BiLSTM-CRF 69.79 70.41 70.10

Outermost CRF 73.63 66.41 69.83*
Flat BiLSTM-CRF 75.61 67.35 71.24*
Layered BiLSTM-CRF 74.00 74.54 74.27

All CRF 75.44 67.61 71.31*
Flat BiLSTM-CRF 74.71 70.42 72.50*
Layered BiLSTM-CRF 77.02 75.45 76.23

Table 4.18: Performance of different NER models at different levels of entity
nesting. For each different level, the best precision (P), recall (R) and F1-score
(F1) amongst the three models is shown in bold.

Table 4.20 illustrates the performances of neural-based models, trained on

the training portion of the COPD corpus, tuned using the development set and

evaluated on the test set. In each case, the models are layered, and are evaluated
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Entity Type P (%) R (%) F1 (%) # Entities

Problem 70.54 69.00 69.76 229

Condition 86.75 86.57 86.66 484

RiskFactor 70.77 56.79 63.01 81

SignOrSymptom 60.38 53.63 56.81 179

IndividualBehaviour 63.64 77.78 70.00 9

TestResult 73.33 28.21 40.74 78

Treatment 81.66 81.34 81.50 509

Test 67.82 68.01 67.91 347

RadiologicalTest 50.00 25.00 33.33 4

MicrobiologicalTest 0 0 0 1

PhysiologicalTest 0 0 0 4

ConstituentConcept 100 100 100 0

AnatomicalConcept 74.09 84.33 78.88 217

Drug 85.15 87.36 86.24 348

Protein 63.89 63.01 63.45 73

Quality 76.87 76.87 76.87 134

Table 4.19: Performance of layered model on each semantic type.

Model P (%) R (%) F1 (%)

Layered BiLSTM - CRF 77.02 75.45 76.23

Layered BiRNN - CRF 75.72 67.52 71.38

Layered BiGRU - CRF 76.99 72.71 74.79

Layered BiLSTM 73.69 66.37 69.84

Layered BiRNN 64.58 53.62 58.59

Layered BiGRU 72.77 66.59 69.55

Table 4.20: Performance of different layered deep learning based models applied
to the test set of the COPD corpus.

on all entities (both nested and flat) in the test set of the corpus. The bi-

directional versions of three neural models are evaluated, i.e., BiRNN, BiGRU

and BiLSTM. In each case, two different versions of the models were evaluated

(i.e., alone and in combination with CRF). In all cases, the addition of CRF

helped to boost performance, and the layered BiLSTM-CRF was the highest

performing model.

The results achieved by our layered BiLSTM-CRF in recognising COPD-

related information are superior to those achieved by applying the same model

to nested entity recognition in well-used corpora from other domains (Ju et al.,

2018). This provides evidence that the COPD corpus is suitable for training
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high-performance ML models, and that automatic recognition of COPD phe-

notypic information is a feasible task. Moreover, we have shown that detecting

COPD phenotype information using neural models, which require minimal human

intervention for training, can achieve superior performance to more traditional

methods requiring time-consuming feature engineering, linguistic processing and

terminological resources. We have furthermore demonstrated that our layered

model can achieve superior performance against a “flat” model, by exploiting

information about nested entities. These outcomes have important implications,

in terms of improving the extraction of phenotypic information in text. In par-

ticular, our nested entity detection method not only allows efficient location of

COPD phenotype descriptions hidden in large text collections, but it also detects

the internal structure of these descriptions. This provides scope to explore and

categorise COPD phenotypes in a fine-grained manner. Since our method can

be rapidly adapted to detect different types of information, it could be readily

applied to find phenotypic information relating to other diseases, given suitably

annotated corpora. Error analysis of our NER results reveals that about 17% of

erroneous entities have the correct text span, but the wrong semantic category.

Figure 4.6 provides detailed error statistics for each semantic type, revealing that

Problem is the most frequently misclassified category; these entities are mainly

misclassified as either Condition or SignOrSymptom. Conversely, MedicalCondi-

tion entities are mostly misclassified as Problem. Such errors are possibly due

to the fine-grained, hierarchical structure of the annotation scheme; the often

subtle differences between similar categories may be difficult for the computer to

distinguish. A further 23% of errors (most frequently Treatment and TestOrMea-

sure entities) concern cases where the model assigns the correct category, but the

wrong text span (i.e., it partially overlaps with the correct span). This may be

due to the heterogeneity of phenotype descriptions, which can include mentions

of various concept types, and which may or may not include modifier phrases.

However, it is significant that in around 40% of the erroneous cases, the model

can successfully detect the presence of entities, and categorise them correctly.

Thus, even if the span is not completely correct, the model can find documents

mentioning relevant entities, and allow examination of the context surrounding

these entities.
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Figure 4.6: Counts of different types of errors for each semantic type.

4.2.3 Adverse Drug Event and Medication Extraction

In this section, we describe the task-specific evaluation of our neural model under

nested NER setting in the clinical domain. The task is to identify drugs and

their attributes (i.e., drug-related entities), which is one of the subtasks in 2018

n2c2 Shared Task Track 2. In this task, we used our neural model to extract

both nested and polysemous entities (i.e., entities that have multiple semantic

types) without depending on any external knowledge resources and hand-crafted

features. To improve the extraction of sparse entities, we further incorporated

subwords using byte pair encoding (Sennrich et al., 2016). To take advantage of

feature-based models, a CRF model is further combined with our neural model

enriched with subword information. Work based on this task has been published

at JAMIA (Ju et al., 2019a), where my contribution was the development of

neural-related models which additionally incorporates subword units. To give a

clear overview, we present the following:

• Background of the task and its related work

• Results of our neural model with subword units under nested NER setting

• Discussion of the results
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4.2.3.1 Background

Electronic health records (EHRs)–a digital version of a patients information and

medical history– are an important source of health data that can impact on a

patients care. Mining such data is crucial in understanding of treatment and

diagnosis of disease (Jensen et al., 2017; Yadav et al., 2018). Among the many

known application areas of electronic health record (EHR) mining (Yadav et al.,

2018; Velupillai et al., 2018), adverse drug event (ADE) detection has been proven

to improve and complement drug safety surveillance strategies. According to

the World Health Organization, an ADE is “An injury resulting from medical

intervention related to a drug” (Organization et al., 1972). Our work focuses on

extracting ADE mentions and their related medications from EHRs. We base

our analysis on data sets provided by the n2c2 Shared Task Track 2, consisting

of discharge summaries drawn from the Medical Information Mart for Intensive

Care III (MIMIC III) clinical care database (Johnson et al., 2016). This task

involves identification of nine entity types, i.e.,: ADE, Dosage, Duration, Drug,

Form, Frequency, Reason, Route and Strength.

Approaches to ADE detection in EHRs are roughly split into rule-based, ML-

based and neural categories. Iqbal et al. (2017) detected adverse drug events

(ADEs) based on a predefined dictionary and post-processing rules. Similarly

to Iqbal et al. (2017), Yeleswarapu et al. (2014) detected drugs and ADEs from

multiple data sources using dictionaries compiled from MeSH1 and MedDRA2,

respectively. Wang et al. (2018b) proposed a framework to extract vaccine ADEs

by combining formal ADE reports (Vaccine Adverse Event Reporting System

(VAERS)) with ADEs in social media (Twitter) and applying multi-instance

learning methods. Nikfarjam et al. (2015) also extracted adverse drug reactions

from social media by utilising word embedding cluster features, while Korkontze-

los et al. (2016) used sentiment analysis features.

The TAC 2017 Adverse Reaction Extraction from Drug Labels Track (Roberts

et al., 2017) is a similar shared task to the n2c2 Shared Task, but it focuses

instead on drug labels. One of the tasks in TAC 2017 was to recognise six ADE

types: adverse reaction, drug class, severity, factor, animal and negation. The

most common approach was the use of BiLSTM-CRFs (Belousov et al., 2017;

Cocos and Masino, 2017; Dandala et al., 2017; Gu et al., 2017; Tiftikci et al.,

1https://www.nlm.nih.gov/mesh/meshhome.html
2https://www.meddra.org/
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He was given albuterol nebs . . . for presumed narcotic︸ ︷︷ ︸
Drug

induced respiratory distress︸ ︷︷ ︸
ADE︸ ︷︷ ︸
Reason

.

Figure 4.7: An example of a sentence containing nested entity annotations.

2017; Xu et al., 2017a). These systems were implemented with pre-calculated

word embeddings and dynamically learned character embeddings. The MADE1.0

NLP challenge3 was another similar shared task, involving detection of mentions

of medication names and their attributes (dosage, frequency, route, duration), as

well as mentions of ADEs, indications, and other signs and symptoms in EHRs

of cancer patients. Neural-based models, e.g., LSTM (Xu et al., 2018a), BiLSTM

(Florez et al., 2018) and BiLSTM-CRF (Yang et al., 2018b; Wunnava et al., 2018;

Li et al., 2018a), were the most popular approaches for ADE detection.

4.2.3.2 Experimental Setting

Data Setting

The 2018 n2c2 Shared Task Track 2 provided 505 annotated discharge sum-

maries extracted from MIMIC III, of which 303 were used for training and 202

were used for testing. The statistics are shown in Table 4.21. To determine the

best ensemble setting, we further divided the training set into two subsets: 80%

for training and 20% for development; the latter is used to validate the models.

We evaluated all models using lenient metrics in terms of precision, recall and

F1-score, which were the main ones used in Track 2. As an example of nested

entities, consider Figure 4.7, where the Drug entity is embedded (nested) inside

Reason and ADE. In addition, ADE and Reason are polysemous entities, since

they both cover the same text span; we treat these as a special case of nested

entities. As a result, the number of flat NER layers depends on the degree of

nestedness of entities contained in the input word sequences. The dynamic na-

ture of our model enables us to extract polysemous entities by stacking flat NER

layers to recognise other categories with the same text span.

Table 4.21 provides statistics regarding the training data. We observe that

there are many rare and unknown words (words that are unseen in the training

data) included in entities, which makes their extraction challenging. To address

3http://bio-nlp.org/index.php/announcements/39-nlp-challenges
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Item Training Development

Document 242 61
Entities 41,171 9,776
Nest level 1 entity (flat entities) 41,109 9,760
Nest level 2 entity 61 16
Nest level 3 entity 1 0
Polysemous entity 47 13
Textually nested entity 15 3
ADE 785 174
Dosage 3,401 820
Drug 13,109 3,114
Duration 499 93
Form 5,340 1,311
Frequency 5,075 1,205
Reason 3,105 750
Route 4,479 996
Strength 5,378 1,313
Unknown words /Unique words - 17.00%
Rare words /Unique words 37.19% 37.69%
EUNKs/All entities - 2.67%
ERAREs /All entities 1.89% 3.88%

Table 4.21: Statistics of the data set. Rare words are words that occur only once
in the data. Unknown words refer to words that are not seen in the training
set. EUNKs and ERAREs refer to entities that contain unknown and rare words,
respectively.
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this problem, we used byte pair encoding (Sennrich et al., 2016) that represents

words by iteratively merging the most frequent adjacent/consecutive characters

into longer character sequences (i.e., subwords). We collected all the words oc-

curring in the training data and iteratively combined the most frequent pairs of

neighbouring characters or character sequences, resulting in a tokenisation model

in which each line contains one subword coupled with its unique id. The to-

kenisation model was used to split word sequences into subword sequences that

may carry patterns of informative words in entities. We then concatenated the

subword embeddings with word embeddings, which were used as input to our

model.

Model Setting

Besides our layered BiLSTM-CRF model, we also incorporated a feature-

driven CRF model Ju et al. (2019a) with token-based features, dictionary fea-

tures and cluster features. With CRF and layered-BilSTM-CRF models, we cre-

ated two types of ensemble using majority voting (Boyer and Moore, 1991): (1)

intra-ensemble that combines different versions of the same model with differ-

ent parameter settings, and (2) inter-ensemble that combines different models or

different intra-ensembles. We refer to the models with intra- and inter-ensemble

settings as intra-model and inter-model, respectively.

Regarding the CRF model Ju et al. (2019a), since lexical and syntactic features

are default input features of NERSuite (Cho et al., 2010), we treated them as

baseline features and evaluated the combinations of the remaining features, i.e.,

word shape, dictionary, and cluster features.

For our layered neural model, we experimented with the following settings:

(1) baseline model: using word embeddings concatenated with character em-

beddings as the input to the neural layered model. We randomly initialised a

vector for each character. Given a word, we feed its character sequence to a

BiLSTM and concatenated the bidirectional last hidden states as the character

embeddings.

