11 research outputs found

    Networks of Polarized Evolutionary Processors as Problem Solvers.

    Full text link
    In this paper, we propose a solution to an NP-complete problem, namely the "3-colorability problem", based on a network of polarized processors. Our solution is uniform and time efficient

    Networks of polarized evolutionary processors are computationally complete

    Get PDF
    ABSTRACT In this paper, we consider the computational power of a new variant of networks of evolutionary processors which seems to be more suitable for a software and hardware implementation. Each processor as well as the data navigating throughout the network are now considered to be polarized. While the polarization of every processor is predefined, the data polarization is dynamically computed by means of a valuation mapping. Consequently, the protocol of communication is naturally defined by means of this polarization. We show that tag systems can be simulated by these networks with a constant number of nodes, while Turing machines can be simulated, in a time-efficient way, by these networks with a number of nodes depending linearly on the tape alphabet of the Turing machine

    Simulating Metabolic Processes Using an Architecture Based on Networks of Bio-inspired Processors.

    Get PDF
    In this work, we propose the Networks of Evolutionary Processors (NEP) [2] as a computational model to solve problems related with biological phenomena. In our first approximation, we simulate biological processes related with cellular signaling and their implications in the metabolism, by using an architecture based on NEP (NEP architecture) and their specializations: Networks of Polarized Evolutionary Processors (NPEP) [1] and NEP Transducers (NEPT) [3]. In particular, we use this architecture to simulate the interplay between cellular processes related with the metabolism as the Krebs cycle and the malate-aspartate shuttle pathway (MAS) both being altered by signaling by calcium

    (Tissue) P Systems with Vesicles of Multisets

    Full text link
    We consider tissue P systems working on vesicles of multisets with the very simple operations of insertion, deletion, and substitution of single objects. With the whole multiset being enclosed in a vesicle, sending it to a target cell can be indicated in those simple rules working on the multiset. As derivation modes we consider the sequential mode, where exactly one rule is applied in a derivation step, and the set maximal mode, where in each derivation step a non-extendable set of rules is applied. With the set maximal mode, computational completeness can already be obtained with tissue P systems having a tree structure, whereas tissue P systems even with an arbitrary communication structure are not computationally complete when working in the sequential mode. Adding polarizations (-1, 0, 1 are sufficient) allows for obtaining computational completeness even for tissue P systems working in the sequential mode.Comment: In Proceedings AFL 2017, arXiv:1708.0622

    (Tissue) P Systems with Vesicles of Multisets

    Full text link
    We consider tissue P systems working on vesicles of multisets with the very simple operations of insertion, deletion, and substitution of single objects. With the whole multiset being enclosed in a vesicle, sending it to a target cell can be indicated in those simple rules working on the multiset. As derivation modes we consider the sequential mode, where exactly one rule is applied in a derivation step, and the set maximal mode, where in each derivation step a non-extendable set of rules is applied. With the set maximal mode, computational completeness can already be obtained with tissue P systems having a tree structure, whereas tissue P systems even with an arbitrary communication structure are not computationally complete when working in the sequential mode. Adding polarizations (-1, 0, 1 are sufficient) allows for obtaining computational completeness even for tissue P systems working in the sequential mode.Comment: In Proceedings AFL 2017, arXiv:1708.0622

    Generating networks of genetic processors

    Full text link
    [EN] The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215.Campos Frances, M.; Sempere Luna, JM. (2022). Generating networks of genetic processors. Genetic Programming and Evolvable Machines. 23(1):133-155. https://doi.org/10.1007/s10710-021-09423-713315523

    An Architecture forRepresenting Biological Processes based on Networks of Bio-inspired Processors

    Get PDF
    n this paper we propose the use of Networks of Bio-inspired Processors (NBP) to model some biological phenomena within a computational framework. In particular, we propose the use of an extension of NBP named Network Evolutionary Processors Transducers to simulate chemical transformations of substances. Within a biological process, chemical transformations of substances are basic operations in the change of the state of the cell. Previously, it has been proved that NBP are computationally complete, that is, they are able to solve NP complete problems in linear time, using massively parallel computations. In addition, we propose a multilayer architecture that will allow us to design models of biological processes related to cellular communication as well as their implications in the metabolic pathways. Subsequently, these models can be applied not only to biological-cellular instances but, possibly, also to configure instances of interactive processes in many other fields like population interactions, ecological trophic networks, in dustrial ecosystems, etc

    Towards quantitative perspective in networks of evolutionary processors

    Full text link
    Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. Formally, NEP is based on an architecture for parallel and distributed processing. NEP is efficient, universal, and computationally complete. Nevertheless, although the NEP model is biologically inspired, this model is mainly motivated by mathematical and computer science goals. In this context, the biological aspects are only considered from a qualitative and syntactical perspective. In view of this lack, it is important to try to keep the NEP theory as close as possible to the biological reality, extending their perspective incorporating the interplay of qualitative and quantitative aspects. A new era of the NEP model appears. Then, the quantitative character of the NBP model is mandatory and it can address completely new different types of problems with respect to the classical computational domain. In this talk, novelty aspects defining the step from the NEP to the Quantitative NEP (QNEP) are introduced

    In Memoriam, Solomon Marcus

    Get PDF
    This book commemorates Solomon Marcus’s fifth death anniversary with a selection of articles in mathematics, theoretical computer science, and physics written by authors who work in Marcus’s research fields, some of whom have been influenced by his results and/or have collaborated with him
    corecore