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Abstract

This dissertation formulates algorithms that use preview information of road terrain and

traffic flow for reducing energy use and emissions of modern vehicles with conventional or hybrid

powertrains. Energy crisis, long term energy deficit, and more restrictive environmental protection

policies require developing more efficient and cleaner vehicle powertrain systems. An alternative

to making advanced technology engines or electrifying the vehicle powertrain is utilizing ambient

terrain and traffic information in the energy management of vehicles, a topic which has not been

emphasized in the past. Today’s advances in vehicular telematics and advances in GIS (Geographic

Information System), GPS (Global Positioning Systems), ITS (Intelligent Transportation Systems),

V2V (Vehicle to Vehicle) communication, and VII (Vehicle Infrastructure Integration ) create more

opportunities for predicting a vehicle’s trip information with details such as the future road grade,

the distance to the destination, speed constraints imposed by the traffic flow, which all can be

utilized for better vehicle energy management. Optimal or near optimal decision-making based

on this available information requires optimal control methods, whose fundamental theories were

well studied in the past but are not directly applicable due to the complexity of real problems and

uncertainty in the available preview information.

This dissertation proposes the use of optimal control theories and tools including Pontryagin

minimum principle, Dynamic Programming (DP) which is a numerical realization of Bellman’s

principle of optimality, and Model Predictive Control (MPC) in the optimization-based control of

hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles

based on preview of future route information. The dissertation includes three parts introduced as

follows:

First, the energy saving benefit in HEV energy management by previewing future terrain

information and applying optimal control methods is explored. The potential gain in fuel economy
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is evaluated, if road grade information is integrated in energy management of hybrid vehicles. Real-

world road geometry information is taken into account in power management decisions by using

both Dynamic Programming (DP) and a standard Equivalent Consumption Minimization Strategy

(ECMS), derived using Pontryagin minimum principle.

Secondly, the contribution of different levels of preview to energy management of plug-in

hybrid vehicles (PHEVs) is studied. The gains to fuel economy of plug-in hybrid vehicles with

availability of velocity and terrain preview and knowledge of distance to the next charging station

are investigated. Access to future driving information is classified into full, partial, or no future

information and energy management strategies for real-time implementation with partial future

preview are proposed. ECMS as well as Dynamic Programming (DP) is systematically utilized to

handle the resulting optimal control problems with different levels of preview.

We also study the benefit of future traffic flow information preview in improving the fuel

economy of conventional vehicles by predictive control methods. According to the time-scale of the

preview information and its importance to the driver, the energy optimization problem is decom-

posed into different levels. In the microscopic level, a model predictive controller as well as a car

following model is employed for predictive adaptive cruise control by stochastically forecasting the

driving behavior of the lead car. In the macroscopic level, we propose to incorporate the estimated

macroscopic future traffic flow information and optimize the cost-to-go by utilizing a two-dimension

Dynamic Programming (2D-DP). The algorithm yields the optimal trip velocity as the reference

velocity for the driver or a low level controller to follow.

Through the study, we show that energy use and emissions can be reduced considerably

by using preview route information. The methodologies discussed in this dissertation provide an

alternative mean for the automotive industry to develop more efficient and environmentally friendly

vehicles by relying mostly on software and information and with minimal hardware investments.
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Chapter 1

Introduction

1.1 Background and Motivation

The continuing increase of energy use worldwide, limited resources of fossil energy, and more

restrictive environmental protection policies have pushed the industry towards developing more

efficient and cleaner energy production. According to the statistical data from U.S. Department

of Energy (DOE) [16], the transportation sector accounts for 28% of all the energy use after the

industrial sector with 33%, from which 71% comes from petroleum. Improving the fuel economy

of fleet of millions of vehicles in the United States, not only has economical and societal impacts

but also is strategically important. Corresponding to the large proportion of energy use, emissions

contributed by our transportation system dominate all the emission sources and also are gradually

growing [72]. A recent proposal by U.S. DOE and EPA (Environmental Protection Agency) [17]

requires an increase in fuel economy of vehicles to an average of 34.1 miles per gallon (MPG) by 2016;

and an average of 5% improvement annually starting from the vehicle models of 2011. Accordingly,

the average green house CO2 emission requires an average reduction to 250g/km. Another proposal

from National Highway Traffic Safety Administration suggests to raise Corporate Average Fuel

Economy (CAFE) requirements to somewhere between 47 and 62 MPG by 2025 [52]. Challenges

exist to improve the current vehicle to meet the stringent government policies in fuel economy and

emissions.

To respond to these requirements, the automotive industry has focused heavily on the de-

velopment of more efficient and cleaner vehicle powertrain technologies. Advanced combustion tech-
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nologies such as Fuel Stratified Injection(FSI), Homogeneous Charge Compression Ignition (HCCI),

Selective Catalytic Reduction (SCR), are among the main approaches toward greener and more effi-

cient vehicle powertrains. The opportunity also exists by reducing the weight of vehicles considering

the strong relationship between vehicle weight and fuel consumption. According to a report [30]

issued by Ricardor 1, the average fuel economy will be increased up to 0.65% with every 1% weight

loss for passenger vehicles. Another trend is electrifying the vehicle propulsion system relying on

new types of energy storage devices such as batteries and supercapacitors or by using fuel cells as

the main propulsion source. However, purely electric propulsion is not a mature technology yet due

to its higher cost, reliability, and performance limitations. For example, the energy density of a bat-

tery is just around 1.5% of the diesel fuel which limits its application. Therefore, hybrid powertrains

integrating conventional engines, powertrains, and auxiliary energy storage devices have drawn more

attention in recent years. The most popular hybrid powertrain system currently is the hybrid of a

combustion engine and batteries, as the electrochemical battery industry develops rapidly. A hybrid

powertrain usually has a smaller engine but runs more efficiently; it has the capability to partially

recuperate the braking energy, which is usually wasted as heat, and increase the vehicle efficiency

significantly at the partial load condition e.g. at low speeds. Consequently, the fuel economy of

a hybrid vehicle is much better than a vehicle with a conventional powertrain. Toyota Prius, the

most successful commercialized HEV model with an average fuel economy up to 50MPG and sales

volume more than 1.2 million, visualizes the potential of the HEV powertrain for reducing fuel use

and emissions in next decades.

An almost untapped approach for reducing the energy consumption of ground vehicles is

using various information sources and by predictive motion planning. Consider the following three

examples in which lack of information about future events down the road can negatively influence

the fuel economy of a vehicle:

1. A hybrid electric vehicle (HEV) reaching the top of a hill with a fully charged battery pack is

unable to capture the free braking energy that is available on the steep downhill descent. This

is due to the unknown future terrain.

2. A plug-in hybrid electric vehicle (PHEV) that depletes its charge before arriving at the des-

tination is not utilizing energy optimally. The optimal solution is to discharge the battery
1Ricardor is a registered trademark of Ricardo INC.
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gradually so the battery is depleted at the charging destination. This is due to unknown trip

distance.

3. A vehicle’s untimely arrival at a local traffic wave with lots of stops and goes will increase the

use of fuel and wears the engine and friction brakes. This is due to unknown future traffic

flow.

These examples illustrate some instances in which use of information and preview can en-

hance the energy utilization in a vehicle. Due to dependence on advanced telematics and wireless

connectivity, the value such preview information can have in improving the fuel economy of vehicles

has not been widely explored in the past. Even when available, telematics information has been used

only in other areas: more specifically, previewing traffic information has shown its value in advanced

traveler information systems (ATIS), advanced transportation management systems (ATMS)[48],

and active safety systems [58, 12]. For example, ATIS can help travelers in making better route

choices to save traveling time and avoid traffic jams; ATMS traffic preview can be used for assign-

ing optimal dynamic speed limits in controlling the traffic of a highway entrance, and in properly

timing traffic signals; a vehicle with anticipation of traffic-signal violation, curve-speed warning, and

emergency electronic brake lights [12] can avoid the violation and collision.

Recent advances in traffic information technology via Geographic Information Systems

(GIS), Global Positioning System (GPS), Intelligent Transportation Systems (ITS),Vehicle to Ve-

hicle (V2V) communication present more opportunities for predicting the vehicle trip information

with details such as the future road grade, the remaining distance to destination, and the speed

constraints imposed by the traffic flow. For instance a vehicle, localized by in-vehicle GPS is able

to identify its future route topology by integrating in-vehicle 3D road maps containing the altitude,

longitude, and altitude information of the road.

Predicting the traffic condition surrounding a vehicles is more challenging due to dynamically

changing nature of traffic but can have great value in motion planning of vehicles for fuel saving.

Interestingly preview of traffic flow information is potentially attainable today with existing real-time

traffic databases and advanced traffic prediction methods. Real traffic data could be retrieved from

local traffic channels, GPS-enabled vehicle navigation systems, cellular phone networks, or short

range communication with surrounding vehicles. Google, for example, currently streams real-time

traffic information of major U.S. cities and includes an estimate of average speed of vehicles in each

3



road segment (see the latest edition of Google Earth and its traffic layer.). Another example is

the statewide sensor systems in California which consist of 25,000 sensors located on mainlines and

ramps, and grouped into 8,000 vehicle detector stations (VDS) to monitor in real-time the state of

traffic [46]. Because of the high maintenance cost and not so widespread distribution of the sensor

networks on roads, there has been growing interest in using individual vehicles as moving probes

for estimating the state of traffic. This trend was demonstrated by a cooperative project between

University of California at Berkeley and Nokia in a project called “Mobile Millennium” since Nov.

2008 [2] aiming at gaining real time traffic information from mobile phones inside each participating

vehicle. Also the concept of connected or networked vehicles has been visualized as a next generation

vehicle technology and a test facility for it has been constructed in Michigan International Speedway

in 2009 [1]. In the connected vehicle vision, the vehicles can communicate with each other wirelessly

and share driving information with surrounding vehicles enabling cooperative driving. With current

technology, the frequency of wireless transmission varies from 1 Hz to 50 Hz, while the desired

communication range varies from 50 m to 300 m [12].

