102,710 research outputs found

    Investigating the impact of networking capability on firm innovation performance:using the resource-action-performance framework

    Get PDF
    The author's final peer reviewed version can be found by following the URI link. The Publisher's final version can be found by following the DOI link.Purpose The experience of successful firms has proven that one of the most important ways to promote co-learning and create successful networked innovations is the proper application of inter-organizational knowledge mechanisms. This study aims to use a resource-action-performance framework to open the black box on the relationship between networking capability and innovation performance. The research population embraces companies in the Iranian automotive industry. Design/methodology/approach Due to the latent nature of the variables studied, the required data are collected through a web-based cross-sectional survey. First, the content validity of the measurement tool is evaluated by experts. Then, a pre-test is conducted to assess the reliability of the measurement tool. All data are gathered by the Iranian Vehicle Manufacturers Association (IVMA) and Iranian Auto Parts Manufacturers Association (IAPMA) samples. The power analysis method and G*Power software are used to determine the sample size. Moreover, SmartPLS 3 and IBM SPSS 25 software are used for data analysis of the conceptual model and relating hypotheses. Findings The results of this study indicated that the relationships between networking capability, inter-organizational knowledge mechanisms and inter-organizational learning result in a self-reinforcing loop, with a marked impact on firm innovation performance. Originality/value Since there is little understanding of the interdependencies of networking capability, inter-organizational knowledge mechanisms, co-learning and their effect on firm innovation performance, most previous research studies have focused on only one or two of the above-mentioned variables. Thus, their cumulative effect has not examined yet. Looking at inter-organizational relationships from a network perspective and knowledge-based view (KBV), and to consider the simultaneous effect of knowledge mechanisms and learning as intermediary actions alongside, to consider the performance effect of the capability-building process, are the main advantages of this research

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    Developing an Efficient DMCIS with Next-Generation Wireless Networks

    Get PDF
    The impact of extreme events across the globe is extraordinary which continues to handicap the advancement of the struggling developing societies and threatens most of the industrialized countries in the globe. Various fields of Information and Communication Technology have widely been used for efficient disaster management; but only to a limited extent though, there is a tremendous potential for increasing efficiency and effectiveness in coping with disasters with the utilization of emerging wireless network technologies. Early warning, response to the particular situation and proper recovery are among the main focuses of an efficient disaster management system today. Considering these aspects, in this paper we propose a framework for developing an efficient Disaster Management Communications and Information System (DMCIS) which is basically benefited by the exploitation of the emerging wireless network technologies combined with other networking and data processing technologies.Comment: 6 page

    A Secure Lightweight Approach of Node Membership Verification in Dense HDSN

    Full text link
    In this paper, we consider a particular type of deployment scenario of a distributed sensor network (DSN), where sensors of different types and categories are densely deployed in the same target area. In this network, the sensors are associated with different groups, based on their functional types and after deployment they collaborate with one another in the same group for doing any assigned task for that particular group. We term this sort of DSN as a heterogeneous distributed sensor network (HDSN). Considering this scenario, we propose a secure membership verification mechanism using one-way accumulator (OWA) which ensures that, before collaborating for a particular task, any pair of nodes in the same deployment group can verify each other-s legitimacy of membership. Our scheme also supports addition and deletion of members (nodes) in a particular group in the HDSN. Our analysis shows that, the proposed scheme could work well in conjunction with other security mechanisms for sensor networks and is very effective to resist any adversary-s attempt to be included in a legitimate group in the network.Comment: 6 page
    corecore