(2) csub model: using subword embeddings and character embeddings as the

input to the model. Similarly to character embeddings, we used a different BiL-

STM to obtain subword embeddings. We used varying vocabulary sizes of [300;

1,000; 4,000; 8,000; 16,000] to train different tokenisation models. As a result,

we generated 5 different versions of subword sequences for a given input word
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Vocabulary size Subword sequence

300 _v, in, c, r, ist, ine, _to, x, ic, _p, o, ly, ne, u, ro, p, at, h, y

1000 _v, in, c, r, ist, ine, _to, x, ic, _po, ly, ne, u, rop, at, hy

4000 _v, in, c, r, ist, ine, _toxic, _poly, ne, u, rop, athy

8000 _v, inc, rist, ine, _toxic, _poly, ne, uropathy

16000 _vincristine, _toxic, _polyneuropathy

Table 4.22: Five versions of subword sequences for the given ADE entity “vin-
cristine toxic polyneuropathy” that contains a Drug entity “Vincristine” inside
itself. “_” represents the whitespace.

sequence. An example is shown in Table 4.22. Each different version of subword

sequences produced subword embeddings, which were individually used in the

model. Instead of predicting label sequences at the word level, we predicted the

label for each word at the subword level. When merging the subword labels into

their corresponding word labels, we kept the first subword label as their word

label. Taking the entity “vincristine toxic polyneuropathy” as an example, we

selected one version of the tokenisation model to generate its subword sequence

“ _v, in, c, r, ist, ine, _toxic, _poly, ne, u, rop, athy” where “_” represents a

whitespace character. Using the csub model, the predicted subword-level label

sequence is [B-ADE, I-ADE, I-ADE, I-ADE, I-ADE, I-ADE, I-ADE, I-ADE,

I-ADE, I-ADE, I-ADE, I-ADE, I-ADE], while the corresponding word-level la-

bel sequence is [B-ADE, I-ADE, I-ADE]. When merging subword-level labels for

each word, we picked up the first subword label (e.g., “B-ADE”) among subword

labels and attached it to the word “vincristine” as the final word-level label.

(3) wsub model: using the concatenation of word embeddings and each version

of the subword sequences obtained from (2) as the input to the model.

(4) wcsub model: using the concatenation of baseline embeddings (i.e., word and

character embeddings) and each version of the subword sequences obtained from

(2) as the input to the model. By combining these settings, we have 16 models in

total. We produced different combinations of intra- and inter-models using the

majority voting (Boyer and Moore, 1991). Specifically, we merged predictions

from: (1) different feature combinations of the CRF models; (2) combinations

of NN baseline and the remaining NN models, which were internally ensembled

with vocabulary sizes and (3) all of the above-mentioned settings. We selected

entities that have the most votes for their specific span. We summarise the model

ensemble in Figure 4.8. The NN models were tuned using Bayesian optimization

(Snoek et al., 2012). The best hyper parameter values are listed in Table 4.23.
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Figure 4.8: An overview of the ensemble.

Hyper Parameter Value Range Best Value
Baseline Csub Wsub Wcsub

Batch size [16, 256] 144 255 224 240
Learning rate [0.001, 0.02] 0.007240 0.008162 0.008162 0.004740
Weight decay [10-8, 0.001] 2.73 1.08 8.28 1.32

Dropout [0.1, 0.9] 0.419363 0.429264 0.475458 0.513470
Gradient clipping [5, 50] 11 28 11 47

Vocab size
[0.3k,
1k, 4k,
8k, 16k]

- 4k 4k 0.3k

Table 4.23: Best hyper parameters of individual NN models.
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Model Vocab
size

Ensemble

Strict Lenient
Precision Recall F1-score Precision Recall F1-score

Baseline - 0.8935 0.8675 0.8803 0.9484 0.9038 0.9256

Csub 300 0.8892 0.8649 0.8768 0.9472 0.9032 0.9247
1000 0.8895 0.8769 0.8832 0.9439 0.9144 0.9289
4000 0.8890 0.8831 0.8860 0.9454 0.9185 0.9317
8000 0.8953 0.8762 0.8856 0.9493 0.9109 0.9297
16000 0.8824 0.8673 0.8748 0.9406 0.9061 0.9230
Ensemble 0.9218 0.8610 0.8904 0.9656 0.8981 0.9306

Wcub 300 0.8906 0.8710 0.8807 0.9486 0.9095 0.9286
1000 0.8912 0.8750 0.8830 0.9463 0.9124 0.9291
4000 0.8895 0.8776 0.8835 0.9422 0.9146 0.9282
8000 0.8891 0.8815 0.8853 0.9458 0.9156 0.9305
16000 0.8758 0.8782 0.8770 0.9385 0.9146 0.9264
Ensemble 0.9198 0.8634 0.8907 0.9638 0.9013 0.9315

Wcsub 300 0.8909 0.8783 0.8846 0.9449 0.9153 0.9299
1000 0.8864 0.8784 0.8824 0.9461 0.9125 0.9290
4000 0.8897 0.8810 0.8853 0.9453 0.9183 0.9316
8000 0.8889 0.8744 0.8816 0.9467 0.9115 0.9288
16000 0.8892 0.8754 0.8823 0.9439 0.9121 0.9277
Ensemble 0.9210 0.8637 0.8915 0.9641 0.9010 0.9315

Inter-NN Ensemble 0.9105 0.8720 0.8909 0.9591 0.9084 0.9331

NN-CRF Ensemble 0.8884 0.8838 0.8861 0.9423 0.9162 0.9291

Table 4.24: Performances of individual NN models and intra- and inter- ensem-
bling models on the development set.

4.2.3.3 Results

The following experimental results were calculated using our development set

and the official test set. Table 4.24 lists both strict and lenient matching detailed

performances of our models on the development set. Table 4.25 summarises

lenient performance of the CRF and NN models, including their combinations,

on the development set.

As shown in Table 4.25, using word shape (ws) or dictionary features (df)

alone reduced the CRF performance, while their combination produced the high-

est lenient precision. Our CRF model achieved the best lenient F1-score when

using only cluster feature (cf) and the highest recall when further combined with

df. Compared with the CRF models, our NN models obtained consistent improve-

ments in terms of lenient recall and F1-score. We obtained the best performance

with the wcsub model, which employs the embeddings of words, subwords and

characters. The removal of word embeddings yielded the best precision without
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Model Precision Recall F1-score

CRF
Baseline (Lexical and syntactic features) 0.9525 0.8825 0.9162
Baseline + word shape (ws) 0.9527 0.8815 0.9157

Baseline + dictionary features (df)* 0.9511 0.8829 0.9157

Baseline + cluster features (cf)* 0.9504 0.8902 0.9193
Baseline + ws + df 0.9523 0.8821 0.9158
Baseline + ws + cf 0.9491 0.8898 0.9185
Baseline + df + cf 0.9494 0.8903 0.9189
Baseline + ws + df + cf 0.9486 0.8900 0.9184
Neural Network
Baseline (word + characters) 0.9476 0.8995 0.9230
Csub (subword + characters) 0.9502 0.9042 0.9266
Wsub (word + subword) 0.9496 0.9044 0.9264

Wcsub (word + subword + characters)* 0.9498 0.9066 0.9277
Ensemble
Inter-CRF 0.9466 0.8935 0.9193
Intra-csub 0.9656 0.8981 0.9306
Intra-wsub 0.9638 0.9013 0.9315
Intra-wcsub 0.9641 0.9010 0.9315
Inter-NN 0.9591 0.9084 0.9331
NN-CRF 0.9401 0.9209 0.9304

Table 4.25: Performance of CRF and NN models on the development set. For
each model, the best lenient metrics of precision, recall and F1-score are shown in
bold. * represents significance value at p <0.05 with approximate randomisation
significance test (Noreen, 1989).

significantly sacrificing recall, thus achieving comparable lenient F1-score. The

introduction of subwords to each individual character or word embedding pro-

duced better performance than their combination (i.e., the NN baseline model).

Ensemble of models outperformed their individual ones except the inter-CRF.

We obtained the best lenient F1-score when externally combining each intra-NN

model, while the best recall was produced using an ensemble of inter-CRF and

inter-NN models (i.e., NN-CRF).

Table 4.26 shows the performance of two ensemble settings on the test set.

The first setting was our submission setting, which was an ensemble of inter-CRF,

intra-csub, intra-wsub and wcsub models (initialised only with vocabulary sizes

of 1,000 and 4,000). Using this setting, our ensemble model performed well in

predicting entity types such as Strength and Frequency. The second setting was
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Entity Type Precision Recall F1-score

Submission Setting
Strength 0.9815 0.9804 0.9810

Frequency 0.9788 0.9666 0.9727
Route 0.9662 0.9445 0.9552
Drug 0.9567 0.9533 0.9550
Form 0.9653 0.9436 0.9543

Dosage 0.9356 0.9433 0.9395
Duration 0.8875 0.7513 0.8138
Reason 0.7254 0.5470 0.6237
ADE 0.4697 0.1984 0.2790

Overall (micro) 0.9444 0.9073 0.9255
Inter-NN Setting
Overall (micro) 0.9599 0.8979 0.9278

Table 4.26: Lenient performance on the test set with submission and inter-NN
settings.

the inter-NN model setting, which produced the best lenient F1-score. However,

it was not selected for submission to the shared task due to time limitations. In

addition to lenient-based results, we show the strict performances in Table 4.27.

4.2.3.4 Discussion

We conducted an error analysis of predictions on the development set for the

best individual and ensemble models. We divided errors into two classes: (1)

category error (CE), corresponding to entities that have correct lenient spans but

incorrect categories, and (2) span error (SE), corresponding to entities that have

both incorrect spans and categories.

Figure 4.9 shows the statistics of CEs and SEs for our best individual and

ensemble model on the development set. In general, our wcsub model made more

CEs than the CRF model, indicating that the wcsub model detected more entity

spans with incorrect categorisation. One reason is that the context representa-

tions enhanced with subwords from our wcsub model encode more informative

than hand-crafted features used in the CRF model, thus providing more clues to

locate more entity regions. Another reason is that our CRF model only handles

flat entities and fails to consider nested entities, which are additionally utilised

to train the wcsub model. When combining the predictions from all NN models,

the number of errors (i.e., CEs and SEs) reduced, demonstrating the important
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Entity Type Precision Recall F1-score

Drug 0.9137 0.9342 0.9238
Strength 0.9424 0.9629 0.9525
Duration 0.7568 0.6667 0.7089

Route 0.9479 0.9331 0.9405
Form 0.9296 0.9147 0.9221
Ade 0.4491 0.1904 0.2674

Dosage 0.8984 0.9168 0.9075
Reason 0.6494 0.5014 0.5659

Frequency 0.8233 0.8445 0.8338
Overall (micro) 0.8890 0.8722 0.8805
Overall (macro) 0.8854 0.8599 0.8712

Table 4.27: The performances of our submission in terms of strict precision, recall
and F1-score on the test set.

contribution of ensemble predictions.

Figure 4.10 shows the percentages of EUNKs (entities that contain unknown

words) (a) and ERAREs (entities that contain rare words) (b) extracted for each

category, respectively. As shown in Figure 4.10.a, our wcsub model is better

able to extract EUNKs than the NN baseline model. This result demonstrates

that, for most categories, the incorporation of subwords help the wcsub model to

recognise such entities more accurately. Among all categories, our wcsub model

achieved the highest improvement for Strength entities. Entities in this category

commonly include words that exhibit a specific pattern within them (i.e., “digits

symbol digits”, e.g., “150(2” ), indicating that subword features can help capture

such internal features of words for entity recognition. For Frequency entities, the

wcsub model misclassified three instances as Duration, since they are coupled

with time units: “pm”, “am” and “hs”. Both of our models exhibit compara-

ble performance for the Duration and Form categories, whose entities are often

composed of informative words, such as “day”, “month”, “tablet” etc. In terms

of Reason, the wcsub model extracted two fewer entities than the baseline, which

correspond to long phrases, such as “patchy infiltrates concerning for biliary sep-

sis”. However, it was able to additionally extract a number of shorter entities

(e.g., “maculopapular rash”), which were missed in predictions from the NN base-

line model. In contrast to Reason, the wcsub model increases the recall of Drug

entities, which constitute the largest proportion of all entities.

We additionally analysed how subwords can improve the extraction of entities
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Figure 4.9: Statistics of CEs and SEs for our best individual and ensemble models
on the development set.

containing rare words; the results are shown in Figure 4.10. It can be seen that the

wcsub model improves the recall of sparse entities, especially for those belonging

to Strength, Dosage and Route. This phenomenon indicates that entities with

certain patterns (e.g., real values followed by units) benefit significantly from the

use of subwords. In contrast, however, our wcsub model fails to capture sparse

entities belonging to the categories of Reason, Form and Frequency. This is likely

to be because they require contextual information beyond the sentence level.