Given these various sources of real-time traffic information, predicting the state of traffic

over a future time horizon can now be done more reliably than before. Prediction of traffic flow could

be either simulation-based or statistical based. The former uses traffic models and interaction of

vehicles within traffic network to project the state of future traffic while the latter uses historic traffic

data. Combining the simulation based and statistics based methods yields a hybrid method that

has the strengths of both approaches [48]. Most uses of such information have been for navigation

and routing purposes using mostly ad-hoc or proprietary routines. An untapped opportunity lies

in utilizing this vast source of dynamic information for better energy management of conventional

vehicles. For conventional vehicles preview can help plan an eco-friendly speed profile which saves

fuel and reduces emissions without increasing trip time. This eco-friendly speed can be suggested

to the driver or directly incorporated in vehicle’s adaptive cruise control module.

1.2 Thesis Overview

In this thesis, we propose systematic utilization of optimal control methods including Pon-

tryagin minimum principle, Bellman’s principle of optimality and Model Predictive Control(MPC)

with different types of preview information such as terrain information, trip distance, traffic flow
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information in three areas of vehicle technology, namely in hybrid electric vehicle (HEV), plug-in

hybrid electric vehicle (PHEV) and conventional vehicle powertrain systems to improve their energy

utilization. We focus our study on reducing energy consumption as well as emission.

For HEV and PHEV studies, the goal is to quantify reductions in energy usage attainable

by using preview information of road terrain, traffic speed, and length of a trip. The minimum-

energy-use benchmark for this study is calculated by solving the energy minimization problem via

Dynamic Programming (DP) assuming access to full future information. Then we consider more

realistic cases where only partial preview is available. Equivalent Fuel Consumption Minimization

Strategy (ECMS), a variation of Pontryagin minimum principle is emphasized for HEV and PHEV

optimal control in which its parameters are estimated based on different types of future driving

information. This part of the work is presented in chapter 2 (Role of Terrain Preview in Energy

Management of Hybrid Electric Vehicles) and chapter 3 (Route Preview in Energy Management of

Plug-in Hybrid Electric Vehicles).

Specifically, in chapter 2, we quantify the potentials of 3D road terrain maps for improving

the fuel economy of a parallel hybrid vehicle. In this study, we decouple the influence of velocity vari-

ation by focusing on constant-velocity cruise situations. The future road terrain can be determined

using in-vehicle 3D maps and the vehicle GPS-based navigation. In this work we use real world

3D aerial maps created by Intermap Technologies. The digital elevation maps and orthorectified

radar images are gathered using a proprietary airborne Interferometric Synthetic Aperture Radar

(IFSAR) technology from a fixed-wing aircraft. With availability of future driving condition, the

optimal control methods DP and ECMS are proposed and compared against two baselines without

any future preview.

Chapter 3 investigates the gains in fuel economy attainable by information preview for plug-

in hybrid electric vehicles. Our study classifies four different levels of access to future information

for power management of a PHEV: i) full knowledge of distance, future velocity, and upcoming

terrain profile, ii) full knowledge of upcoming terrain and estimated velocity from historic traffic

data or real-time traffic data streams, iii) knowledge of distance to the next charging station, iv) no

future information. Different control strategies are proposed for different levels of preview. With

full knowledge of future driving conditions, DP is performed to obtain a benchmark for the best

achievable fuel economy. ECMS is proposed as an instantaneous optimization strategy with its co-

state parameter tuned based on preview. Parameter estimation methods corresponding to different
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preview levels are then developed. The proposed method are tested through several case studies

with federal standard driving cycles and real driving cycles.

Chapter 4 investigates the benefit of future traffic flow information preview in improving

the fuel economy of conventional vehicles by predictive control methods. According to the time

scale of traffic events, the energy optimization problem is decomposed into different levels. At a

microscopic level, a model predictive controller as well as a car following model is integrated for

predictive adaptive cruise control by stochastically forecasting the driving behavior of the lead car.

The distribution of the lead car position is approximately calculated using a Markov chain Monte

Carlo (MCMC) simulation. A corresponding stochastic model predictive control problem is then

converted to a deterministic model predictive control for which efficient real-time solutions exist. At

a macroscopic level, we propose to incorporate the estimated macroscopic future traffic flow infor-

mation based on gas-kinetic traffic models and optimize the cost-to-go by utilizing a two-dimension

Dynamic Programming (2D-DP). The solution yields the optimal trip velocity as the reference ve-

locity for the driver or a low level vehicle controller. Different case studies shown demonstrate the

value of previewing traffic evolution in reducing the energy consumption of a vehicle.
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Chapter 2

Role of Terrain Preview in Energy

Management of Hybrid Electric

Vehicles

2.1 Introduction

Today’s hybrid electric vehicles (HEV) have much better fuel economy than the conventional

non-hybrid vehicles. The improved fuel economy is mainly due to use of extra battery energy

storage and one or more electric machine which assist the combustion engine by providing additional

power, and therefore allow use of a smaller combustion engine operating in its more fuel efficient

conditions. The battery storage also provides a buffer which enables capturing the braking energy

that is normally wasted as heat. The extra degree of freedom provided by the auxiliary power

source enables substantial improvements in fuel efficiency as demonstrated by the commercially

available hybrid electric vehicles. Yet the added efficiency of any HEV is dependent on the power

management strategy (PMS) which determines the split of power request between the combustion

engine and electric drive [66].

Most power management strategies in production vehicles operate based on logical “if-then-

else” type rules and pre-optimized maps and rely only on instantaneous power demand and state of

the vehicle [9, 74, 11, 22]. In search of an optimal (or sub-optimal) solution, many researchers have
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Figure 2.1: Schematic of predictive energy management based on 3D terrain maps.

formulated the PMS as a fuel minimization problem over a driving cycle.

This optimal control problem can be solved by numerical Dynamic Programming (DP)

assuming full or statistical knowledge of the future driving cycle [43,32]. Because of its dependence

on future driving cycle and its large computational burden, DP is not suitable for online use and

considered only as a benchmark for best achievable fuel economy [43]. Instead to obtain a sub-optimal

solution, the global optimization problem is simplified to an instantaneous one in the family of ECMS

(Equivalent Consumption Minimization Strategy) methods [37, 53, 60, 65]. In the ECMS methods,

the battery charging/discharging at each instant is translated to equivalent fuel gained/used and

the sum of instantaneous actual and equivalent fueling rate is minimized. ECMS methods are

computationally efficient, however their performance may vary depending on the cycle because of

lack of information about upcoming driving cycle.

The truly optimal power management strategy depends on the future driving conditions.

Knowledge of upcoming terrain and traffic conditions will help more judicious use of the electric

power by extending the planning horizon. Such information can now become available as illustrated

in Fig. 2.1 by combined use of vehicle navigation system, 3D road maps, and even possibly radioed

traffic information. Research has been done in the past on use of preview road information for

improving fuel economy of commercial heavy trucks with conventional powertrains [29]. Look-ahead

use of traffic and traffic signal information has been proposed as a mean to predict future velocity

profile [19] or reduce rapid accelerations and decelerations which helps the fuel economy [3, 36] .

While there is the belief among HEV experts that preview terrain information can increase the

fuel efficiency of hybrid vehicles, the amount of possible improvement to fuel economy has not been

clearly explored in the literature [63, 32], nor is there a systematic methodology to utilize such

preview knowledge in the existing power management strategies. The adaptive ECMS (A-ECMS)

[60] and telemetry ECMS (T-ECMS) [64] power management algorithms aim to respectively use
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the past and partial future information to adjust their tuning parameter. However none explores

knowledge of future terrain information.

In contrast to the past research, the main purpose of this part is to quantify the poten-

tials of 3D road terrain maps for improving the fuel economy of a parallel hybrid vehicle. In the

present study, we decouple the influence of velocity variation by focusing on constant-velocity cruise

situations. The future road terrain can be determined using in-vehicle 3D maps and the vehicle GPS-

based navigation. In this work we use real world 3D aerial maps created by Intermap Technologies.

The digital elevation maps and orthorectified radar images are gathered using a proprietary airborne

Interferometric Synthetic Aperture Radar (IFSAR) technology from a fixed-wing aircraft.

Section 2.2 presents the vehicle configuration and its model for simulation. Section 2.3

summarizes seven road terrain profiles, three of which are simulated arc terrains and the other four

are real terrain profiles from California mountain area. In Section 2.4, the energy management

strategies with and without preview are presented. Section 2.5 evaluates the impact of terrain

preview on fuel economy based on several simulation results. Section 2.6 concludes this part with a

summary of our observations.

2.2 The HEV Powertrain Configuration and Model

A midsize 2000kg passenger vehicle with a parallel hybrid electric configuration is selected

for this study. Parameter values and detailed performance maps for various powertrain components

were extracted from the database of Powertrain System Analysis Toolkit (PSAT) simulation software

developed by Argonne National Laboratory [40]. A 120kW gasoline internal combustion engine

and a 45kW AC motor are arranged in a pre-transmission configuration and connected to a 5

speed automatic transmission via a clutch and a torque coupler. The key vehicle parameters are

summarized in Table 3.1.

Table 2.1: Specification of a parallel HEV for simulation
maximum engine power 120kw maximum motor power 45kw

battery capacity C 5.5 Ah battery voltage 312V
reducer ratio 2 final drive ratio 10.5

The PSAT-based full-order powertrain model contains the vehicle velocity, the clutch input

speed, and battery state-of-charge (SOC) as its dynamic states with many other look-up tables

and logical switches. Maintaining this level of complexity for developing and evaluating an optimal
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power management scheme is neither practical nor necessary. In fact, the only state critical in power

management is the slowly varying state of charge of the battery [66]. Therefore a reduced-order model

is developed which contains the battery state of charge as its only dynamic state. The battery is

modeled with its open-circuit voltage in series with a constant internal resistance. State-of-charge

(SOC) dynamics are described by:

d

dt
SOC = −Voc −

√
V 2

oc − 4PbattR

2RC
(2.1)

where Voc is the open circuit voltage of the battery, Pbatt is the electric power at battery output side,

R is the internal resistance of the battery and connecting wires, and C is the battery capacitance.

