1,574 research outputs found

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Resource-aware IoT Control: Saving Communication through Predictive Triggering

    Full text link
    The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.Comment: 16 pages, 15 figures, accepted article to appear in IEEE Internet of Things Journal. arXiv admin note: text overlap with arXiv:1609.0753

    Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving

    Get PDF
    This dissertation formulates algorithms that use preview information of road terrain and traffic flow for reducing energy use and emissions of modern vehicles with conventional or hybrid powertrains. Energy crisis, long term energy deficit, and more restrictive environmental protection policies require developing more efficient and cleaner vehicle powertrain systems. An alternative to making advanced technology engines or electrifying the vehicle powertrain is utilizing ambient terrain and traffic information in the energy management of vehicles, a topic which has not been emphasized in the past. Today\u27s advances in vehicular telematics and advances in GIS (Geographic Information System), GPS (Global Positioning Systems), ITS (Intelligent Transportation Systems), V2V (Vehicle to Vehicle) communication, and VII (Vehicle Infrastructure Integration ) create more opportunities for predicting a vehicle\u27s trip information with details such as the future road grade, the distance to the destination, speed constraints imposed by the traffic flow, which all can be utilized for better vehicle energy management. Optimal or near optimal decision-making based on this available information requires optimal control methods, whose fundamental theories were well studied in the past but are not directly applicable due to the complexity of real problems and uncertainty in the available preview information. This dissertation proposes the use of optimal control theories and tools including Pontryagin minimum principle, Dynamic Programming (DP) which is a numerical realization of Bellman\u27s principle of optimality, and Model Predictive Control (MPC) in the optimization-based control of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles based on preview of future route information. The dissertation includes three parts introduced as follows: First, the energy saving benefit in HEV energy management by previewing future terrain information and applying optimal control methods is explored. The potential gain in fuel economy is evaluated, if road grade information is integrated in energy management of hybrid vehicles. Real-world road geometry information is taken into account in power management decisions by using both Dynamic Programming (DP) and a standard Equivalent Consumption Minimization Strategy (ECMS), derived using Pontryagin minimum principle. Secondly, the contribution of different levels of preview to energy management of plug-in hybrid vehicles (PHEVs) is studied. The gains to fuel economy of plug-in hybrid vehicles with availability of velocity and terrain preview and knowledge of distance to the next charging station are investigated. Access to future driving information is classified into full, partial, or no future information and energy management strategies for real-time implementation with partial future preview are proposed. ECMS as well as Dynamic Programming (DP) is systematically utilized to handle the resulting optimal control problems with different levels of preview. We also study the benefit of future traffic flow information preview in improving the fuel economy of conventional vehicles by predictive control methods. According to the time-scale of the preview information and its importance to the driver, the energy optimization problem is decomposed into different levels. In the microscopic level, a model predictive controller as well as a car following model is employed for predictive adaptive cruise control by stochastically forecasting the driving behavior of the lead car. In the macroscopic level, we propose to incorporate the estimated macroscopic future traffic flow information and optimize the cost-to-go by utilizing a two-dimension Dynamic Programming (2D-DP). The algorithm yields the optimal trip velocity as the reference velocity for the driver or a low level controller to follow. Through the study, we show that energy use and emissions can be reduced considerably by using preview route information. The methodologies discussed in this dissertation provide an alternative mean for the automotive industry to develop more efficient and environmentally friendly vehicles by relying mostly on software and information and with minimal hardware investments
    • …
    corecore