4.2.4 Improving Reference Prioritisation with PICO Recog-

nition

In this section, we evaluate our neural model under nested NER setting with

a scientific abstract screening task in combination of biomedical and health do-

mains.

Screening abstracts for systematic reviews requires users to read and evaluate

abstracts to determine if the study characteristics match the inclusion criterion. A

significant portion of these are described by PICO elements: patient/population

(P), intervention (I), comparator (C), and outcomes (O). Therefore, words within

PICO tagged segments automatically identified in abstracts are shown to be pre-

dictive features for determining inclusion. Combining PICO annotation model

into the relevancy classification pipeline is promising to expedite the screening

process. The task is divided into two steps: PICO recognition and relevancy
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Figure 4.10: Percentage of category-wise extracted EUNKs (a) and ERAREs (b).
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classification. Work based on this task has been under review at BMC Medical

Informatics and Decision Making, where my contribution was the first step. To

demonstrate the effectiveness of our model in the task, we briefly describe the

second step: relevancy classification. Therefore, we present the following:

• Background of the task and its related work

• Explanation of relevancy classifier

• Results of our neural model under nested NER setting

• Discussion of the results

4.2.4.1 Background

Evidence-based research aims to answer a well-posed, falsifiable question using

existing results together with a systematic and transparent methodology. Evi-

dences (e.g., results of clinical trials) should be collected and evaluated without

bias using consistent criteria for inclusion (Higgins and Deeks, 2011). Based on

Huang et al. (2006), a research question can be decomposed into its PICO ele-

ments (Oxman et al., 1993; Richardson et al., 1995). Along with other aspects,

such as study design, PICO elements are useful for formulating search queries for

literature database searches (Schardt et al., 2007) and mentions of PICO elements

are key to screening the search results for relevance.

A standard approach for systematic reviews (and other review types such as

rapid reviews (Wagner et al., 2017) and scoping reviews (Shemilt et al., 2014))

is to perform screening initially using only the title and abstracts of a reference

collection before obtaining and analysing a subset of full-text articles (Higgins

and Deeks, 2011). While faster and more cost-effective than full-text screening,

manually screening all reference abstracts is a protracted process for large col-

lections (Allen and Olkin, 1999), especially those with low specificity (Lefebvre

et al., 2013). Technology-assisted reviewing seeks to foreshorten this process by

only screening the subset of collection most likely to be relevant (O’Mara-Eves

et al., 2015; Shemilt et al., 2016; Kanoulas et al., 2017, 2018). This subset is

automatically selected using information from a manual screening decisions ei-

ther on another, ideally smaller, subset of the collection (Cohen et al., 2006) or

through multiple rounds of iterative feedback between a ML model and the hu-

man reviewer (Wallace et al., 2010). In effect, the machine “reads” the title and
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abstract and scores the relevancy of the reference based on a model trained on

relevant and irrelevant examples from the human reviewer. While previous stud-

ies (Shemilt et al., 2014; Rathbone et al., 2015; Przyby la et al., 2018) have shown

the potential for time-savings, the underlying models treat each word equally

and do not explicitly distinguish PICO elements within an abstract. As PICO

elements are crucial for a human reviewer to making inclusion decisions or de-

sign screening filters (Tsafnat et al., 2018), ML models with information on each

reference’s PICO will be helpful compared with models lacking this information.

Therefore, we employ our neural model to automatically identify text describing

PICO elements within titles and abstracts.

4.2.4.2 Related work

Previous work has shown that there are multiple avenues for automation within

systematic reviews (Thomas et al., 2011; Tsafnat et al., 2014; Beller et al., 2018).

Examples include retrieval of high-quality articles (Aphinyanaphongs and Alif-

eris, 2003; Aphinyanaphongs et al., 2005; Choi et al., 2012; Del Fiol et al., 2018),

risk-of-bias assessment (Marshall et al., 2015a,b; Millard et al., 2015; Zhang et al.,

2016), and identification of randomised control trials (Cohen et al., 2015; Mar-

shall et al., 2018). As our work focuses on data extraction in abstract-level

screening, we review previous work (Jonnalagadda et al., 2015) to automatically

isolate PICO and other study characteristics. The two are related since inclusion

and exclusion criteria can be decomposed into requirements for PICO and study

characteristics to facilitate search (Sim et al., 2014).

Extracting PICO elements at the phrase level (Hara and Matsumoto, 2007;

Summerscales et al., 2009, 2011) is a difficult problem due to the disagreement

between human experts on the exact words constituting a PICO mention (Niu

and Hirst, 2004; Demner-Fushman and Lin, 2007). Thus, many approaches (Jon-

nalagadda et al., 2015) firstly determine the sentences relevant to the different

PICO elements, using either rules or ML models (Demner-Fushman and Lin,

2005, 2007; Hara and Matsumoto, 2007; Xu et al., 2007; Kim et al., 2011; Boudin

et al., 2010a,b; Zhao et al., 2010). Fine-grained data extraction can then be

applied to the identified sentences to extract the words or phrases for demo-

graphic information (age, sex, ethnicity, etc.) (Xu et al., 2007; Hara and Mat-

sumoto, 2007; Zhao et al., 2010, 2012; Kelly and Yang, 2013), specific intervention
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arms (Chung, 2009b), or the number of trial participants (Hansen et al., 2008). In-

stead of classifying each sentence independently, the structured form of abstracts

can be exploited by identifying PICO sentences simultaneously with rhetorical

types (aim, method, results, and conclusions) in the abstract (Chung and Coiera,

2007; Chung, 2009a; Dernoncourt et al., 2016; Jin and Szolovits, 2018). More

broadly, PICO and other information can be extracted directly from full text

articles (De Bruijn et al., 2008; Kiritchenko et al., 2010; Hsu et al., 2012; Bui

et al., 2016; Wallace and Marshall, 2016).

Rather than extract specific text, Singh et al. (2017) predict which medical

concepts in the Unified Medical Language System (UMLS) (Bodenreider, 2004)

are described in the full-text for each PICO element. They use a neural network

model that exploits embeddings of UMLS concepts in addition to word embed-

dings. The predicted concepts could be used as alternative features rather than

just the extracted text. This would supplement manually added metadata such as

Medical Subject Headings (MeSH) (Aronson et al., 2004), which are not always

available or have the necessary categorisations.

Our approach differs from existing by both operating at the subsentence level

(words and phrases) and using a neural model for processing text (Collobert

et al., 2011b) without hand-engineered features. Our neural model jointly extracts

PICO elements in theory, can provide higher recall than methods that do not

allow nested PICO elements.

Recently, Tsafnat et al. (2018) have shown the screening ability of automatic

PICO extraction for systematic reviews. They use manually designed filters (e.g.,

dictionaries and rules) (Karystianis et al., 2014, 2017) for key inclusion criterion,

mentions of specific outcomes, population characteristics, and interventions (ex-

posures) to filter collections with impressive gains. A variety of ML models have

been proposed for screening references for systematic reviews (Cohen et al., 2006;

Cohen, 2008; Cohen et al., 2010; Bekhuis and Demner-Fushman, 2010, 2012;

Bekhuis et al., 2014; Matwin et al., 2010; Frunza et al., 2010, 2011; Wallace

et al., 2010; Small et al., 2011; Wallace et al., 2012; Jonnalagadda and Petitti,

2013; Dalal et al., 2013; Miwa et al., 2014; Timsina et al., 2016; Khabsa et al.,

2016; Hashimoto et al., 2016; Howard et al., 2016). However, to our knowledge

none of relevancy classifiers have used as input the output of PICO recognition.
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4.2.4.3 Relevancy Classification

Method of the task contains two components: PICO recognition and relevancy

classification. We use our layered BilSTM-CRF model for PICO recognition. To

show how the first component (i.e., PICO recognition) interacts with the second

component (i.e., relevancy classification), we briefly present the second component

which was conducted by other co-authors in the manuscript.

To form the relevancy classifier, we firstly adopt logistic regression classifier

which will be trained on screening decisions (represented as binary variables indi-

cating inclusion or exclusion). Then the predictions of the classifier on the unseen

references are used to prioritize them, presenting those that are most likely to

be relevant. We follow the RobotAnalyst (Przyby la et al., 2018), a web-based

system that uses SVM to prioritise relevant references to obtain the feature set,

which contains four parts: a bag-of-words (BOW) representation and topic distri-

bution of the combination of title and abstract, BOW representation of the title

and the extracted PICO elements. Specifically, we use leammata (base forms) of

the occurring words that meet the following conditions:

• contain more than one character

• contain at least one letter or number

• not in the list of stop word4

to form BOWs. The BOW is a sparse binary vector representing whether or

not a word occurred in the given context. We normalise each BOW with a

Euclidean (L2) norm of 1 for each reference, except when the bag is empty. PICO

BOW representation is a combination of three BOWs, each of which corresponds

to one type of the extracted course-grained P, I (C is merged into I), and O

elements. Finer-grained spans that are recognised by the PICO model are mapped

back to the basic PICO types. Topic distributions for the combination of title

and abstract text are inferred from an LDA topic model (Blei et al., 2003) with

k = 300 topics using MALLET (McCallum, 2002). The text is filtered to words

consisting of alphabetic characters with initial or internal punctuation that are

not on the stop word list.

4http://members.unine.ch/jacques.savoy/c



116 CHAPTER 4. EVALUATION

4.2.4.4 Experimental Setting

Evaluation Setting

We evaluate our neural model in terms of precision (P), recall (R) and F1-

score (F1) on the token level. Each token is treated as an individual test case.

True positives for each category are tokens in the category’s span that matches

the one assigned by the model, and false positives are tokens assigned to the

category by the model but not in the original span. This solves the problem

of comparing two spans that have matching category, but partially overlapping

spans.

In addition, we also evaluate the model on the document level in terms of the

set of included words to indicate whether the annotated PICO words would be

captured when each document is represented as BOW with lemmata. In other

words, the document-level matching tests how well individual documents could

be retrieved by searching for words within specific PICO contexts.

To demonstrate the effectiveness of PICO information in improving the priori-

tisation of relevant references such that relevant references are presented as early

as possible, we use both a two-fold relevancy prioritisation and a relevancy feed-

back setting. In addition, we follow previous work to quantify the performance

in terms of work-saved over sampling at 95% recall (WSS@95%) (Cohen et al.,

2006), which expresses how much manual screening effort would be saved by a

reviewer that would stop the process after finding 95% of the relevant documents.

Data Setting

We used the PICO corpus (Nye et al., 2018) for our neural model. The corpus

consists of 4,993 references, a subset of 4,512 are used for training and develop-

ment (4,061/451). The remainder contains 191 for testing the coarse-grained

spans. The remainder also contains 96 that were not used for training since they

lacked at least one of the PICO elements, and 194 references which are part of a

set of 200 assigned for testing fine-grained labelling. The PICO mentions in the

corpus are annotated with the hierarchical categorisation shown in Table 4.28

where the top-level categories consist of population, intervention/comparator,

and outcomes. The comparators are merged into interventions (Nye et al., 2018).

The corpus is annotated in two passes: firstly, top-level spans are identified, and

secondly, spans within these are further annotated with the fine-grained types.
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Top-
level

Patient-population-problem Intervention/Comparator Outcome

Fine-
grained

Age Control Adverse effect

Condition Educational Mental
Sample size Pharmacological Mortality
Sex Physical Pain

Psychological Physical
Surgical Other
Other

Table 4.28: The top-level and fine-grained PICO elements in the training set for
the PICO recognition model.

In this manner, spans corresponding to the fine-grained types are nested within

typically longer spans with top-level PICO types.

The DERP collections (Cohen, 2006; Pacific Northwest Evidence-based Prac-

tice, OHSU Center for Evidence-Based Policy) are used to test whether including

the PICO features will improve the prioritisation of relevant references using sim-

ulated screening. Table 4.29 describes the collections for the different reviews.

Model Setting

For the PICO recognition model (i.e., our neural model), we initialise the

word embeddings using Chiu et al. (2016a) with updating them. The dimension

of the character-based word embedding is set as 56. The number of hidden

units in BiLSTM is set as 256. Stochastic first-order optimisation is performed

using batches of sentences, gradient clipping, and Adam (Kingma and Adam,

2015). Dropout (Srivastava et al., 2014), weight decay (L2-regularisation), and

early stopping are employed to prevent overfitting. Hyper-parameters are selected

using Bayesian optimisation (Snoek et al., 2012), using the design described in

Ju et al. (2018), on a development portion of the training set with the F-score of

the span-level predictions as the metric.