More details can be found in [61]. In the reduced-order model we continue to use look-up tables

from PSAT to model the engine fuel rate and motor losses. The fuel rate ṁf is mapped from the

engine torque Teng and engine speed ωeng:

ṁf = f(Teng, ωeng); (2.2)

Another look-up table is used to relate the motor mechanical power Pm to motor speed ωm and

output electrical power of the battery Pbatt,

Pbatt = g(Pm, ωm); (2.3)

The gear shifting strategy, which depends on wheel torque demand and vehicle velocity, is also

adopted from PSAT and implemented as a lookup map.

2.3 The Test Road Profiles

Two sets of road elevation profiles are used for this study. The first is a set of three simulated

arc terrains with the same span, but different peak elevations, and maximum grades; Figure 4.4

shows their profiles. The second is a set of four real world road profiles selected from Intermap’s 3D

terrain map database. Figure 2.3 shows a Google Mapr1 of this region in Contra Costa county in

California. Intermap’s road geometry database has the information stored as 3D road vectors with

accurate longitude, latitude, and altitude. This information is post-processed and converted to 2D
1Google Mapsr is a registered trademark of Google INC.
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information in which slope is a function of distance along the road. Figure 2.4 shows the elevation

profile for each of these roads. The statistical information of the grades including maximum and

minimum road slope and the slope root-mean-square (RMS) values are listed in Table 2.2.
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Figure 2.2: Simulated arc terrain elevation profiles G1-G3 and their root-mean-square grade values.

Figure 2.3: A Google map view of terrain G4-G7 in Contra Costa county, CA.

Table 2.2: Statistics of the terrain data
route length(km) mean(%) max(%) min (%) RMS (%)
G4 12 0.77 4.02 -3.73 2.1877
G5 48 0.26 4.72 -3.73 1.32
G6 36 -0.21 2.96 -4.33 1.04
G7 48 -0.17 5.32 -7.97 2.31

In this discussion the focus is on realizing the fuel economy gains with road grade preview

only. To decouple the influence of unknown future velocity, we assume that the vehicle is traveling

with a constant and known cruise speed. The case with varying speed requires further investigation

and is planned as a next step of this work. With the known speed assumption, upcoming slopes will

be known as a function of time.
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Figure 2.4: Elevation profiles of real world terrains G4-G7

2.4 Power Management Strategy

The supervisory control unit of an HEV determines the power or torque split ratio between

the combustion engine and the electric motor aiming to reduce fuel use. This section describes

the structure of two types of power management strategies (PMS) used in this work: i) strategies

which determine the baseline achievable fuel economy without terrain preview and ii) strategies with

terrain preview. Finding a “fair” baseline PMS, i.e. one that is near-optimal in absence of preview,

was one of the main challenges of this research. We have considered both a rule-based and a modified

ECMS method as baseline strategies without preview. When terrain preview is available, we use

both ECMS and dynamic programming to determine the best achievable fuel economy. The details

of each algorithm is described next.

2.4.1 Rule-Based Control Strategy

A rule-based power management scheme is considered first, because such rule-based strate-

gies are most widely used in current hybrid vehicles. Examples of different rule-based strategies can
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be found in research papers as well [43, 22, 57]. We adopt the structure of the rule-based strategy

used in PSAT which could achieve good fuel economies for most tested cycles. To increase the

fuel economy, the rules are designed to turn off the engine at low power demands and run it near

statically optimized operating lines when on.

In this rule-based strategy, the desired charging or discharging power of the battery, Pbatt dmd

is calculated as a static function of the battery’s state of charge, SOC. A positive Pbatt dmd denotes

charging and a negative value means discharging power. The driver’s power request Pdrv dmd is

inferred from the accelerator pedal position (or through a driver model in simulations). The sum of

the driver and battery power demands determines the total power demand Pdmd,

Pdmd = Pdrv dmd + Pbatt dmd (2.4)

from which the total torque demand Tdmd at the torque coupler is calculated by dividing the known

engine speed2. A statically optimized map is used along with a set of rules to determine the engine

and motor torques. Figure 2.5 shows a schematic of this map partitioned into 5 different regions

by statically optimized curves. In this figure the normal optimal curve (Topt) represents the most

efficient operating line of the engine as a function of the engine speed. However operating the engine

on this line does not necessarily result in minimum fuel use. In other words running the engine most

efficiently is not always equivalent to running the hybrid powertrain most efficiently. This is due to

electrical losses that needs to be accounted for in the calculation of engine best operating points. In

the rule-based approach, two additional curves the high optimal curve (Topt hi) and the low optimal

curve (Topt lo) are also calculated which allow operating the engine higher or lower such that overall

efficiency is increased. The following rules are used,

– At very low torque levels when (ωeng, Tdmd) is in region A, running the engine is not efficient;

the engine is turned off (Teng=0) and the motor drives (brakes) the vehicle (Tmot = Tdmd).

– When (ωeng, Tdmd) is in region B, the engine is run on the low optimal line (Teng = Topt lo)

and the excess torque is used to charge the battery, i.e. (Tmot = Tdmd − Topt lo).

– When (ωeng, Tdmd) is in region C, the engine is run on the normal optimal line (Teng = Topt)

and (Tmot = Tdmd − Topt hi).
2The vehicle speed is known, the transmission status is also external to the rule-based controller and known and

therefore engine speed can be calculated.
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Figure 2.5: Schematic of different operating regions imposed by a rule-based power management
strategy

– When (ωeng, Tdmd) is in region D, the engine is run on the high optimal line (Teng = Topt hi)

and (Tmot = Tdmd − Topt hi).

– At very high torque levels when (ωeng, Tdmd) is in region E the engine cannot meet the torque

demand, the engine is run on the high optimal line (Teng = Topt hi) and the motor supplies

the rest (Tmot = Tdmd − Topt hi).

Since it is difficult to systematically incorporate future information in the rule-based strat-

egy, it is only treated as a baseline strategy without preview.

2.4.2 Optimal Control Strategy-ECMS

Maximizing fuel economy of an HEV can be explicitly formulated as minimization of the

cost function [22]:

Jf =
∫ tf

t0

ṁf (t, u)dt + φ(SOCi, SOCf ); (2.5)

subject to the powertrain model equations and the following constraints:

SOCmin ≤ SOC ≤ SOCmax

Tmin
eng (ωeng) ≤ Teng(ωeng) ≤ Tmax

eng (ωeng)

Tmin
m (ωm) ≤ Tm(ωm) ≤ Tmax

m (ωm)

(2.6)

where ṁf is the fuel consumption rate; the control law u is the power split ratio; SOCi and SOCf are

the initial SOC and final SOC respectively; SOCmin and SOCmax are the minimum and maximum
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bounds on SOC; Tmin
eng (ωeng) and Tmax

eng (ωeng) are the minimum and maximum torque of the engine at

given speed; Tmin
m (ωm) and Tmax

m (ωm) are the minimum and maximum torque of the electric motor

at given speed; φ(SOCi, SOCf ) is the penalty function (also referred as equivalent fuel consumption)

for the deviation of final SOC from its initial value. The final SOC is usually constrained to be equal

to the initial SOC; in that case φ(SOCi, SOCf ) will vanish.

Analytical solutions to this optimization problem do not exist in general, due to its many

state and input constraints, nonlinearities, and its dependence on future power demands.

In the Equivalent Fuel Consumption Minimization Strategy (ECMS) the above optimization

problem is simplified to minimization of the instantaneous (rather than integral) equivalent fuel rate

ṁf,equ as shown in Eq. 3.6 [57]:

ṁf,equ = ṁf + s · Pe/Hl (2.7)

where Pe is the net power charged to the battery or the power drawn including the power loss to

the internal resistance; Hl is the lower heating value of the fuel.

2.4.2.1 ECMS Without Preview

Choice of the fuel equivalence factor s is important and critical to fuel economy and charge

sustenance of the battery. Its true value is a function of future power demands which are unknown

in absence of preview. Several methods were proposed to estimate s [37, 65, 60]. In [22] average

charging and discharging efficiencies are used to approximate the value of s as follows:

s =





sdis Pe(t, u) > 0

schg Pe(t, u) < 0

where

sdis =
1

η̄
(d)
e η̄f

(2.8)

schg =
η̄
(c)
e

η̄f
(2.9)

15



Here η̄
(d)
e and η̄

(c)
e are the average electric circuit efficiencies for discharge and charge respectively;

η̄f is the average efficiency for the combustion engine.

Because this choice of s is not a function of the battery’s state of charge, the SOC may

deviate far from its desired value. Inspired by the approach in [65] in our baseline ECMS we modify

s as a function of SOC based on the bilinear relationship shown in Figure 2.6. The values of schg

and sdis are determined using Equations (2.8) and (2.9) based on assumed average efficiencies and

without using preview.
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Figure 2.6: Equivalent factor s as function of SOC; s0 = √
sdisschg.

Also we enforce the following additional rules to ensure that the SOC does not exceed its

limits:

– If SOC > SOCmax, charge mode is not allowed.

– If SOC < SOCmin, discharge mode is not allowed.

SOCmax and SOCmin are set to 0.8 and 0.6 respectively in our study which is consistent with

bounds enforced in practice.

2.4.2.2 ECMS with Preview

With known future power demands, it is possible to find the true value for the equivalence

factor s. It is shown that the value of s that results in minimum fuel use and renders SOCf = SOC0

is a constant [14] if,

– the SOC constraint in (2.6) is relaxed and

– if the right-hand side of SOC dynamics (2.1) is not an explicit function of SOC.
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– The open circuit voltage Voc and internal resistance R are constants.