For relevancy classification, we use the RobotAnalyst framework (Przyby la

et al., 2018) as the simulation platform, where the relevancy classifiers updated

at multiple stages during the screening process. Specifically, we run 100 Monte

Carlo simulations. In each simulation, we begin with a random batch of 25

references. If this batch contains any relevant references, this forms the initial

training set, otherwise batches of 25 are sampled randomly and appended to the

training set until at least one relevant reference is found. Given the training set,
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Review Inclusion Exclusion Total Prevalence (%)

ACE Inhibitors 2544 41 2503 1.61
ADHD 851 20 831 2.35
Antihistamines 310 16 294 5.16
Atypical Antipsychotics 1120 146 974 13.04
Beta Blockers 2072 42 2030 2.03
Calcium Channel Blockers 1218 100 1118 8.21
Estrogens 368 80 288 21.74
NSAIDS 393 41 352 10.43
Opioids 1915 15 1900 0.78
Oral Hypoglycemics 503 136 367 27.04
Proton Pump Inhibitors 1333 51 1282 3.83
Skeletal Muscle Relaxants 1643 9 1634 0.55
Statins 3465 85 3380 2.45
Triptans 671 24 647 3.58
Urinary Incontinence 327 40 287 12.23

Table 4.29: DERP systematic review descriptive statistics. Abbreviated columns
correspond to the number of inclusions (relevant references), exclusions, total
number of references, and the prevalence (percentage of inclusions compared to
total).

a classifier is trained and applied to the remaining references. The references

are prioritised by the classifier’s score, which is proportional to the posterior

probability of being relevant (using a logistic regression model). The 25 highest

ranked references are then included in the training set, a classifier is retrained,

and so on. This continues until all references are screened. This iterative process

is readily comparable to relevance feedback methods (Salton and Buckley, 1990).

4.2.4.5 Results

Table 4.30 shows the token-wise performance for the three categories. The model

achieves an F1-score of 0.70, 0.70 and 0.56 for element of P, O and I, respectively.

Compared with element of P and O, the low F-score of element I is caused by the

low recall which is 0.47. The performance metrics are higher for document-level

matching. For element O, our neural model achieved 0.81 in terms of recall.

Table 4.31 shows the results of relevancy feedback experiment with the column

labelled LR corresponding to the baseline set of features from RobotAnalyst

(Przyby la et al., 2018) with logistic regression, and PICO indicating the model

with the additional PICO BOW features. On average, the inclusion of PICO

features increases the work-saved metric by 3.3%, with substantial gains for the
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Element Token-wise Document-level
P R F1 P R F1

Participants 0.81 0.62 0.70 0.86 0.71 0.78
Interventions 0.69 0.47 0.56 0.83 0.52 0.64
Outcomes 0.66 0.75 0.70 0.73 0.81 0.77

Table 4.30: PICO recognition performance in terms of a token-wise evaluation
and a document-level filtered bag-of-words (BOW) on the test set.

Opioids and Triptans collections.

We compare these results against two baselines (Ji and Yen, 2015; Ji et al.,

2017) that use relevancy feedback rather than ML. The first baseline is a rel-

evance feedback system exploiting the lexical network induced by shared word

occurrence (Ji and Yen, 2015). Ji et al. (2017) follow the same experiment and

for a fair comparison we report their results for the case when parameters are

fixed across collections using SNOMED-CT5 and MeSH6 features for a semantic

network. The overall performance with the PICO features is comparable to the

semantic network based relevance feedback (Ji et al., 2017). This is encouraging

since the latter uses a human selected seed query, versus the random initialisation

for the proposed method.

To compare against other baselines from the literature, we adopt a stratified

two-fold setting, where half of the inclusions and half of the exclusions are used

for training. The first baseline (Matwin et al., 2010) uses a naive Bayes classifier,

and the reported values are the average across five two-fold cross-validations,

in each of the 10 runs the WSS value for a threshold with at least 95% recall

is reported. The second baseline is a SVM-based model (Cohen, 2008, 2011)

with the feature set that performed the best consisting of abstract and title text,

MeSH terms, and Meta-map phrases. The final baseline (Howard et al., 2016)

uses cross-validation on the training sets to select the following hyperparameters:

the number of topics, the regularisation parameter, and the inclusion or exclusion

of additional bigram, trigram, or MeSH term features.

The results are reported in Table 4.32. The inclusion of PICO features

improves the work-saved performance metric versus the default logistic regres-

sion model, with an average improvement of 1.6%. The results are competitive

against the earlier baselines, but the cross-validation selection of hyperparameters

5http://www.snomed.org
6https://www.nlm.nih.gov/mesh/meshhome.html
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Ji and Yen
(2015)

Ji et al.
(2017)

LR PICO ∆

ACE Inhibitors 74.3 *82.7 74.7 74.4 -0.3

ADHD 67.9 *82.1 67.5 68.9 1.4

Antihistamines *24.5 17.7 -1.7 -1.9 -0.1

Atypical Antipsychotics 18.0 *33.6 18.0 20.5 2.5

Beta Blockers 65.0 *68.5 54.7 55.7 1.1

Calcium Channel Blockers 17.3 12.8 *47.6 47.1 -0.5

Estrogens 22.6 28.5 36.6 *39.1 2.4

NSAIDS *77.4 64.1 60.9 63.1 2.2

Opioids 9.0 17.4 19.5 *34.1 14.6

Oral Hypoglycemic 13.5 *15.9 6.9 9.2 2.3

Proton Pump Inhibitors 19.7 21.0 *21.2 18.3 -2.9

Skeletal Muscle Relaxants *58.6 29.9 25.9 32.4 6.5

Statins 27.8 *43.7 42.9 43.3 0.3

Triptans 39.6 *54.1 34.3 52.4 18.1

Urinary Incontinence 20.8 41.6 44.8 *46.4 1.6

Average 37.1 40.9 36.9 40.2 3.3

Table 4.31: Relevancy feedback performance in terms of WSS@95% on DERP
systematic review collections. ∆ indicates the change between incorporation of
PICO features to the baseline logistic regression classifier (LR). Positive values re-
flect the amount of human effort that can be saved with PICO features. Negative
values reflect the additional of human effort that requires with PICO features. *
indicate best performance per review.
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Matwin
et al.
(2010)

Cohen
(2011)

Howard
et al.
(2016)

LR PICO ∆

ACE Inhibitors 52.3 73.3 *80.1 78.5 77.6 -0.9

ADHD 62.2 52.6 *79.3 75.5 74.5 -0.9

Antihistamines 14.9 *23.6 13.7 4.9 5.0 0.1

Atypical Antipsychotics 20.6 17.0 *25.1 19.9 20.9 1.0

Beta Blockers 36.7 46.5 42.8 *55.5 54.1 -1.4

Calcium Channel Blockers 23.4 43.0 *44.8 38.8 39.3 0.6

Estrogens 37.5 41.4 *47.1 41.0 43.7 2.7

NSAIDS 52.8 67.2 *73.0 65.3 66.5 1.2

Opioids 55.4 36.4 *82.6 53.3 57.0 3.7

Oral Hypoglycemic 8.5 *13.6 11.7 7.1 8.9 1.8

Proton Pump Inhibitors 22.9 32.8 *37.8 32.6 31.0 -1.6

Skeletal Muscle Relaxants 26.5 37.4 *55.6 40.1 45.3 5.3

Statins 31.5 *49.1 43.6 42.2 44.3 2.1

Triptans 27.4 34.6 41.2 40.6 *51.2 10.5

Urinary Incontinence 29.6 43.2 *53.0 52.4 52.4 0.0

Average 33.5 40.8 48.8 43.2 44.8 1.6

Table 4.32: Two-fold relevancy prediction in terms of WSS@95%. ∆ indicates the
change between incorporation of PICO features to the baseline logistic regression
classifier (LR). Positive values reflect the amount of human effort that can be
saved with PICO features. Negative values reflect the additional of human effort
that requires with PICO features. * indicate best performance per review.

(Howard et al., 2016) yields the best average performance. Searching for these

hyperparameters using cross-validations is computational demanding, especially

in the relevance feedback setting, where there is not a large initial training set,

but rather a different training set at each stage.

4.2.4.6 Discussion

Experimental results indicate that the additional PICO tagging is useful for im-

proving ML performance in both the two-fold and relevancy feedback scenarios.

This could only be the case if the additional features carry information about the

relevancy decisions and are not redundant with the existing feature sets. These

questions are answered by statistical analysis, which shows that when restricted

to a specific PICO context certain words are more reliable predictors. As inclusion

criteria are often stated in terms of PICO (and other study characteristics) this is

not a surprising result, but nonetheless, requires a well-trained PICO recognition
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model to transfer the knowledge from the training set of annotations. In a way,

the proposed methodology connects with previous work on generalisable classifiers

that can learn from the screening decisions of other systematic reviews (Cohen

et al., 2009).

Furthermore, PICO tagging is an interpretable process meant to emulate hu-

man annotation and can readily be used by reviewers themselves. For instance,

highlighting the mentions of outcomes may accelerate data extraction, since iden-

tifying outcome measures and data are a critical step in many systematic reviews.

However, the performance for the recognition indicates room for improvement to

match human annotation. In particular, the proposed PICO recognition model

operates on each sentence in the title and abstract independently. Given only a

sentence it may not be clear that a mention of a drug refers to an intervention;

whereas, a human annotator is reading the full abstract and is able to consistently

mark the intervention throughout.

4.3 Summary

In this chapter, we conducted data-based and task-specific evaluation, respec-

tively. In the data-based setting, experiments on the ACE2005 and GENIA

corpora show the effectiveness of the model in extracting nested named entities

in both general and biomedical domains. Furthermore, experimental results also

indicate that the use of information from inner entities improves the extraction of

entities on the higher nesting levels, which can alleviate the entity sparsity issue.

Experiments on the JNLPBA corpus demonstrate that the model is comparable

with state-of-the-art flat NER models in extracting flat entities. In the first task,

we applied the model to help curation of neuroscience entities. In comparison

with related work, the model achieved comparable performances based on both

strict and lenient metrics. In combination with active learning, our model enables

researchers to create competitive NER tools within a specific domain using a very

small set of annotations, saving time and cost. In addition to entity curation,

the extraction of nested COPD phenotypes demonstrates its application ability

in different tasks without requiring additional human efforts. Apart from COPD

phenotypes, the model can be used to extract other different disease phenotypes.

In the task of extracting adverse drug event and medication information, the
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overall results have demonstrated that the model is capable of accurately recog-

nizing entities, including nested and polysemous entities. Additionally, the model

enables recognition of sparse entities by reconsidering the clinical narratives at a

finer-grained subword level, rather than at the word level. In the last task set-

ting, the incorporation of PICO elements identified by the model demonstrates

that words within PICO tagged segments in abstracts are predictive features for

determining inclusion. Those predictive features are helpful for users to screen

relevant abstracts for systematic reviews.



Chapter 5

Temporally Relating Named

Entities

In Chapter 4, we evaluated our nested NER model with data-based settings,

showing its effectiveness in extracting structured information from textual data.

In addition, the task-specific setting further demonstrates the significance of enti-

ties in different NLP tasks. In addition to entity semantics, temporality between

entities is another crucial aspect in understanding text. Many NLP tasks such as

question answering (Llorens et al., 2015; Meng et al., 2017), text summarisation

(Ng et al., 2014; Wang et al., 2017) and causality (Mirza and Tonelli, 2014; Mirza,

2014; Ning et al., 2018) require extracting information in a time dimension. For

example, to understand the disease progression, we need temporal information

such as the starting time points of symptoms and disease history. Meanwhile,

when summarizing the storyline from news reports, it is necessary to know the

development of events over time, requiring time-stamping or temporally ordering

them. The process of identifying such information in the time dimension is defined

as temporal information extraction (TIE), which in general includes the extrac-

tion of time expressions (timexes), events, and the relation between event-event,

event-timex, timex-timex. In particular, events in combination with timexes are

defined as temporal entities, which are a type of entities and can be nested within

each other. To investigate the temporality between entities of interest, temporal

entity recognition is required, which is then used for their temporality extraction.

To investigate TIE, we consider temporal entities and their temporal relations

(e.g., before, after) in a pipeline manner, where the temporal entity extraction

can be addressed using our proposed layered-BiLSTM-CRF model described in

124
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Chapter 3. In this chapter, we focus on the extraction of temporal relations and

present the following:

• Concepts and definitions related to TIE

• An overview of the literature focusing on the methods, resources for TIE

• A neural method for identifying temporal relations using non-local infor-

mation

• Experimental settings, results and discussions

5.1 Introduction

The earliest work in TIE focused on temporal relation extraction (TRE) including

timestamping and temporally ordering verbs. An important work in TIE was by

Reichenbach (1947), who proposed a three-point framework that uses the concepts

of speech, event, and reference and the relations (anteriority and simultaneity)

between them to describe the verb tenses, offering the foundations for temporally

ordering events in terms of linguistics. TIE has been receiving great attention

since the 1950s (Ebersole, 1952; Garey, 1957; Davidson, 1967; Bronckart and

Sinclair, 1973; Erbaugh, 1978).

In the 1980s, Comrie (1985) extended Reichenbach (1947) by adopting three

temporal orders (i.e., “simultaneous”, “before” and “after”) that are based on

the relative reference point which does not necessarily correspond with the mo-

ment of utterance. Meanwhile, Allen (1984) created a formal classification of 13

temporal relations, as shown in Figure 5.1. Inspired by Allen’s work, Allen and

Hayes (1989) presented a concise, formal axiomatization of “interval-based” time

as described by Allen (1984) and further investigated the relationship between

interval-based and point-based temporal theories.

In the 1990s, TIE was extended to include the timex extraction, which was

formally proposed in MUC-6 (Grishman and Sundheim, 1996) in the form of

NER. MUC-6 (Grishman and Sundheim, 1996) considered only absolute timexes

(e.g., date, time), which were further expanded to include relative timexes in

the MUC-7 (Marsh and Perzanowski, 1998). To enhance answering temporally-

based questions, the Time and Event Recognition for Question Answering Sys-

tems (TERQAS) workshop (Pustejovsky, 2002) conceptualized time mark-up
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Figure 5.1: Thirteen elementary possible relations between time periods (Allen
and Ferguson, 1994).

language (TimeML) (Ingria and Pustejovsky, 2002) for annotating timexes and

events, which was further used for annotating the TimeBank corpus (Pustejovsky

et al., 2003a). Following TERQAS, the TimeML Annotation Graphical Organizer

workshop (Pustejovsky et al., 2003b) developed a graphical annotation tool for

temporal annotation. An annotated example from TimeBank corpus is shown in

Figure 5.2, where events and timexes are tagged with “EVENT” and “TIMEX3”

labels, respectively. The “SIGNAL” tag represents a temporal signal, which are

function words that specify the modality (e.g. modal auxiliaries) or suggest a

particular temporal relation (e.g., after). Based on the latest TimeML (Boguraev

et al., 2005), a revision of Ingria and Pustejovsky (2002), the temporal relation

is denoted by the “TLINK” label coupled with attributes linking it to the tem-

poral entities. Each event is annotated with five attributes: class, tense, aspect,

polarity and part-of-speech (POS) in addition to the IDs (e.g., eid, eiid). Each

timex, however, is mainly annotated with three types of attributes: type, value

and functions.

TimeML (Boguraev et al., 2005) and TimeBank (Pustejovsky et al., 2003a)

have been widely used for temporal evaluation (TempEval) tasks such as Seman-

tic Evaluation (SemEval)-2007 Task 15 (TempEval-1) (Verhagen et al., 2007),

SemEval-2010 Task 13 (TempEval-2) (Verhagen et al., 2010), SemEval-2013

Task 1 (TempEval-3) (UzZaman et al., 2013), which split TIE into three main
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Gas prices <EVENT eid=”e18” class=”OCCURRENCE”>fell
</EVENT>nearly two cents a gallon <SIGNAL
sid=”s137”>over</SIGNAL><TIMEX3 tid=”t25”
type=”DURATION” value=”P2W” temporalFunction=”true”
functionInDocument=”NONE” endPoint=”t19”>the last two
weeks</TIMEX3>.
<MAKEINSTANCE eventID=”e18” eiid=”ei167” tense=”PAST” as-
pect=”NONE” polarity=”POS” pos=”VERB”/>
<TLINK lid=”l4” relType=”IS INCLUDED” eventInstanceID=”ei167”
relatedToTime=”t25” signalID=”s137”/>

Figure 5.2: A sentence annotated with TimeML.

She has had similar pain intermittently for last year.
<TIMEX3 id=”T6” start=”920” end=”929” text=”last year”
type=”DURATION” val=”p1y” mod=”NA”/>
<EVENT id=”E25” start=”888” end=”900” text=”similar pain” modal-
ity=”FACTUAL” polarity=”POS” type=”PROBLEM”/>
<TLINK id=”TL40” fromID=”E25” fromText=”similar pain”
toID=”T6” toText=”last year” type=”OVERLAP”/>

Figure 5.3: An annotated sentence from i2b2 corpus.

tasks: (i) timex extraction, (ii) event extraction and (iii) temporal relation ex-

traction. The third task is further categorized into four subtasks, requiring the

recognition of temporal relations between (a) events and timexes within the same

sentence (b) events and the document creation time (DCT) (c) main events in

adjacent sentences, and (d) two events where one syntactically dominates the

other. Moreover, the 2012 Informatics for Integrating Biology and the Bedside

(i2b2) shared task established the first clinical TempEval (CliTempEval-1) cor-

pus (Sun et al., 2013a), which was provided for the participants to develop and

evaluate models dealing with the above tasks (Sun et al., 2013b). A tempo-

rally annotated sentence from i2b2 corpus is shown in Figure 5.3. In addition to

i2b2 corpus, the Temporal Histories of Your Medical Event (THYME) project

built another temporally annotated corpus (Styler IV et al., 2014b), which served

as the data set in clinical TempEval: SemEval-2015 task 6 (CliTempEval-2)

(Bethard et al., 2015), SemEval-2016 task 12 (CliTempEval-3) (Bethard et al.,

2016), SemEval-2017 Task 12 (CliTempEval-4) (Bethard et al., 2017). In the

next section, we present the literature review for TIE.
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5.2 Literature Review

5.2.1 Time Expression Extraction

The earliest methods for timex extraction (TEE) were from MUC-6 (Grishman

and Sundheim, 1996), where researchers mainly employed hand-designed rules

such as regular expressions to match the fixed-format timexes (Gaizauskas et al.,

1995; Fisher et al., 1995; Aberdeen et al., 1995; Eriguchi and Kitani, 1996). MUC-

7 (Marsh and Perzanowski, 1998), a follow-up of MUC-6, improved TEE with

new approaches such as finite state transducers (Borthwick et al., 1998; Mikheev

et al., 1998) and HMMs (Miller et al., 1998). The encouraging performance

of ML algorithms in combination with rules received great attention from the

community.

In the early 2000s, Mani and Wilson (2000) designed the first timex tagger

TempEx, which used POS tag-based heuristics for extracting timexes. TempEx

tagger ignored the informative temporal information expressed by prepositions

(e.g., Monday vs by Monday) in timexes. As an enhancement, Schilder and Ha-

bel (2001) employed finite state transducers coupled with hand-crafted rules for

TEE. The ACE organised the shared task: the 2004 edition of the Temporal Ex-

pression Recognition and Normalization Evaluation (Negri and Marseglia, 2004),

extended the category of timexes covering absolute timexes, relative timexes, and

phrases that contain temporal words such as daily, former, future, making the

TEE more challenging. To deal with such timexes, Verhagen et al. (2005a) devel-

oped GUTime, which extended TempEx (Mani and Wilson, 2000) to construct

an automatic temporal annotation tool for TimeML (Pustejovsky et al., 2005).

In addition to rule-based methods, ML-based methods such as SVM (Hacioglu

et al., 2005) and CRFs (Ahn et al., 2005) were employed in TEE.

In the early 2010s, Strötgen and Gertz (2010) developed HeidelTime that

depends on regular expressions to extract timexes. They further incorporated

knowledge resources and linguistic clues for timex normalisation, achieving the

highest performance in TempEval-2 (Verhagen et al., 2010). Similarly to Hei-

delTime, SUTime (Chang and Manning, 2013) also adopted rules to extract

timexes. Both HeidelTime and SUTime focused on the timexes in English only.

Unlike TempEval-2, TempEval-3 (UzZaman et al., 2013) covered both English

and Spanish for TEE, where a wide range of approaches were investigated in-

cluding ML-based (Llorens et al., 2010; Filannino et al., 2013; Jung and Stent,
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2013; Kolya et al., 2013), rule-based (Strötgen and Gertz, 2010; Chang and Man-

ning, 2013; Zavarella and Tanev, 2013; Chambers, 2013) and their combination

(Kolomiyets and Moens, 2013; Bethard, 2013). To enable language-independent

TEE, Strötgen and Gertz (2015) extended HeidelTime to cover more than 200

languages without requiring language skills nor training data.

Apart from general domain, TEE has been receiving attention from other

domains such as medicine. The i2b2 (Sun et al., 2013b) was the first to pro-

vide a temporally annotated corpus consisting of clinical records. Following i2b2,

SemEval-2015 organized the CliTempEval-2 (Bethard et al., 2015) to bring past

temporal shared tasks (Verhagen et al., 2007, 2010; Sun et al., 2013b; UzZaman

et al., 2013) to the clinical domain, using clinical notes and pathology reports

from the Mayo Clinic. In this task, Velupillai et al. (2015) achieved the best

performance using SVM. In CliTempEval-3 (Bethard et al., 2016), Lee et al.

(2016a) applied the HMM-SVM sequence tagger (Joachims et al., 2009) in com-

bination with various features (e.g., lexical, syntactic, dictionary-based, discourse,

etc.), outperforming the other participating systems (Hansart et al., 2016; Khal-

ifa et al., 2016; MacAvaney et al., 2017; Chikka, 2016; Sarath et al., 2016; Grouin

and Moriceau, 2016). Differently from CliTempEvals (Sun et al., 2013b; Bethard

et al., 2015, 2016), CliTempEval-4 (Bethard et al., 2017) focused on the adapta-

tion from colon cancer to brain cancer domain, requiring systems to be trained on

data from colon cancer patients, and then make predictions on data from brain

cancer patients. MacAvaney et al. (2017) approached TEE by employing CRFs

and decision trees in combination with features (e.g., lexical, syntactic, semantic,

distributional, and rule-based features), achieving the best performance among

all systems (Leeuwenberg and Moens, 2017; Huang et al., 2017; Lamurias et al.,

2017; Long et al., 2017; Tourille et al., 2017b; Sarath et al., 2016). In particular,

Tourille et al. (2017b) explored neural models by combining RNN (Goller and

Kuchler, 1996) with SVM for TEE.

As neural networks have achieved great success in many NLP tasks (Miwa

and Bansal, 2016; Christopoulou et al., 2018; Ju et al., 2019a), there is more

work with neural models for identifying timexes. Lin et al. (2017b) presented a

CNN-based TEE model, which is depicted in Figure 5.4, establishing a new state-

of-the-art on the THYME corpus (Styler IV et al., 2014b). More recently, (Goyal

and Durrett, 2019) generated synthetic data consisting of pairs of timexes, then
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Figure 5.4: CNN with encoded time expressions (Lin et al., 2017b).

trained a character LSTM to learn time embeddings through classifying the tem-

poral relations between timexes. Those time embeddings were evaluated in the

context of temporal event ordering, showing the effectiveness in the downstream

temporal tasks.

5.2.2 Event Extraction

According to TimeML (Ingria and Pustejovsky, 2002), an event is a cover term for

situations that happen or occur, including predicates describing states or circum-

stances in which something obtains or holds true. Briefly, an event is something

that happens or something that can be attached to a timestamp. The meaning

of an event is domain-specific and application-dependent. In clinical NLP, events

can be clinically relevant activities (Sun et al., 2013b), e.g. treatment, medica-

tion, diseases, etc. In general NLP, however, events have to be anchorable in

time and they are conveyed in the form of finite verbs and their nominalisation.

In general, event extraction is cast as a sequence labelling task, i.e. NER. There-

fore, methods of NER include rule-based, learning-based, neural-based that were

discussed in Chapter 2 can be used for identifying events. Work dealing with

event extraction were mainly from TempEvals (Verhagen et al., 2010; UzZaman

et al., 2013; Bethard et al., 2015, 2016, 2017), where various rule-based methods

(Zavarella and Tanev, 2013), learning-based (Llorens et al., 2010; Velupillai et al.,

2015; MacAvaney et al., 2017) methods and neural methods (Li and Huang, 2016;

Tourille et al., 2017b) have been developed.
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5.2.3 Temporal Relation Extraction

The earliest work for TRE, to the best of our knowledge, was by Reichenbach

(1947), who used the concepts of speech, event, and reference and the relations

(anteriority and simultaneity) between them. These concepts in combination

with relations inspired researchers to temporally order events based on linguistics.

Since then, ordering events and relating events to timestamps has been receiving

much attention from the area of computational linguistics and NLP (Ebersole,

1952; Garey, 1957; Davidson, 1967; Bronckart and Sinclair, 1973; Erbaugh, 1978).