The details of the derivation can also be referred in Section 3.4.1.2. We use a numerical procedure

that iterates to find the constant value of s with known future power demands at the beginning of

each driving cycle. Specifically, in this process, a constant s is guessed initially and the optimization

is carried out based on this initial value of s. The resulting final state of charge SOCf is then

compared to the desired value SOC0. If different, the value of s is updated based on a bisectional

search and the process is repeated till finally SOCf = SOC0.

2.4.3 Optimal Control Strategy-Dynamic Programming

When the future power demands are known, the optimal power-split ratio that minimizes the

cost function (3.2) subject to model equation and constraints in (2.6) can be numerically obtained

using dynamic programming [43]. The time-horizon, the state variable SOC, and the control variables

are discretized and the optimal control problem is solved backwards in time according to Bellman’s

principle of optimality. Details of DP can be found in the part 3.3.2.1.

In simulations, we observed little difference between the results of DP and that of ECMS

with preview. To see the difference between DP and ECMS with preview, the fuel economies of the

two control strategies are compared as shown in Fig. 2.7 for simulated grades G1, G2, and G3 and

for the cruise speeds of 30, 45, and 60 mph. It can be seen that in most cases the difference is less

that 1 percent and the largest difference is around 2 percent. The difference could be due to linear

approximation and discretization errors in DP which may make DP deviate from the true optimal

solution. Another potential factor for the difference is that the SOC trajectory in standard ECMS

is allowed to go over its constraints while DP enforces the SOC constraints. However, this factor

was not the case for simulations in Fig. 2.7.

Therefore, for the sake of reducing computational burden, in the rest of the simulations in

this part, standard ECMS is considered as the control strategy with preview unless SOC constraint

in ECMS is violated; in that case the DP result will be used.

2.5 Simulation Analysis

To determine the impact of terrain preview on fuel economy, we compare the fuel economy

obtained via ECMS with preview (or DP with preview) to that of ECMS and rule-based strategies

17



0.98

0.99

1

1.01

1.02

1.03

30mph 45mph 60mph Cruise Speed
 

 

G1
G2
G3

Figure 2.7: Fuel economy gains with DP and ECMS both with terrain preview. The y axis shows
the ratio between the fuel economies with DP and standard preview ECMS.

without preview. The rule-based strategy without preview is representative of the industry approach

and the ECMS without preview has been more an academic approach; therefore both are used as

representative “baseline” strategies.

2.5.1 Results with Simulated Terrains G1-G3

The fuel economy improvements with preview obtained with the ECMS or DP methods,

are compared to that from baseline control strategies of ECMS and rule-based without preview for

three cruise velocities of 30, 45, and 60 mph. The comparisons are illustrated in Fig. 2.8.
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(BL ECMS) and rule-based (RB) strategy .
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From the simulation, we observe that:

1. When compared to the ECMS baseline, the optimal strategy with preview yields 0.8%-20%

improvement in fuel economy. When compared to the rule-based baseline, the improvement

can be even higher and as high as 28%. The improvement is higher for G3 which is the steepest

profile; in other words when the root-mean-square value of grade is higher, the improvement

is more. Large improvement (up to 28%) is obtained in arc terrain G3 during 30 mph cruise

because of balancing the buffer of the battery and future free regeneration energy in advance.

This is better illustrated in Fig. 2.9 that shows the optimal preview solution obtained via DP

is able to leave enough buffer in the battery on the top of the hill in anticipation of future

regeneration energy.
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Figure 2.9: Comparison of SOC trajectories for different control strategies with G3 profile and cruise
speed 30mph.

2. The results consistently indicate that terrain preview may be more effective at lower speeds.

At higher speeds the power demands are higher and therefore less regeneration opportunity is

available.

3. For some simulation cases, e.g. G2, the rule-based baseline achieves better fuel economies than

baseline ECMS which illustrates that the performance of rule-based control is not uniform for

different simulation cases. Rule and parameters optimized for some cases are not necessarily

best for others, a fundamental problem of rule-based strategy. Based on the more consistent

performance of the baseline ECMS, it is expected that the improvement with respect to baseline

ECMS would be less than 2% over arc terrains “flatter” than G1. However, the same can not
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be said when the rule-based strategy is used as the baseline.

4. Since an important advantage of terrain preview is better utilization of battery buffer for

regeneration, the improvement is expected to decrease as the size of the battery is increased.

We examined this by increasing the battery size to 11Ah from original size of 5.5Ah; the

results in Fig. 2.10 confirm this expectation. Therefore terrain preview may be an enabler for

reducing battery size in HEVs.
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Figure 2.10: Fuel economy improvement (FEI) in arc terrains with respect to (wrt) baseline ECMS
(BL ECMS) and rule-based (RB) strategy with a 11 Ah battery.

2.5.2 Results with Simulated Terrains G4-G7

Grades G1-G3 represent a single hill event. To determine the average impact of preview

when cruising on rolling terrain, the above process was repeated for real-world terrain profiles G4-G7.

The following information is summarized from the simulation results shown in Fig. 2.11:

1. The improvement with respect to baseline ECMS is from 0.07%-6.8% which depends on the

grade and velocity. The improvement for G4 and G5 is around or less than 2%. The improve-

ment for G6 and G7 is around 2-3%. The improvement is lower at higher velocities.

2. The improvement with respect to rule-based strategy is between 0.95% and 4.2% depending

on the grade and velocity. However, the correlation between improvement and velocity is not
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Figure 2.11: Fuel economy improvement (FEI) with respect to (wrt) rule-based (RB) control and
baseline ECMS (BL ECMS).

as clear as with baseline ECMS. That means future information may be important for fuel

saving even for high speeds when the rule-based strategy is the baseline.

3. In all cases, the improvement at low cruising speed (30mph) is significant and up to 3% or

more, which indicates terrain preview may be more useful at low speeds.

4. Preview of long distance downhill or steep grade profiles increases the fuel saving e.g. over

terrains G6 and G7. The G6 terrain is a descending terrain resulting in a negative average

grade. Preview allows the controller to discharge the battery down and later run the engine at

a higher efficiency operating point to charge the battery. G7 features steep spikes in elevation

resulting in large maximum, minimum, and root-means-square grades. Over G7, the significant

change of elevation over a short interval makes available large regeneration energy that can be

better harnessed with availability of terrain preview.

2.5.3 Analysis of Powersplit Behavior with and without Preview

Terrain preview allows more efficient operation of the powertrain by predictive planning and

also enables capturing larger portions of future free regeneration energy. This behavior is illustrated

in more detail in this section by a few simulation case studies.

Figure 2.12 shows how predictive planning allows recuperating more energy into the battery

during downhill descent. Over the G7 terrain and with cruise speed of 30 mph, the DP solution an-
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ticipates the future free energy and is able to leave enough buffer which formes the “local minimum”

for SOC at hill top points A and B as shown in Fig. 2.12. The correlation between “local minimum”

of SOC and top point of hill also holds for other points followed by steep downhill grade e.g. point

A’. This kind of correlation becomes weak, disappears, or even reverses depending on the steepness

of the grade and driver’s power demand. An inverse correlation example could be seen from point

B’ where the local top point of hill does not correlate with “local minimum” but “local maximum”

value of SOC. More examples and explanation for the “inverse correlation” are shown in Fig. 2.16.
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Figure 2.12: SOC trajectory of DP for G7 terrain with cruise speed of 30 mph. The solid and dashed
lines show the SOC trajectory and road elevation respectively.

Baseline ECMS and rule-based strategy are unable to capture part of available regeneration

energy because of lack of future information. In Figure 2.13, SOC trajectories for baseline ECMS

and rule-based are flat at the hill bottom points C and D due to hitting SOC’s upper bound.
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Figure 2.13: SOC trajectories of baseline ECMS (BL ECMS) and rule-based (RB) strategy for G7
terrain and cruise speed of 30 mph. The solid and dashed lines show the SOC trajectory and road
elevation respectively.

The engine operating point is also critical for fuel saving. Figures 2.14 and 2.15 show the
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engine operating point in speed-torque and torque-time planes respectively for G6 terrain and cruise

speed of 30 mph and with DP, baseline ECMS, and baseline rule-based strategies.
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Figure 2.14: Engine operating point (OP) of different control strategies (DP, BL ECMS and RB)
with the G6 terrain and 30 mph cruise.
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Figure 2.15: Time domain engine operating point (OP) of different control strategies (DP, BL ECMS
and RB) in the case with grade G6 and cruise speed 30mph.

In the torque-speed plane, we observe that DP with preview and baseline ECMS and rule-

based strategies without preview all manage to operate the engine near efficient operating points

when the engine is on. The main differences between them are seen in Figure 2.15 in the engine

on/off timing. Due to lack of preview, baseline ECMS and rule-based strategy turn the engine on

and off as a function of instantaneous battery state of charge. In the lengthy downhill case of G6

terrain, the engine is turned on less frequently and the battery is depleted to its lower bound as

shown in Figure 2.16. With preview, the DP acts more predictively and charges the battery in short

uphill intervals E − F and G−H where due to higher torque demands running the engine is more

efficient. This results in better fuel economy of the DP approach. We note that this behavior on

23



G6 is different from that on G7 shown earlier where going uphill, DP would discharge the battery.

These decisions are highly dependent on the type of terrain and the optimal power split sometimes

is not intuitive.
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Figure 2.16: SOC trajectory with different control strategies (DP and BL ECMS) in the case with
grade G6 and cruise speed 30mph. The solid and dashed lines show the SOC trajectory and road
elevation respectively.

The use of future information not only helps save fuel, but may also reduce unnecessary

charging and discharging of the battery. Reduced charge and discharge cycles may enhance the

longevity of the battery. Figures 2.17 and 2.18 illustrate the percentage increase in the battery’s

charging and discharging power in the baseline ECMS and rule-based strategy respectively compared

to the case with terrain preview.
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Figure 2.17: The percentage increase in the battery’s charging and discharging power with baseline
ECMS compared to DP with preview.