In the 1980s, Allen (1984) pushed forward TRE by creating a formal set of

13 temporal relations. Later on, Dowty (1986) proposed to use temporal subor-

dinate clauses or tenses to indicate the temporal relationship between the events

and states that were described in successive sentences in narrative discourse. Las-

carides and Asher (1993) determined the relations between events using complex

semantic knowledge such as prior knowledge, making it extremely challenging

for practical systems to encode all available knowledge (Hitzeman et al., 1995).

Following this work, work for TRE faded away until the emergence of TimeML

(Ingria and Pustejovsky, 2002), which was used for annotating TimeBank (Puste-

jovsky et al., 2003a). TimeBank corpus is used as the data resource for TempE-

vals.

TempEval-1 (Verhagen et al., 2007) was an initial evaluation shared task

focusing only on the categorization of temporal relations in English. Specifically,

it introduced three TRE-related tasks:

A predict temporal relation types between the given timexes and events within

the same sentence,

B predict temporal relation types between the given document creation time and

events across the sentences,

C predict temporal relation types between the given events and events, where

events are individually main events located in the adjacent sentences.

The best system over these three tasks was CU-TMP (Bethard and Martin, 2007),

which adopted SVM in combination with features derived from annotations and

the text.

TempEval-2 (Verhagen et al., 2010) extended TempEval-1 into a multilingual

task, covering four TRE subtasks. This included the three tasks proposed in

TempEval-1 with an addition of the following task:

D) predict the temporal relation types holding between given events and events,
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where one event subordinates another.

Among all participating systems, the TIPSem (Llorens et al., 2010) used CRF

models, achieving the best performance in Task A) and B) in Spanish where

data for Task C ) and D) was unavailable. Moreover, Kumar Kolya et al. (2010)

used CRFs over the four tasks, ranking first in tasks A, B and C while second in

task D . The best system for task D was Ha et al. (2010), who adopted Markov

logic (Richardson and Domingos, 2006) in combination with rich lexical relations

beyond basic and syntactic features.

CliTempEval-1 (Sun et al., 2013b) was the first TRE evaluation shared

task in the clinical domain. In comparison with TempEval-1 and 2, the TRE

track organised by i2b2 was more complicated in the sense that any two entities

in a discharge summary can be a candidate pair to assign temporal relations

to. In other words, candidate pairs (e-e, e-t, t-t) include both intra-sentence

and inter-sentence ones while only pairs of main events in adjacent sentences (e-

e) were included in the TempEval-1 and 2. We name this task as task C+ in

differentiation with C . Additionally, the i2b2 organizer introduced a new task:

E ) identify timexes and events from different documents, then determine the

temporal relations between them.

In CliTempEval-1, Tang et al. (2013) ensembled CRF, SVM and rules to

approach task E and C+, outperforming the rest of the systems (Xu et al., 2013;

DSouza and Ng, 2013; Grouin et al., 2012).

TempEval-3 (UzZaman et al., 2013) was a follow-up to TempEval-1 and

2, covering English and Spanish. Besides task A, B , C+ and E , TempEval-3

adopted a full set of temporal relations, which were reduced in the TempEval-1

and 2. In addition, TempEval-3 used a different test set and introduced a new set

of evaluation metrics to indicate the identification and categorization of temporal

relations. In particular, the new evaluation metrics are defined in the following

equations:

Precision =
Sys−relation ∩ Ref+relation

Sys−relation
(5.1)

Recall =
Ref−relation ∩ Sys+relation

Ref−relation
, (5.2)

where G+ is the closure of G and G− excludes the redundant relations, which

can be inferred through other relations (UzZaman et al., 2013). In particular,

temporal closure, indicated by Allen (1984), is a reasoning mechanism that derives
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new implicit temporal relations from explicit temporal relations (UzZaman and

Allen, 2011). Based on the temporal closure, if event A happens before B and

event B happens before C, then A happens before C. Such properties are known

as temporal transitivity (Allen, 1984).

SemEval-2015 Task 4 (TempEval-4) (Minard et al., 2015), which aimed

to build timelines from written news in English, introduced two tasks:

F : build the timeline for each target event that occurs cross documents from raw

text sources

G: given the gold entities, build the timeline for each given gold entity that occurs

cross documents.

A timeline for a specific target entity consists of an ordered list of the events in

which that entity participates. To focus on temporal relations between events,

the organizer additionally proposed two subtasks corresponding to tasks F and

G by defining that events do not need to be associated with a time anchor. For

task G and its subtask, the top system GPLSIUA (Navarro and Saquete, 2015)

adopted TIPSem (Llorens et al., 2010) in combination with K-means cluster-

ing method (Lloyd, 1957) to construct timelines for each gold entity, achieving

25.36% and 23.25% in terms of F1-score, respectively. Unlike task G, the highest

performances in task F and its subtask were much lower with the corresponding

F1-score of 7.28% 1 and 1.69% (Caselli et al., 2015).

CliTempEval-2 was a follow-up of CliTempEval-1, which brought TRE re-

lated tasks to the clinical domain, using clinical notes and pathology reports from

the MayoClinic. This shared task focused on the identification of temporal re-

lations between events and timexes only, which included task B and C+. In

particular, task C+ in CliTempEval-2 dealt with the relation type “CONTAINS”

only, which indicates that an event or timex is temporally contained in (i.e., oc-

curred during) another event or timex. Each task here included two cases: with

and without given gold temporal entities. Velupillai et al. (2015) presented a

CRF-based method that takes input from a rule-based system (Bethard, 2013),

yielding the highest F1-score in task B on both cases.

In task C+, however, the rule-based baseline from the organiser produced the

highest performance with an F1-score of approximately 10% without using gold

entities while around 26% F1-score was obtained when using gold entities. One

reason for the low performances was that the task C+ in the clinical domain often

1The task participants did not submit a paper with the description of the system.
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spans many sentences, while almost all of the relations in TempEval-3 were across

adjacent sentences at maximum. Considering the small number of participants,

it was likely because those participants had to complete system development and

the time-consuming data use agreement process in a short time (six months or

less), making it difficult to cover multiple subtasks (Bethard et al., 2015).

CliTempEval-3 presented the same tasks with CliTempEval-2 but shortened

the data access procedure by using the available training and development data

from Bethard et al. (2015) for model development. As a result, greater improve-

ments were made especially for task C+, with the best F1-score of 47.9% (Lee

et al., 2016a) when using raw texts. When using gold entities, the best system

(Lee et al., 2016a) produced 57.3% in terms of F1-score, significantly reducing

the gap between systems and human annotations.

CliTempEval-4 (Bethard et al., 2017) conducted the same shared tasks with

CliTempEval-2 and 3, but introduced a new aspect: domain adaptation, which

required the systems to be trained on annotated timelines for colon cancer domain

and predict timelines on brain cancer domain. Among all participants, the LIMSI-

COT system (Tourille et al., 2017b) obtained the highest performances in task

B with an F1-score of 51% and 59% in the corresponding unsupervised and

supervised domain adaptation settings, respectively. Furthermore, Tourille et al.

(2017b) also ranked first with 32% F1-score in task C+ in the supervised domain

adaptation setting. In the unsupervised domain adaptation setting, the best

system developed by MacAvaney et al. (2017) achieved 34% in terms of F1-score.

In comparison with human annotations, the LIMSI-COT system (Tourille et al.,

2017b) was around 33% lower in terms of F1-score than inter-annotator agreement

in task C+ in both supervised and unsupervised settings. As for task B , Tourille

et al. (2017b) reached comparable performances in the unsupervised setting but

higher performances in the supervised setting.

In addition to TempEvals, much work (Verhagen et al., 2005b; Noro et al.,

2006; Chambers et al., 2007; Bethard and Martin, 2008; Yoshikawa et al., 2009)

had been done to improve TRE using different approaches. In the early 2010s,

Ling and Weld (2010) proposed to use probabilistic inferences that used the tem-

poral transitivity for extracting point-wise constraints on the end-point of event-

intervals. Laokulrat et al. (2014) presented a two-stage approach (as shown in

Figure 5.5) that used the pairwise predictions from the first stage as the features

for the second stage to classify relations. Such a multi-step approach is able



5.2. LITERATURE REVIEW 135

Figure 5.5: The two-step approach. The output from the first stage is treated as
features for the second stage.The final output is predicted using label information
of nearby relations. (Laokulrat et al., 2014)

to incorporate knowledge obtained from nearby entities by making use of time

graphs where nodes represent entities and edges represent temporal relations. Lin

et al. (2015) used separate SVM-based models to classify intra-sentence relations

between e-e and e-t, while another rule-based method was applied to classify

inter-sentence relations.

To utilize neural networks, Tourille et al. (2017a) employed the BiLSTM-

Softmax architecture to extract narrative container relations on THYME corpus.

On the same corpus, Dligach et al. (2017) utilized both CNN and LSTM with

the addition of “tag insertion”, establishing a new state-of-the-art. The “tag

insertion” inserted special tokens (e.g. <e1>and </e1>) to mark the positions

of target entities.

Compared with clinical corpora, inter-sentence temporal relations in general

corpora are sparse. To enrich inter-sentence relation annotations, Chambers et al.

(2014) selected 36 documents from TimeBank corpus (Pustejovsky et al., 2003a)

to create the TimeBank-Dense corpus, where relations for all pairs in the adjacent

sentences were annotated. Figure 5.6 shows an example of the annotation dif-

ferences between TimeBank and TimeBank-Dense. On TimeBank-Dense corpus,

Cheng and Miyao (2017) adopted BiLSTM along with shortest dependency paths

(SDPs) to classify both intra- and inter-sentence temporal relations without using

external knowledge and manually annotated attributes of entities (class, tense,

polarity, etc.). In particular, for the target of entities in different sentences, a
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Figure 5.6: An example of annotation differences between TimeBank (Puste-
jovsky et al., 2003a) and TimeBank-Dense (Chambers et al., 2014). Solid and
dotted arrows represent “BEFORE” and “INCLUDED IN” relations. Relations
with document creation time are not listed.

Figure 5.7: An example of the SDP representation of a cross-sentence relation
between sentences.

“common root” assumption, depicted in Figure 5.7, was used to extend SDP rep-

resentations for cross-sentence relations. Based on SDP, Meng et al. (2017) pre-

sented a BiLSTM-based model in combination with dependencies for identifying

temporal both intra- and inter-sentence relations. This model was used by Meng

and Rumshisky (2018) to make pairwise predictions for all intra-sentence pair

candidates using features including dependencies, window-sized contexts, event

attributes, normalised time values. Inspired by Neural Turing Machine (Graves

et al., 2014), Meng and Rumshisky (2018) further introduced a global context

layer (GCL) to store predictions in narrative order, and retrieve them for use

when relevant entities come in, thus enabling a uniform consideration of all pairs

in a wider context. The GCL, as shown in Figure 5.8, uses long-term memory

and attention mechanisms to resolve long-distance dependencies, thus enabling

self-correction and incorporating global context information. In addition to SDP-

based neural models, Ning et al. (2018) employed constrained conditional models



5.2. LITERATURE REVIEW 137

Figure 5.8: The network architecture of GCL by (Meng and Rumshisky, 2018).
Input entity representations are compared to the Key section of GCL memory.
Slots with the same or similar entities get more attention.

to jointly extract temporal and causal relations, aiming to utilise the fact “a cause

must occur earlier than its effect”. Leeuwenberg and Moens (2018) proposed to

predict the events’ start and end-points that were relevant to the DCT. Then all

events in the document were temporally ordered according to their corresponding

start and end-points.

More recently, with the advert of BERT (Devlin et al., 2019), Lin et al. (2019)

presented a sentence-agnostic model that takes in a window-based sequence in-

stead of a linguistic sentence to identify both intra- and inter-sentence relations.

Meanwhile, Liu et al. (2019) presented the attention-based models for extracting

intra-sentence relations on THYME (Styler IV et al., 2014b) corpus. Goyal and

Durrett (2019) presented a novel framework (see Figure 5.9) to classify the tem-

poral relations between events and timexes. In particular, the time embeddings

used in Figure 5.9 were produced using the model described in Figure 5.10.

Unlike previous work, Yan et al. (2019a) focused on predicting whether two

given entities participate in a relation at a given time spot. Specifically, they

created the WIKI-TIME (Yan et al., 2019b) corpus, which includes the valid

period of a certain relation of two entities in the knowledge base. Then they

proposed a novel model (as shown in Figure 5.11) to incorporate both temporal

information encoding and sequential reasoning, achieving better performances
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Figure 5.9: Model architecture in Goyal and Durrett (2019). In the example,
peaked and remained are target events. The sentences are passed through the
lower LSTM, then the outputs corresponding to the events’ dependency paths
are fed to the upper LSTMs, which produce input to feed forward and classifi-
cation layers. Time expressions are embedded with a character-level model and
broadcasted to events that they modify. In the architecture, FFNN represents
feed forward neural networks.