We observe that preview not only contributes to better fuel economy, but also reduces

the battery’s charge/discharge cycles. The amount of the reduction depends on the baseline control
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Figure 2.18: The percentage increase in the battery’s charging and discharging power with rule-based
without preview compared to DP with preview.

strategy: For baseline ECMS this is only 1-6% increase while with rule-based baseline this is 50-350%

increase. In other words the baseline rule-based strategy seems to discharge and charge the battery

aggressively to achieve good fuel economies; thus it can have negative influence on the battery’s life.

Quantifying the influence on the battery’s life is an open question which is not in the scope of this

discussion.

2.6 Conclusions

The role of terrain preview in reducing the fuel use of a parallel hybrid vehicle was inves-

tigated in this chapter. To focus the study on terrain preview only, the vehicle was assumed to

cruise at a constant known velocity. Terrain preview and known velocity made possible calculation

of optimal energy management decisions by solving a dynamic program or through an “optimal”

ECMS strategy. The resulting fuel economy was then compared to that of two baseline strategies

which lacked preview: a rule-based strategy representative of the approach common in industry and

a modified ECMS strategy which is similar with the approach frequently used in academic papers.

Some of the main conclusions are:

1. No big difference is seen between DP and ECMS with preview if the SOC trajectory does not

exceed its bounds in the ECMS strategy.

2. For most simulation cases, the ECMS baseline achieves better result than rule-based control.

Therefore the calculated impact of preview depends on the selected baseline strategy without
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preview.

3. Simulations on hilly terrain shows an average fuel economy improvement of 1-4% is possible

with terrain preview.

4. The improvement is inversely correlated to the cruise speed; i.e., it decreases at higher speeds.

5. The improvement depends on battery size. Simulation cases show improvement decreases for

a larger battery pack.

6. Preview also reduces the average energy flow to and from the battery and therefore may

increase the battery’s life.
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Chapter 3

Route Preview in Energy

Management of Plug-in Hybrid

Electric Vehicles

3.1 Introduction

Plug-in hybrid electric vehicles (PHEVs) are now making the transition from prototype

concept to mass production. Plug-in versions of Toyota Prius for instance, are expected to go on

sale in 2011-2012. Similar to conventional hybrid electric vehicles, PHEVs can take advantage of

regenerative braking and a reduced sized engine operated more efficiently. In addition by partly

utilizing the cheaper and typically cleaner electric grid energy, PHEVs achieve a much better overall

fuel economy than conventional hybrid vehicles; their environmental footprint may also be much

smaller. Added efficiency of a PHEV relies on its power management strategy, the algorithm which

determines the split of the power request between the combustion engine and electric drive [66]. The

focus of this discussion is on developing a real-time implementable power management strategy that

uses terrain, traffic, and trip distance preview and can enhance energy utilization of PHEVs.

Typical power management schemes in production HEVs use rules, pre-optimized maps, or

instantaneous optimization to reduce fuel use while sustaining the state of charge of the battery

[74, 11, 22]. For this, they rely on instantaneous information about power demand and state of
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the vehicle. This is formalized in a family of Equivalent Consumption Minimization Strategies

(ECMS) first introduced by [53] where the power split ratio is found by an instantaneous optimization

algorithm [37,60,65]. In a PHEV, unlike an HEV which maintains the battery’s state of charge in a

narrow operating band during the whole trip, maximum energy efficiency is achieved if the batteries

are depleted to their minimum allowable charge by the end of a trip.

Existing energy management strategies for conventional HEVs cannot be directly transferred

to a PHEV. It is possible to run the PHEV in its electric mode until the battery is nearly depleted

and then switch to a charge sustaining mode and run the PHEV similar to an HEV [62, 10]. The

result however may be far from optimal; it can be shown that the fuel optimal solution is one that

blends use of the combustion engine and electric motor throughout the trip in a way that the battery

is nearly depleted at the charging destination [62]. This in turn requires knowledge of future trip

conditions such as trip length and future power demands. In [79] we found that knowledge of future

road terrain profile is beneficial in energy management of HEVs. In [77] we showed that advance

knowledge of trip length can contribute to fuel saving in PHEVs. Missing in our previous work [77]

and [79] was a real-time implementable algorithm for systematic integration of long-horizon preview

information.

With complete knowledge of future driving conditions, it is possible to generate the optimal

energy management policy by solving a dynamic program (DP) such as in [43]. This however is

computationally demanding and not suitable for the practical cases with only partial preview. The

authors of [19] propose the use of a two-scale DP solution for a PHEV: A higher-level DP that

plans the battery’s state of charge (SOC) based on approximate information for the entire trip and

a low-level shorter horizon DP that has more accurate information and tracks segmentally the SOC

trajectory found at the higher level. While interesting, constraining the solution to track a “loosely”

optimized SOC trajectory is a shortcoming of the approach in [19]; i.e. it does not fully adapt its

policy to instantaneous values of the battery’s SOC and driver demand.

Differently from previous work, this study first classifies four different levels of access to

future information for power management of a PHEV: i) full knowledge of distance, future velocity,

and upcoming terrain profile, ii) full knowledge of distance, upcoming terrain and estimated velocity,

iii) knowledge of distance to the next charging station only, iv) no future information. Except for

the first level with full future information, the paper proposes real-time control strategies. The real-

time power management is decomposed to an instantaneous optimization and a (global) parameter
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estimation: the power management decisions are calculated by a computationally efficient local

ECMS optimization and based on instantaneous driver demand and the battery’s state of charge. It

is the unknown parameter of the local ECMS that depends on future driving conditions. With the

second level of preview, local optimization parameters are estimated by a backward DP or backward

ECMS sweep over the estimated future velocity and exact future 3D terrain information. With the

third preview level, the parameter of local ECMS is adjusted based on remaining distance to the

next charging station.

Section 3.2 presents the vehicle configuration and its simulation model. Section 3.3 sum-

marizes the DP and ECMS control strategies and also includes description of a rule-based control

strategy which is used as a comparison baseline. Section 3.4 proposes different real-time control

algorithms in which ECMS is adopted for instantaneous optimization with parameters adjusted by

different methods depending on the level of preview. In Section 3.5 two simulation case studies are

presented which lead to conclusions in Section 3.6.

3.2 The PHEV Powertrain Configuration and Model

A midsize 2000kg passenger vehicle with a parallel hybrid electric configuration is selected

for this study. Parameter values and detailed performance maps for various powertrain components

were extracted from the database of Powertrain System Analysis Toolkit (PSAT) simulation software

developed by Argonne National Laboratory [40]. A 120kW gasoline internal combustion engine and

a 45kW AC motor were selected. They are directly connected to a torque coupler followed by a 5

speed automatic transmission. The auxiliary energy storage unit is a 21.5Ah lithium-ion battery

pack, reasonably sized for a PHEV. The all-electric range for this configuration with 60% usable

depth of discharge is about 20-30 km depending on the cycle. The key vehicle parameters are

summarized in Table 3.1.

Table 3.1: Parameters of the simulated PHEV.
maximum engine power 120kW maximum motor power 45kW

battery capacitance 21.5 Ah open-circuit voltage 267 V
reducer ratio 2 final drive ratio 10.5

Recall the model of battery dynamics in energy management of an HEV:

d

dt
SOC = −Voc −

√
V 2

oc − 4PbattR

2RC
, (3.1)
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This battery model as well as models for engine fuel consumption, motor input-output power, and

gear shifting is kept the same as shown in Section 2.2 for an HEV.

3.3 Energy Management Strategy

A PHEV can be operated in two modes as shown in Figure 3.1: charge depleting (CD) and

charge sustaining (CS). When the battery SOC is near its minimum value the PHEV is operated in

the charge sustaining mode by blended operation of the engine and the electric motor. The battery

state of charge is maintained near a set value similar to operation of a conventional HEV, therefore

all the energy management strategies for HEV are transferable to PHEV in the CS mode.
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Figure 3.1: Schematic of PHEV operating modes.

When the battery SOC is high, the PHEV is operated in the charge depleting mode: the

battery’s charge is depleted to its minimum allowed value with either all-electric operation or blended

operation of the electric motor and combustion engine [5]. Because the electric grid energy normally

costs less than gasoline fuel energy, the ideal scenario is to run the PHEV in its all electric mode

for short trips between two charging stations. For trips longer than the all electric-range blended

operation of the electric motor and combustion engine throughout the trip is shown to be more fuel

economical than all electric depleting followed by charge sustaining [62]. The decision to operate

the PHEV in all-electric charge depleting mode or blended charge depleting mode can benefit from

knowledge of future driving conditions.
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3.3.1 Rule-based Control Strategy

When the future power demands are unknown, the vehicle is initially operated in all-electric

charge depleting strategy. During this period the engine could be turned on if the power load

exceeds the capability of the battery or the motor. When the battery nears minimum allowable

charge, the operation is switched to charge sustaining mode for which we adopt a rule-based power

management strategy from PSAT simulation software demonstrated in Section 2.4.1. Because of

relative ease of tuning and implementation, rule-based power management strategies have been

widely used in industry. Examples of different rule-based strategies can be found in research papers

as well [43, 22,57,15,45].

3.3.2 Optimal Control: DP and ECMS

Similar to conventional hybrid vehicles, maximizing the fuel economy of a PHEV can be

explicitly formulated as minimization of the following cost function [22],

Jf =
∫ tf

t0

ṁf (t, u)dt + φ(SOC0, SOCf ) (3.2)

subject to the powertrain model equations and the following constraints:

SOCmin ≤ SOC ≤ SOCmax

Tmin
eng (ωeng) ≤ Teng(ωeng) ≤ Tmax

eng (ωeng)

Tmin
m (ωm) ≤ Tm(ωm) ≤ Tmax

m (ωm),

(3.3)

where ṁf is the fuel consumption rate; SOC0 and SOCf are the initial SOC and final SOC re-

spectively; SOCmin and SOCmax are the minimum and maximum bounds on SOC; Tmin
eng (ωeng)

and Tmax
eng (ωeng) are the minimum and maximum torque of the engine at given speed; Tmin

m (ωm)

and Tmax
m (ωm) are the minimum and maximum torque of the electric motor at given speed; and

φ(SOC0, SOCf ) represents the amount of fuel equivalent to the difference between final and initial

electric energy, stored in the battery. Analytical solutions to the above optimization problem do not

exist in general, due to its many constraints and nonlinearities. We employ the two algorithms that

are widely used for numerical solution of the optimal energy management problem.
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3.3.2.1 Dynamic Programming

In the ideal scenario that the future velocity and exact future power demand are known, the

optimal power-split ratio that minimizes the cost function (3.2) subject to model equations and the

constraints in (3.3) can be numerically obtained by solving a deterministic dynamic program [43].