Figure 5.10: The model architecture for timex embedding (Goyal and Durrett,
2019). The output of character biLSTMs is used as input to classification. These
vectors serve as time embeddings in the downstream tasks.
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Figure 5.11: Model architecture proposed by Yan et al. (2019a).

compared with state-of-the-art models on the WIKI-TIME data set.

5.2.4 Resources

We summarise the most commonly used corpora for temporal relation identifica-

tion in the following.

5.2.4.1 TimeBank

The TimeBank corpus (Pustejovsky et al., 2003a) was annotated using TimeML

(Pustejovsky et al., 2005). It contains 183 news articles. Events, timexes and tem-

poral relations between event-event, event-timex, event-DCT and timex-timex

were all annotated. A total of 14 temporal relation types were included in Time-

Bank. We list the statistics for each temporal relation type in Table 5.1.

5.2.4.2 TimeBank-Dense

TimeBank-Dense (TBD) (Chambers et al., 2014) contains 36 news articles, which

are a subset of TimeBank corpus. There are six temporal relations: BEFORE,

AFTER, SIMULTANEOUS, IS INCLUDED, INCLUDES and VAGUE. Com-

pared with TimeBank, relations for pairs in adjacent sentences were all annotated.
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Relation Type Statistics Relation Type Statistics

BEFORE 1408 IBEFORE 34
BEGUN BY 70 BEGINS 61

DURING 302 DURING INV 1
IS INCLUDED 1357 INCLUDES 582

SIMULTANEOUS 671 IDENTITY 743
AFTER 897 IAFTER 39

ENDED BY 177 ENDS 76

Table 5.1: Category-wise statistics of TimeBank corpus.

Item B A I II S V All

TBD 2590 2104 836 1060 215 5190 12715
TBD3 Train 1444 1148 473 629 120 3013 6827
TBD3 Dev 242 218 37 73 20 359 949
TBD3 Test 589 428 116 159 39 900 2231

Table 5.2: Category-wise statistics of TimeBank-Dense Corpus. B, A, I, II, S, V
represent BEFORE, AFTER, INCLUDES, IS INCLUDED, SIMULTANEOUS,
VAGUE, respectively (Chambers et al., 2014).

In addition, all the temporal entities have a temporal relation with the document

creation time. The statistics of this corpus are shown in Table 5.2. A simplified

version of TBD (i.e. TBD3), which has been widely used in recent work (Cham-

bers et al., 2014; Meng and Rumshisky, 2018; Leeuwenberg and Moens, 2018),

excluded relations between entities that were not included in the UzZaman et al.

(2013). In comparison purpose, we choose TBD3 corpus for our experiments to

investigate intra- and inter-sentence relation extraction.

5.2.4.3 THYME Corpus

THYME corpus was annotated using “THYME Guidelines to ISO-TimeML”

(THYME-TimeML) (Styler IV et al., 2014a) which was developed in the con-

text of THYME project. The aim of THYME project is to create robust gold

standards for semantic information in clinical notes, as well as to develop state-

of-the-art algorithms on this data set. THYME-TimeML extended ISO-TimeML

(Pustejovsky et al., 2010), which was an inheriting framework from TimeML

(Boguraev et al., 2005). THYME corpus consists of clinical and pathology notes

of patients with colon cancer from Mayo Clinic. In addition, it contains five types

of temporal relations, whose statistics are listed in Table 5.3.
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Relation Type Statistics Relation Type Statistics

CONTAINS 5112 OVERLAP 1205
BEFORE 1004 BEGINS-ON 488
END-ON 126

Table 5.3: Category-wise statistics of THYME Corpus.

Item TimeBank TBD3 I2b2 THYME

Event 7935 1494 30062 15769
Timex 3712 246 4186 1426
Relations 6418 10007 61371 7935
- Event-Event 3481 6088 26070 -
- Event-Timex 27976 3495 34886 -
- Timex-Timex 140 424 415 -

Table 5.4: Annotations of events, timexes and temporal relations in the four
corpora. The statistics of temporal relations in THYME were absent due to no
access to THYME corpus.

5.2.4.4 I2b2 Corpus

The 2012 i2b2 corpus (Sun et al., 2013a) was annotated using a simplified version

of THYME-TimeML (Styler IV et al., 2014a). The corpus contains 14 temporal

relations and consists of 310 discharge summaries: 190 summaries for training

and 120 for testing. Within each document, two types of temporal relations

were annotated: (1) event-section time, which links every event from the patient

history section to the admission date and every event from the hospital course

section to the discharge date; and (2) the other relation links events/timexes

either from the same sentence or from different sentences using BEFORE , AF-

TER , and OVERLAP relations. We list the statistics of annotations including

events, timexes, relations between events-events, timexes-timexes, events-timexes

in Table 5.4 for TimeBank, TBD3, THYME besides i2b2.

5.3 Method

In this section, we describe our approach in response to our third research question

(RQ3 ) and the corresponding hypothesis (H2 ):

RQ3: How cross-sentence TRE can be improved?

H2: Incorporation of latent information (i.e., event arguments) between temporal
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entities can improve TRE.

We consider extracting both temporal entities and their temporal relations in

a pipeline manner. In particular, temporal entity extraction can be directly ad-

dressed by our model introduced in Chapter 3. In this chapter, we therefore focus

on the temporal relation extraction, which assumes temporal entities are given.

We model TRE by including both intra-sentence and inter-sentence temporal re-

lations at once. Note that we consider both temporal entities and their temporal

relations in a pipeline manner. the first part can be directly addressed by our

model introduced in Chapter 3. We therefore focus on the temporal relation

extraction with given entities in this chapter.

Linguistically, an event in general involves the corresponding subject and ob-

ject, which are considered as arguments. Arguments shared among events are

informative clues for TRE since they can convey co-reference and discourse in-

formation, which will be helpful for cross-sentence TRE. As illustrated in Figure

5.12, the subject and object of “challenge” co-refer to the subject and object of

“fight”, respectively. Co-reference between arguments is helpful in classifying the

temporal relationship between them. To incorporate such information, we pro-

pose a neural TRE model that incorporates the arguments of events as additional

context for TRE. Figure 5.13 describes our model architecture, which consists of

four components: context encoder, entity encoder, pair encoder and classifier.

The context encoder is used to inject context information to word representa-

tions, which are subsequently fed to the entity encoder. The entity encoder deals

with entity representation, which is a concatenation of subject representation, ob-

ject representation in combination with the corresponding word representation.

The pair encoder processes each pair through combining three representations:

a concatenation of two target entity representations, position embedding and a

pair-context representation which sums the representation of the word and its de-

pendency type along the shortest path, which connects two target entities. Our

classifier takes in the pair representation and outputs the prediction. We detail

each component in the next section.

5.3.1 Context Encoder

Given a sequence S = w1, w2, . . . , wN containing N words, the context encoder

takes in the raw sequence S and outputs word representations denoted by w1,

w2, . . . , wN. In detail, we apply a BiLSTM over word embeddings to generate
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Figure 5.12: An example containing two events “challenge” and “fight” and their
temporal relation “Simultaneous”.

Figure 5.13: The model architecture of the temporal relation extraction. Dot
arrows denote the dependencies. “sph” (subject placeholder) and “oph” (object
placeholder) represent the placeholder for the absent subject and object, respec-
tively. “ccomp”, “dobj”, “xcomp”, “sub” and “obj” refer to dependency types.
We use the common root assumption following Cheng and Miyao (2017) to rep-
resent the SDPs between cross-sentence pair candidates.
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contextualized word representations. The word embeddings are a concatenation

of character embeddings, ELMo embeddings (Peters et al., 2018) and Wikipedia

word embeddings (Miwa and Bansal, 2016). The output of BiLSTM which stacks

the forward and backward LSTM hidden states is used as our word representation.

Note that the word representation encodes context information.

5.3.2 Entity Encoder

The entity encoder copes with entity representation, which is a concatenation

of three parts: word representation, subject representation and object represen-

tation. Each part consists of a span representation and its semantic type em-

bedding. The embeddings for entity types eti and argument types sti, ati are

obtained from two embedding layers, respectively. In particular, entity types are

included in the data while the argument types (i.e., a subset of dependency types)

are obtained using the Stanford CoreNLP parser (Manning et al., 2014).

To produce the representation for the first part, we append the entity type

embedding to an average of word representations using Equation 5.3, where start

and end are the word indices in the sequence S.

ei =
1

end− start+ 1

end∑
i=start

wi (5.3)

Similarly, we use Equation 5.3 to obtain the subject span representation, which is

further combined with its type embedding to produce the subject representation.

The object representation is calculated in the same way with the subject repre-

sentation. When locating the arguments, we find that arguments corresponding

to the events do not always occur in the same sentence. For example, in Figure

5.13, the subject for the event “move” is hidden in other distant sentences. In

addition, some events have only subjects or objects. In response to the missing

arguments, we define two place holders for the corresponding subject (sph) and

object (oph), respectively. Unlike events, timexes do not have arguments. We

also use the two place holders to represent their “arguments”.

5.3.3 Pair Encoder

Our pair encoder uses the entity representation and additional context informa-

tion to produce the representation for each pair. Each pair representation is a
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concatenation of: pair of entity representations, position embedding, SDP em-

bedding. We use a different embedding layer to calculate the position embedding.

Given the entity representation, the pair encoder firstly combines the target

entity representation to form the pair representation, which is further concate-

nated with the position embedding following Miwa and Bansal (2016). To enrich

the context for each pair, we append the SDP representation, which is a sum of

word and its dependency type representations. To produce the SDP representa-

tion for each pair, we firstly collect the words on the SDP that connects the head

words of two target entities. For each target entity, the word that has most de-

pendency links is selected as the headword. Then we enrich word representation

obtained from the context encoder by appending its dependency type represen-

tation. The enriched word representations are summed up to serve as the SDP

representation. Before classification, we apply a linear layer to the output of pair

encoder dimension reduction.

5.3.4 Classifier

Given pair representations, we employ softmax to classify the temporal relation

for each pair. We consider both left-to-right and right-to-left directions, leading

to two predictions to each pair. To resolve the conflicts, we choose the prediction

that has a higher probability as the final prediction for the pair.

5.3.5 Training

We employ mini-batch training and update the model parameters using back-

propagation through time (BPTT) (Werbos, 1990) with Adam (Kingma and

Adam, 2015). The model parameters include weights, bias, and embeddings of

entity types, positions, dependency types and place holders. During the train-

ing stage, we apply early stopping, L2-regularization and dropout (Hinton et al.,

2012). Two dropouts are employed to the input of ELMo embeddings and input

of the Softmax classifier, respectively. We fix the batch size and hidden units of

LSTM with 1 and 2048, respectively. We initialise the embeddings of place hold-

ers as zeros. Hyper parameters including dropouts, Adam learning rate, gradient

clipping and weight decay (L2) are all tuned using grid searching.
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Hyper Parameters Range Best

First dropout [0.3, 0.4, 0.5, 0.6, 0.7] 0.5
Second dropout [0.3, 0.4, 0.5, 0.6, 0.7] 0.3
Learning rate [0.001, 0.005, 0.01, 0.02] 0.001
Gradient clipping [5, 10, 15, 20] 10
Weight decay (L2) [10-8 – 10-3] 10-4

Table 5.5: Value range and best value of tuned hyper parameters in TBD3 corpus.

5.4 Evaluation

We evaluated our model on the TBD3 corpus, which is detailed in Section 5.2.4.

We followed Meng and Rumshisky (2018) for data splitting, which divides the

data into training, development and test sets with 22, 5 and 9 documents, re-

spectively. In addition, we flipped each pair to augment pair candidates. If the

temporal relation holding between two entities is BEFORE, then the relation

type for the flipped pair is AFTER. As mentioned in Section 5.2.4, all pairs in

the same and adjacent sentences have temporal relations. All events also have

temporal relations with their corresponding DCT. To consider all the pairs in-

cluding event-DCT and the rest at once, we append the sentence that contains

the DCT to every two adjacent sentences as one instance. We enumerated all the

combinations between any two entities contained in one instance to generate pair

candidates. Tokenization and dependency parsing were conducted by Stanford

CoreNLP parser (Manning et al., 2014).

Precision (P), recall (R) and F1-score (F1), defined in Section 2.5 in Chapter

2, were used as evaluation metrics in our task. Our model was implemented with

Pytorch (Paszke et al., 2017). For LSTM, we initialized hidden states, cell states

and all the biases as zero except for the forget gate that was set as 1. The other

hyper parameters were chosen using the grid search. The details are listed in

Table 5.5.

5.5 Results and Discussion

Table 5.6 presents the comparisons of our model with related work including

the state-of-the-art model by Leeuwenberg and Moens (2018). Our model out-

performed the state-of-the-art models with 58.9% in terms of micro F1-score,
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Work F1-score (%)
E-D [14%] E-E [64%] E-T [19%] Overall

With gold temporal entities
Leeuwenberg and Moens (2018) - - - 58.6
Meng and Rumshisky (2018) 48.9 57 48.7 54.6
Cheng and Miyao (2017) 54.6 52.9 47.1 52.0
Mirza and Tonelli (2016) 53.4 51.9 46.8 51.1
Cassidy et al. (2014) 55.3 49.4 49.4 50.7
Ours 57.23 60.76 54.13 58.9
With predicted temporal entities
Ours 51.51 55.30 48.44 52.95

Table 5.6: Comparisons of our model with state-of-the-art models on the test set
of TBD3 Corpus. We use the model from Ju et al. (2018) to obtain predicted
temporal entities.

achieving a new state-of-the-art for temporal relation extraction on TBD3 cor-

pus.

Table 5.7 lists the intra- and inter-sentence performances of ablation tests on

the development set of TBD3 corpus. As observed from Table 5.7, the integration

of argument and SDP components improve the performances of cross-sentence re-

lations. When removing SDPs, the performances for the intra-sentence relations

keep the same while the inter-sentence performances drop. The reason for the

same intra-sentence relations is that some events serve as the arguments, which

can indicate the temporal order between them. For example, if event A is the

object for event B, it is likely that event A happens after event B. This phe-

nomenon is common in intra-sentence relations in the development set. We note

that this phenomenon can be captured using SDPs since arguments constitute

the corresponding SDPs. In other words, the information of arguments is over-

lapping with the information of SDPs. When removing SDPs, it supplements the

context information for intra-sentence pairs where argument information is still

available. However, it lowers the performances for inter-sentence relations since

the connection between arguments, which are expressed by SDPs, is interrupted.

In other words, we need SDPs to connect the arguments to convey their context

information for cross-sentence pairs. When keeping the SDP component only, we

got a slight drop in intra-sentence relations but higher performances in compari-

son with the model that integrates argument component only. Thus, we obtained

better F1-score than the model without SDPs. When excluding all components,

our model produced the lowest F1-score, demonstrating the effectiveness of SDP
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Component F1-score (%)
Intra-sentence Inter-sentence Overall

Our model 53.74 54.34 54.16
- SDP 53.74 50.75 51.63
- Argument 53.38 52.84 53.00
- SDP, Argument 51.94 50.08 51.11

Table 5.7: Ablation test of our model on the development set of TBD3 corpus.

Relation Type B A I II V S

B 328 10 18 2 209 0
A 4 307 6 9 122 2
I 10 19 54 0 63 1
II 13 10 0 32 68 2
V 148 106 37 20 586 2
S 3 6 1 1 24 4

Table 5.8: The statistics of category-wise predictions on the test set of TBD3 cor-
pus. B, A, I, II, S, V represent BEFORE, AFTER, INCLUDES, IS INCLUDED,
SIMULTANEOUS, VAGUE, respectively. The first column represents the pre-
dictions while the first row represents the gold standard.

and argument components.

Table 5.8 reports the category-wise statistics including the correct predictions

and errors on the test set of TBD3 corpus. Our model performs best in identify-

ing BEFORE, AFTER and VAGUE relations and yields the lowest performances

in SIMULTANEOUS and IS INCLUDED relations which have sparse training

examples. For all the relation types, most errors were caused by the misclassi-

fication between VAGUE and NON-VAGUE (e.g., BEFORE, AFTER) relation

types. There are mainly two reasons account for this. One reason is that 43%

of events are ambiguous (Reimers et al., 2016) such as in terms of event lasting

time. When annotating the temporal relation for a pair of events, the “VAGUE”

category will be assigned to the pair if it meets the following cases (Chambers

et al., 2014):

• the annotator looked at the pair and decided that multiple valid relations

could apply

• the annotator looked at the pair and decided that no temporal relation

exists,
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• the annotator failed to look at the pair, so a single relation may exist.

Such “VAGUE” relations confuse our model in making correct predictions be-

tween VAGUE and NON-VAGUE. Another reason is that some event arguments

are hidden in other sentences rather than the sentence that contains the cor-

responding events. When searching the event arguments, we only consider one

sentence instead of multiple sentences, thus leading to the argument absence. As

a result, the performance was decreased. To attach the hidden co-reference to

the events, we will consider the information from the whole documents as future

work. In addition, we will incorporate the co-reference between arguments in

future to enrich the context information for pairs of events/timexes. To evaluate

the generalization ability of the model in different domains, more data sets such

as THYME will be used in our task.

5.6 Summary

In this chapter, we firstly explained the definitions and concepts for TIE. Then,

we presented an overview of event extraction, timex extraction and their temporal

relation extraction. In addition, the commonly used TIE data resources together

with their statistics were described. Moreover, we proposed a neural model to

extract both intra- and inter-sentence relations using arguments of events. Ex-

perimental results and analysis were detailed, showing the effectiveness of event

arguments in TRE. In addition, we pointed out the possible improvements for

the model, which will be detailed in the next chapter.



Chapter 6

Conclusions

In this chapter, we present the answers to our research questions listed in Section

1.2 in Chapter 1 and describe how they are accomplished. In addition, we present

possible directions to advance our research.

6.1 Evaluation of Research Questions

In response to the first research question (RQ1 ), we established the first research

object (RO1 ):

RQ1: What are the state-of-the-art methods in extracting both flat and nested

entities?

RO1: To conduct a comprehensive literature review including methods, resources

and tools for NER.

To achieve the first research object, we walked through the history of NER,

which dates back to the 1990s. At that time, work dealing with NER focused on

the extraction of flat entities. The research for nested entities was not recognised

until 2003. Since many methods of flat NER can be adapted to nested NER, we

hence analysed literature for both flat and nested NER in Section 2.2 and 2.3 of

Chapter 2. In addition, we investigated available resources and tools for NER in

Section 2.4, which enabled us to select ACE2005 (Walker et al., 2006), GENIA

(Kim et al., 2003) and JNLPBA (Kim et al., 2004a) as our experimental data

sets. Section 2.5 of Chapter 2 summarised evaluation metrics for NER, of which

the precision, recall and F1-score were chosen to evaluate our model.
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By reviewing the past methods for NER, we found that existing work ignored

the dependencies between nested entities, which are informative clues to detect

nested entities. To answer our second research question (RQ2), we proposed a

neural layered model that automatically stacks flat NER layers (i.e., BiLSTM-

CRF) to cope with nested entities. We presented our nested NER method in

Chapter 3, which starts with an overview of the model architecture, and is fol-

lowed by model explanations. Besides, we provided three ways to prepare the

input of the model, resulting in three model variants, which were described in

Section 3.5. Model training was detailed in Section 3.6.

RQ2: How nested NER can be improved using NNs?

RO2: To design neural NER models without feature-engineering and external

knowledge bases.

To answer the third research question (RQ3), we came up with the following

research objective (RO3) and presented the corresponding work in Chapter 4.

RQ3: How to measure the model generalisation?

RO3: To conduct evaluations in the settings of different domains and task-specific

applications.

Section 4.1 presents the domain-specific evaluation with both flat and nested

NER settings. Specifically, the model was firstly evaluated on a flat annotation

corpus JNLPBA, showing that the model is able to achieve comparable perfor-

mance with state-of-the-art flat NER models. Our model was then evaluated on

nested corpora in both general and biomedical domains. Experimental results

from these corpora demonstrate that our model can be generalised to different

domains. Section 4.2 presents the task-specific evaluation with flat and nested

NER settings, where the model was used as one of the components in each task.

In detail, we conducted NER in the neuroscience domain under flat NER setting

to help curation of neuroscience entities. For nested NER setting, we evaluated

the model by identifying pertinent and potentially complex information about

chronic obstructive pulmonary disease phenotypes from clinical textual data. In

addition, the model was used for extracting adverse drug event and medication

information from clinical records. We also adapted the model to extract elements
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of patient/population, intervention, comparator, and outcomes, which were fur-

ther used in the scientific abstract screening task. Overall results of these tasks

showed that the model in general can be applied to different task-specific NLP

applications. However, we note that the model improved the overall performances

of medication related entities but did not improve the extraction of entities with

adverse drug event and reason categories, which remain challenging in the clinical

domain. As a whole, Chapter 4 directly answers RQ3.

Time is one crucial dimension in interpreting texts, which requires temporally

relating entities. To investigate temporal information extraction, we decomposed

our fourth research question into three subquestions. To answer the first sub-

question (RQ4-1), we established our fourth research objective (RO4):

RQ4: How to temporally relate named entities?

RQ4-1: What are the state-of-the-art methods for TRE?

RO4: To conduct a comprehensive literature review focusing on temporal entity

and their relation extraction.

As an initial step to achieve RO4, we firstly gave a thorough literature review

in Section 5.2, which includes the extraction of temporal entities and their tempo-

ral relations. In addition, we summarised the commonly used corpora in temporal

information extraction, which enables us to select TimeBank-Dense (Chambers

et al., 2014) corpus as experimental data set.

To answer the second research subquestion (RQ4-2) of RQ4, we established the

fifth objective (RO5). To achieve RO5, we proposed a neural model that incorpo-

rates event arguments to improve the extraction of both intra- and inter-sentence

relations. The details of the proposed model were discussed in Section 5.3. More-

over, we conducted evaluations on TimeBank-Dense corpus to answer the third

research subquestion (RQ4-3), which was established for the sixth research ob-

jective (RO6). Experimental results and analysis from Section 5.4 showed the

effectiveness of event arguments in extracting temporal relations.

RQ4-2: How TRE can be improved using NNs?

RO5: To design a novel model to extract temporal relations including both intra-

and inter-sentence relations.
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RQ4-3: How to measure the ability of the TRE model in extracting both sentence-

and document-level temporal relations?

RO6: To conduct evaluations in the settings of both intra- and inter-sentence

temporal relations.

After accomplishing our research objectives, we obtained the findings sum-

marised above to support the research hypotheses that we formulated in the

beginning:

H1: Utilisation of inner entities can improve the detection of outer entities using

NNs.

H2: Incorporation of latent information (i.e., event arguments) between temporal

entities can improve TRE.

6.2 Future Work

Our research presented in the thesis can be enhanced in the following directions:

• Extension to detect discontinuous and overlapping entities. In addition to

nested entities, discontinuous and overlapping entities (entities that par-

tially overlap with each other) are also common in many domains. The

model is designed to identify nested entities by utilising inner entities to

improve the extraction of outer entities. For nested entities, the BIO tag-

ging scheme is used for labeling entities on different nesting levels. To

enable the extraction of discontinuous and overlapping entities, we can ad-

ditionally introduce BD, ID, BH and IH labels to represent the Beginning

of Discontinuous body, Inside of Discontinuous body, Beginning of Head,

and Inside of Inside of Head (Metke-Jimenez and Karimi, 2015). With

extended BIO tagging scheme, the model is able to extract flat, nested,

discontinuous and overlapping entities.

• Integration of external resources for NER. Although external resources in-

cluding knowledge bases and additional corpora are excluded in our neural

NER model, incorporation of such resources will further improve our neu-

ral model, especially in the domains where annotated data are limited.
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One promising way is the utilisation of un-annotated data resources. to

augment the informative features which are extracted by the model, thus

helping NER performances. Another promising way is to make the most

of the neural models which are trained in other domains where annotated

data are available, thus enabling the model to do NER in the domains where

data resource is expensive.

• Multi-task learning for TRE. As TRE involves reasoning related causality

and event co-reference, we can jointly model temporal relation and causality

extraction, aiming to improve both tasks. Since some events are mentioned

multiple times, therefore, finding the co-referred events is helpful to decide

the temporal relations. Based on this observation, we can model TRE and

co-reference resolution together to improve both tasks.

• Incorporation of external temporally annotated corpora. Existing available

temporal corpora are limited for cross-sentence temporal relations. To the

best of our knowledge, TimeBank-Dense corpus is the only available data

set in the general domain that contains densely cross-sentence temporal

relations. However, TimeBank-Dense contains only 36 news articles which

are far from enough to train a good neural model. Therefore, the integration

of other temporal resources such as knowledge bases and data resources will

be helpful to better model the task of extracting temporal relations.
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