The time horizon, the state variable SOC, and the power split ratio are discretized and the problem

is solved backward in time according to the Bellman’s optimality principle [7]. Figure 3.2 illustrates

the methodology of DP algorithm in which:

Jt(SOCi) = J∗t+T (SOC) + L(u, t) (3.4)

where T is the sampling time; Jt(SOCi) is the cost from initial SOCi at time t to final desired

SOCf ; J∗t+T (SOC) is the optimized cost from any initial state of charge at time t + T to final

desired SOCf ; and L(u, t) = ṁf (t, u).

The control law u is obtained by:

uopt(SOCi, t) = arg min{J∗t+T (SOC) + L(u, t)} (3.5)

This process is repeated for different pairs of (SOCi, t) backward based on the calculation

of minimized cost J∗t+T (SOC) at previous step t + T . For those points where the SOC does not

exactly fall on the discretized SOC grid at time t + T , the minimum cost J∗t+T (SOC) is calculated

from the interpolation of the neighboring grid points. The term J∗t0(SOC0) at time t0 and initial

state of charge SOC0 is considered the global minimum of the cost in (3.2). For convenience of our
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next discussion, the minimized cost pairs J∗t (SOC) in time domain are converted to J∗Xt
(SOC) in

spatial domain where Xt is the position at time t.

3.3.2.2 Equivalent Fuel Consumption Minimization Strategy

In the Equivalent Fuel Consumption Minimization Strategy (ECMS) the above optimization

problem is simplified to minimization of the instantaneous (rather than integral) equivalent fuel rate

ṁf,equ defined as [57]:

ṁf,equ = ṁf + s · Pe/Hf , (3.6)

where Pe is the net power charged to the battery or the power drawn including the power loss to

the electric circuit resistance; s is a fuel equivalent factor converting electric power to equivalent fuel

power; and Hf is the lower heating value of the fuel.

With known future power demands, it is possible to find the true value for the equivalent

factor s. This can be better understood by using Pontryagin’s minimum principle. The Hamiltonian

for the cost function (3.2) is:

H(SOC,u, t) = ṁf + λ(t)SȮC, (3.7)

where λ(t) is the co-state and its optimal value depends on future power demands. Following

Pontryagin’s minimum principle, the co-state λ has the following dynamics [69,8]:

λ̇(t) = −∂H(SOC,u, t)
∂SOC

= −λ(t)
∂SȮC

∂SOC
(3.8)

subject to the equality constraint SOCf = SOCd. After substitution of the dynamics of the state

of charge SȮC = − I
C and Pe = IVoc in (3.7) we obtain,

H(SOC,u, t) = ṁf −
λHf

VocC

Pe

Hf
(3.9)

Defining:

s = − λHf

VocC
(3.10)
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yields the same equation as in (3.6). The challenge in finding the correct value of s for any given

cycle can be seen by observing its dependence on the co-state λ in (3.10). The optimal value of

the co-state λ should ensure SOCf = SOCd and this strongly depends on the upcoming power

demands. Therefore the optimal value of s is a function of future driving conditions as well as the

current value of the battery’s state of charge. While, due to uncertain future power demands, the

true value of s can not be found, we can come up with an estimate ŝ by utilizing partial preview

information, as described in the next section.

3.4 Estimation of Equivalent Factor With Partial Preview

This section describes how the equivalent factor s can be estimated by utilizing different

levels of preview information. The estimate ŝ replaces s in Eq. (3.6).

3.4.1 Optimal Control with Partial Preview: Future Terrain, Trip Length,

and Estimated Trip Velocity

The future power demand is a function of upcoming road slope and future velocity profile.

The road terrain information can be retrieved accurately from in-vehicle 3D maps and the vehicle

GPS-based navigation system if the route is known a-priori. As for the velocity, it is possible to

estimate it using real-time traffic data streams or by using historic traffic data [21, 20]. The focus

in this part, however, is not on a method of velocity estimation; rather we focus on how such an

estimate can be used online in energy management of PHEVs.

3.4.1.1 Estimating the Equivalent Factor Using DP

From Hamilton-Jacobi-Bellman equation, we know that the partial derivative of the optimal

cost with respect to the state is equal to the co-state λ [69, 8], that is:

λ(SOC, xt) =
∂J∗xt

(SOC)
∂SOC

(3.11)

Therefore, using Eq. (3.10), (3.11) we have,

s(SOC, xt) = −∂J∗xt
(SOC)

∂SOC

Hf

CVoc
(3.12)
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Figure 3.3: Equivalent factor s as a function of SOC and position in the 3D plane.

With an estimate of future power demand, it is possible to execute a dynamic program

backward in time which will calculate, for any possible pair (SOC, xt), an estimate of the optimal

cost-to-go denoted by Ĵ∗xt
(SOC). Finally, the estimate ŝ is expressed as:

ŝ(SOC, xt) = −∂Ĵ∗xt
(SOC)

∂SOC

Hf

CVoc
(3.13)

Because DP calculates the cost-to-go backwards in time, the ŝ value obtained from the above formula

will not depend on the past but only on future power demands. Thus a single round of DP com-

putations may be enough for a trip as long as the estimated future power demand does not change

significantly. Figure 3.3 maps out values of ŝ(SOC, xt) calculated using Eq. (3.13) for a simulation

case which is used later in our discussion. In the figure, a low ŝ value implies using electric power

is cheaper than using fuel and therefore encourages use of the battery. A high ŝ value on the other

hand discourages use of battery. As it can be seen in Fig. 3.3, the value of ŝ is mostly between

2 and 3.2 but drops at high SOC values or when the trip is nearly complete. In other words the

controller discharges the battery more aggressively, when it anticipates that the charge left in the

battery meets the energy needed to reach the destination. The value of ŝ depicted in 2D at different

positions is shown in Fig.3.4. It can be seen that the s-curve becomes steeper and more sensitive to

the battery SOC when the vehicle approaches its destination. We refer to this method of estimating

the equivalent factor by using DP as D-ECMS in the next discussions.
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Figure 3.4: Equivalent factor s as a function of SOC at different positions in a 2D plane.

3.4.1.2 Estimating the Equivalent Factor Using Backward ECMS

Online calculation of the equivalent factor using dynamic programming is viable but requires

at least one backward sweep which depending on the selected grid size and the processor can be

computationally demanding. In order to cut the computational load, here we propose use of a

backward ECMS, inspired by DP, for estimating the s value. It is possible to run the ECMS

backward in time starting from the final desired state of charge SOCd and iterate on the value of s

that yields the present state of charge. More specifically we propose the following steps:

1. The equivalent factor s range [se, s0] is estimated as in [77], where se is the conversion ratio

of fuel and electricity price explained in section 3.4.2; s0 is the neutral equivalent factor for a

charge-sustaining HEV [79].

2. The range [se, s0] is discretized and the optimal SOC trajectory is obtained backward for each

discretized s value in this range starting with the final state of charge SOCf = SOCd. By

change of time variable τ = tf − t the SOC dynamics in (3.1) and co-state dynamics in (3.8)

can be rewritten backwards-in-time:

d

dτ
SOC =

Voc −
√

V 2
oc − 4PbattR

2RC
(3.14)

d

dτ
λ = −λ(τ)

∂(dSOC
dτ )

∂SOC
(3.15)

However, this is a two-point boundary value problem and computationally expensive due to the

coupling of the SOC and co-state dynamics in (3.1) and (3.15). To reduce the computation
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time for online implementation, the co-state and as a result the equivalent factor may be

assumed to be constants in each backward run of ECMS. This is a valid assumption if, i) the

pointwise-in-time constraints on SOC are relaxed, and ii) the right-hand side of SOC dynamics

in Eq. (3.1) is not an explicit function of SOC. The latter is true when the open circuit voltage

of the battery Voc, and the battery resistance R, and capacitance C, are constants. These

assumptions yield λ̇(τ) = 0 and a constant optimal equivalent factor s. Because of large

variation of SOC in a PHEV, assumption of a constant Voc may not be valid. We show in the

Appendix that when variation of Voc is considered, the optimal value of λ varies considerately

over an entire trip, but not the equivalent factor s. The variation of optimal s is much less

than that of λ, therefore s could be approximated as a constant through the trip. Also, we

note that the estimation error of the future driving conditions may have a larger impact on the

equivalent factor than variation in battery parameters and therefore the latter may not very

much influence the results. At each position xt and based on the latest preview information the

backward ECMS is executed starting with the final state of charge of SOCd; this is repeated

for different choices of s ∈ [se, s0]. Each run results in an optimal SOC trajectory which is a

function of choice of si and position xt as shown in Fig. 3.5.

3. The value of s that yields the present SOC of the battery is selected as the optimal value.

Interpolations are performed when necessary. Note that this optimal value will be recalculated

at each step in time based on the latest preview information.

The computation time for the above backward ECMS approach on a personal computer

is much smaller than running the DP and thus it is thought to be very promising for real-time

implementation. Besides, because of its faster execution, the prediction of the future can be updated

periodically which potentially enhances the performance of this methodology. We refer to this

method of estimating the equivalent factor by a backward ECMS as E-ECMS.

3.4.2 Optimal Control with Partial Preview: Distance to Next Charging

Station

A desired scenario is to estimate the equivalent factor without using 3D terrain and velocity

information. In [54, 79, 64] different methods were proposed for estimating equivalent factor in a

charge sustaining HEV. Because in the PHEV case, the batteries can also be charged from the
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Figure 3.5: Optimized SOC trajectories with the same terminal SOCf and different initial guesses
for equivalent factor si.

electric power grid, the above approach for estimating the equivalent factor s does not directly

apply. A fair evaluation of s can benefit greatly from i) information about the distance to the next

charing station as compared to the all-electric range of the vehicle and ii) price of grid energy as

compared to price of fuel energy. Remember s, by definition, is the conversion ratio between the

electric power and fuel. Therefore the first step is to find the price ratio r between electric power

and fuel defined by:

r =
Prfs0Cs/(ρHf )

Pre/η̄e
, (3.16)

where Prf is the fuel price ($/l); ρ is the density of the fuel (kg/l); Hf is the lower heating value

of fuel (J/kg); Cs = 3.6 × 106 is the constant conversion ratio between kWh and Joules; Pre is

the electricity price ($/kWh); η̄e is the charging efficiency from charging station to PHEV. s0 is the

estimated conversion ratio from fuel to electricity for a charge sustaining HEV [79] based on the

average efficiency of the powertrain.

When the traveling distance is known to be less or equal to the vehicle’s electric range,

the powertrain can be run in its all electric mode. The equivalent factor se for this mode is then

calculated as:

se =
s0

r
(3.17)
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Combining Eq. (3.16) and (3.17) yields:

se =
Pre/η̄e

PrfCs/(ρHf )
(3.18)

Note that in above equation, se is not a function of the neutral equivalent factor s0. On the other

hand when the traveling distance is known to exceed the electric range, the equivalent factor should

be adjusted up to reflect use of gasoline fuel energy during the trip. Based on the nominal all-electric

range Xe and the total trip distance X we define:

κ = min(
Xe

X
, 1) (3.19)

and determine an average adjusted equivalent factor sadj as an initial guess:

sadj = se +
√

1− κ2(s0 − se) (3.20)

In the above equation when Xe ≥ X then sadj = se reflecting the fact that all the electricity will

be provided by the grid. In the other extreme, when the electric range Xe is much smaller than the

distance to the next charging station X so κ ≈ 0, then sadj = s0 which reflects the average electric

price in the charge sustaining mode. In between, when 0 < κ < 1, a value between s0 and se is

chosen as the base equivalent factor.

To reflect the influence of current SOC in selection of equivalent factor, one can redefine the

parameters κ and sadj as follows:

κ(t) = min(
xe(t)
xr(t)

, 1) (3.21)

sadj(t) = se +
√

1− κ(t)2(s0 − se), (3.22)

where xe(t) is the all-electric range for the remaining SOC and xr(t) is the remaining trip distance.

They are defined as:

xe(t) =
SOC − SOCmin

SOCmax − SOCmin
Xe

xr(t) = X − xt

(3.23)
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By definition, the equivalent factor varies between se and s0 depending on the current SOC and

remaining trip distance. The dependence of the s value on four parameters s0, se, SOC, and

remaining trip distance xr(t) reduces its sensitivity to the accurate estimation of s0; this is unlike

a charge sustaining HEV. The ECMS discussed in this part is referred as B-ECMS since it blends

operation of the engine and electric motor and discharges the battery gradually. This is similar to the

methods proposed in [71,77] but without the assumption of tracking a pre-defined SOC trajectory.

3.4.3 Optimal Control Without Preview

In absence of preview, one can guess a low value for the equivalent factor initially and

increase it when SOC decreases. This ensures that the electric power is discharged more aggressively

at high SOC and conservatively at low SOC. When the SOC reaches its lower bound, the control

strategy is switched to a charge sustaining strategy. In the next discussion, we refer to this strategy

as DS-ECMS (depleting and sustaining ECMS). This is shown in Figure 3.6 where the equivalent

factor s is chosen to be a linear function of SOC in charge depleting (CD) stage and a piece-wise

linear function in charge sustaining (CS) stage with details shown in [79]. A summary of different

control strategies as well as their abbreviations is shown in Table 3.4.
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Figure 3.6: Equivalent factor s as function of s at different stages: charge depleting (CD) stage and
charge sustaining (CS) stage.

3.5 Simulation Analysis

The performance of the proposed methods is studied via two sets of simulations, one with

a federal test cycle and a real-world terrain profile and one with velocity and terrain data obtained
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simultaneously when driving in a mountainous area. The total energy cost, taking into account both

fuel and electricity cost, is used as the index for evaluating the performance of different strategies .

The price of gasoline and electricity power, which may vary by area and time, are set to 0.79$/litre

(3$/gallon) and 0.12$/kWh respectively.

3.5.1 Case Study I

The terrain and velocity profile for this simulation case study are shown in Fig. 3.7. The

terrain is a stretch of uphill road in Contra Costa County in California and is extracted from

Intermap Technologies’ 3D map database and the velocity profile is that of EPA Highway Fuel

Economy Cycle (HWFET). Because the fuel economy of a PHEV strongly depends on the trip

distance, three simulation distances of 32km, 48km, and 72km are selected which are respectively

1.6, 2.4, and 3.6 times the all-electric range. The velocity profiles are repeated for long distance

simulations; the grades are mirrored, and then also repeated if necessary. A simple method to

estimate the velocity is deployed in which the vehicle is forced to run with the speed limits along

the road. In the simulation the speed limits, observed from HWFET cycle, are selected at 20m/s

and 25m/s for the two different segments. The acceleration/deceleration of the vehicle is set to the

constant value 0.5m/s2. The real and estimated velocity profiles are shown in Fig. 3.7. In practice

it is deemed feasible to estimate a vehicle’s future speed by using known speed limits, traffic signal

location and timing information, and real-time traffic flow conditions [19].

In each simulation case study, dynamic programming with full future information can find

the lowest energy cost; we use this lowest cost as the best benchmark. The performance of other

proposed methods is evaluated by calculating their percent energy cost difference with respect to

the DP benchmark. Table 3.2 summarizes these results. When preview is available the cost gap of

different control strategies compared with DP is mostly around or less than 1%. It also interests us

to determine which level of future information is more important for reducing the energy cost. It

can be seen that B-ECMS with only trip distance information performs very close to D-ECMS and

E-ECMS and is not far from the best possible benchmark, implying that knowledge of trip distance

is a significant factor for energy cost saving for a PHEV. Without preview, the energy cost would

increase considerably as shown in the results of DS-ECMS and rule-based strategies.
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Figure 3.7: Velocity, elevation, and grade profiles for Case Study I

Table 3.2: Performance gap (%) of different control strategies compared with DP with trip distance
of 32km, 48km, 72km for case study I.

Gap(%) 32km 48km 72km
preview D-ECMS 0.73 0.66 0.39

E-ECMS 0.76 0.69 1.18
B-ECMS 1.62 0.65 0.91

no
preview DS-ECMS 2.90 2.67 3.59

Rule-based 8.88 7.88 8.61

3.5.2 Case Study II

To evaluate the influence of larger changes in elevation, we drove a vehicle starting from the

city of Clemson in South Carolina to the town of Highlands in North Carolina and back, mostly via

the hilly US-28 road on May 14th, 2010. The elevation change in this trip was more than 900 m over

a distance of almost 50 km. We recorded both the velocity and elevation using a Garmin GPS 20x

receiver with a sampling time of 1 second. The raw data from the GPS were refined by removing the

dead points and by interpolating the missed data. For the simulation case study, we divide the trip

into three different segments all having the same trip length (48km) with a combination of uphill

and downhill profiles (Route 1 ), an uphill profile (Route 2 ), and a downhill profile (Route 3 ) as

shown in Fig. 3.8. The predicted speed in this figure reflects the speed limits observed from the

road side signs which we had recorded separately as a function of trip time. To isolate the influence

of velocity, we also designated a fourth scenario denoted by Route 4 with the same velocity profile
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of Route 2 but with road grade set to zero.
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Figure 3.8: Velocity, elevation, and grade profiles for Case Study II.

Similar to case study I, DP with full future information is used as the best benchmark.

Table 3.3 summarizes the energy cost gap between strategies with and without preview and the DP

benchmark. Here D-ECMS results are not reported as they are similar to those of E-ECMS. As

shown in the table, E-ECMS performs closest to DP for the R2 uphill terrain with the performance

gap of only 1%. The difference is larger for the R3 downhill terrain (6.46%) and for flat case of

R4 (6.33%). Note that on steep uphill roads the power demand from the grade dominates that

of demand to changes in velocity; thus poor estimation of velocity may have less influence on the

optimality of E-ECMS solution. On downhill or flat terrain on the other hand the power demand

caused by changes in velocity dominates and therefore the uncertainty about the future velocity

profile results in larger performance gaps between E-ECMS and DP.

As seen in this table, the trip distance based B-ECMS strategy is far from optimal especially

when there are large downhill elevation changes (e.g. 40% worse than DP for R3). During downhill

descents there is frequent opportunities for running electric only or for regeneration; but because

B-ECMS estimates the fuel equivalent factor based on remaining trip distance only, it fails to capture

part of the available potential energy. Observing this fact, here we propose an adjustment to the

B-ECMS strategy to account for the influence of large elevation changes. Note that the free potential

energy in downhill descents is equivalent to charging the battery from the power grid; therefore we
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propose to adjust the B-ECMS strategy by correcting the all-electric range xe(t) as follows:

x′e(t) = xe(t) +
mg∆hη̄r/(V̄ocC)

SOCmax − SOCmin
Xe, (3.24)

where m is the mass of the vehicle; V̄oc is the average battery voltage; η̄r is the average recuperation

efficiency; we set η̄r = 1 when no recuperation is anticipated in the downhill descent. ∆h is the

the downhill elevation change and defined as: ∆h = max (H(τ > t)) − H(tf ), where H(•) is the

elevation at time (•), t denotes the current time, and τ is the future trip time. In this equation,

the net potential energy gain between top of a hill and end of the trip is converted to an equivalent

all-electric range extension.

The performance of adjusted B-ECMS for routes R1 and R3 is shown in Table 3.3 and

is much improved. Note that E-ECMS sometimes performs worse than (adjusted) B-ECMS. This

may be attributed to large velocity transients in this case study which cannot be merely captured

by using the speed limit approximation as done in E-ECMS. We observe that the algorithms with

partial preview always perform better that strategies without preview.

Table 3.3: Performance gap (%) of different control strategies compared with DP in Case Study
II(R1-Route 1, R2-Route 2, R3-Route 3 in Fig. 3.8, R4-flat road with velocity from R2)

Gap(%)
R1

uphill & downhill
R2

uphill
R3

downhill
R4
flat

preview E-ECMS 2.74 1.03 6.46 6.33
B-ECMS 8.53 2.81 39.56 2.77
B-ECMS
(adjusted)

0.75 - 5.00 -

no
preview

DS-ECMS 7.28 4.82 16.55 8.34

Rule-based 14.20 14.81 20.77 15.70

The performance of B-ECMS depends on the parameters estimation of s0 and se. Gen-

eralization of this method to any other PHEV with real driving cycle needs further investigation.

In D-ECMS and E-ECMS, no parameter tuning is necessary but estimation of the trip velocity is

required.

3.5.3 Computational Case Study

Besides the energy cost, we also compared the computational burden in a simulation with

total trip time of 1472 seconds and sampling time of 2 seconds. The SOC resolution was chosen

at 0.0001 in all simulations. The simulations were performed on a personal computer with the
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CPU speed of 1.8 GHz and memory of 2GB. Table 3.4 summarizes the computational time of each

algorithm. It can be seen that the E-ECMS approach runs much faster than D-ECMS with the same

level of preview without much loss in performance and has the potential to be used in real-time.

The computational burden of B-ECMS and DS-ECMS is essentially the same as a normal ECMS

approach and thus it is suitable for online optimization.

Table 3.4: Computational case study for proposed control strategies
Algorithm Method to estimate equivalent factor s CPU time (seconds)
D-ECMS by DP 600
E-ECMS by ECMS 2.5
B-ECMS by blending operation 0.7
DS-ECMS by depleting and sustaining operation 0.7

3.6 Conclusions

This part work investigated real-time implementable energy management algorithms for en-

ergy management of plug-in hybrid vehicles that can take advantage of information preview for fuel

saving. This is achieved by handling the energy minimization problem at two levels: i) A global

optimization approach that utilizes preview information (if available) for the whole trip to estimate

a fuel-electricity equivalent parameter, and ii) a local ECMS optimization which determines the

optimal control based on instantaneous values of power demand, battery state of charge, and the

parameter set by the global optimizer. A simulation case study with a federal driving cycle-HWFET

indicated that knowledge of distance to the next charging station can have a significant influence on

the fuel economy of a PHEV because it allows better planning of all-electric or blended motor/engine

operation. Full terrain and estimated future velocity can result in additional fuel economy improve-

ment up to 1%. Another simulation case study with large elevation changes indicated the importance

of accounting for potential energy gains resulting from significant elevation change. Predicting the

future velocity profile based on speed limits helps the energy management of a PHEV in general.

But if the real driving cycle has more velocity transients than the predicted one, the control strat-

egy that relies only on trip length and elevation change and not on velocity estimate may perform

better. The computational time required to include preview are shown to be much smaller than the

total simulation time and therefore has the potential for real-time implementation. This work only

focused on energy minimization. Future work can consider other factors such as total emissions by

the vehicle and the electric grid.
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Chapter 4

Traffic Flow Information Preview

for Fuel Saving and Emission

Reduction

4.1 Introduction

Today’s advances in telematic and traffic information technology can be used to enable

safer, smarter, and greener driving patterns [58, 12]. Vehicles capable of communicating wirelessly

to the infrastructure and neighboring vehicles will be able to manoeuver more predictively, enhancing

their safety and fuel efficiency. Some examples of this are the use of cooperative vehicle wireless

communication for lane change, platooning, and obstacle avoidance [41, 34]. In [78, 80] it is shown

how advanced telematics can be an enabler for better energy management of hybrid and plug-in

hybrid vehicles.

Moreover, information can be transmitted wirelessly from individual vehicles to estimate

the state of macroscopic traffic flow [75] and perhaps even enable higher resolution microscopic

prediction about neighboring vehicles. In a microscopic traffic level, a vehicle of interest, say car

n+1, is assumed to follow the car ahead, say car n as shown in Fig. 4.1. The key problem for

optimal control purpose is to predict the velocity profile of car n over a short future horizon. Such

prediction can in turn be used by individual vehicles, running in adaptive cruise control mode,
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to reduce their velocity transients and undesirable stops and starts [38] leading to improved fuel

economy, emissions, and ride comfort. Other recent work has proposed using information about

upcoming terrain [25, 29] and information about the state of traffic signals [4, 49] to enhance the

following vehicle’s fuel economy in the adaptive cruise control mode.

Figure 4.1: Microscopic car following traffic model

Not only the immediate driving condition of the lead car influences the driving behavior,

but also the traffic pattern en route. Many of such stop and go conditions occur due to lack of

information about the upcoming traffic pattern down the road. Many drivers choose to aggressively

speed up to near the speed limit, only to be forced to abruptly decelerate their vehicles when faced

with the slower traffic ahead of them and then perhaps idle or crawl in slow-moving traffic. If the

upcoming traffic pattern is somehow “revealed” to the drivers in advance, the opportunity exits to

adjust the speed more predictively to reduce harsh deceleration and idling or crawling intervals.

Such planning of velocity could lower fuel use and emissions, improve the ride, and reduce brake

and engine wear.

Such traffic pattern may be affected by traffic light timing, traffic jam occurrence, traffic

wave evolution, local traffic events, weather condition, or even the road geometry. In the context

of networked and “informed” vehicles, it is desired to predict all these factors or at least some of

them. However, use of these different kinds of information is not apparent and needs to be organized.

This can be done by classifying the prediction into different levels according to its time-scale and

importance to the driver. Similar to transportation research area where traffic models are classified

into three levels: microscopic level, mesoscopic level, and macroscopic level according to the level of

details representing the traffic systems [27], we also classify the prediction of future driving conditions

into three levels, i.e. microscopic level, mesoscopic levels, and macroscopic levels as shown in Fig.

4.2.

The microscopic level prediction refers to the prediction of the driving conditions surround-

ing a vehicle including the information of speed limits, stop sign, upstream traffic, and preceding

car condition with a prediction horizon around 10-30 seconds. The microscopic traffic has relatively
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Figure 4.2: Schematic of microscopic, mesoscopic, and macroscopic traffic

Figure 4.3: Multiscale spatiotemporal traffic prediction

fast dynamics and impose significant constraints on each driver. For example, sudden braking of

preceding car will push the upstream vehicle to slow down. Thus this level is the most important

prediction part in autonomous driving. Mesoscopic level refers to the driving conditions in near

future with a horizon around 30-300 seconds, which is less important than the microscopic level,

but may have significant influence for fuel saving. Examples of utilizing this level of prediction have

been shown in [4,49] for utilizing traffic light prediction and in [29,25] for terrain prediction in heavy

vehicles; the fuel consumption was reduced up to 10% and 3% respectively. Macroscopic level traffic

models describe the average behavior of the traffic e.g. traffic density, traffic flow, and traffic speed.

Different approaches e.g. model-based and data-based could be used to predict the traffic condition

at a macroscopic level. The former predicts the traffic by gas-kinetic models, which will be discussed

in Section 4.3; the latter predicts using historic and real-time traffic data. Figure 4.3 shows the

traffic prediction in different scales.

Different levels of predictive information could be used in different ways. For example,

microscopic traffic predictions could be integrated in the Adaptive Cruise Control Systems (ACC) for

reducing stop and goes. The optimal vehicle velocity with mesoscopic and macroscopic information
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prediction could be suggested to the driver via the add-on accessories such as the smart phone or

intelligent speed assistant systems or simply used as a high-level reference speed to the adaptive

cruise control system.

In next two sections, we will introduce a two level velocity planning algorithm based on mi-

croscopic and macroscopic traffic predictions: A predictive cruise control algorithm with a stochastic

microscopic prediction and a velocity planning controller based on the preview of macroscopic in-

formation.
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4.2 Predictive Cruise Control with Probabilistic Constraints

for Eco Driving

The adaptive cruise control (ACC) systems in production cars today are intended to reduce

the driver’s workload and improve vehicle safety. Unlike a conventional cruise control system, an

ACC system uses radar to measure the distance to a leading vehicle and can adjust the desired

velocity to maintain a safe distance. While most ACC designs are based on instantaneous measure-

ment of the inter-vehicular gap, it has been shown that predictive control strategies can result in

smoother following velocity [28,42,81]. In such a predictive adaptive cruise control system, a major

challenge is estimating the future driving pattern of the lead car.

To deal with the lead vehicle velocity uncertainty problem, in our work we employ a chance

constrained model predictive control framework for the ACC in which the inter-vehicle distance

constraints are imposed probabilistically. The velocity of the lead car is predicted stochastically

using a Markov chain assumption; i.e. it is assumed that the velocity at the next sampling time only

depends on the current step velocity and is independent of the past. The probability distribution of

the velocity of the lead car over the prediction horizon is then found via Monte Carlo simulations.

The lead vehicle is assumed to wirelessly share this information with neighboring vehicles. Knowledge

of the velocity distribution of the lead car allows for the chance constrained MPC problem to be

converted to a deterministic linear MPC problem for which efficient real-time solution methods exist.

The sections of this part are organized as follows: Section 4.2.1 introduces the car following

model and vehicle longitudinal dynamics. In Section 4.2.2, the model predictive cruise control

problem with stochastic constraints is presented. Simulation case studies are given in Section 4.2.3

and the the summary of the findings are in Section 4.4.

4.2.1 The Vehicle Model

4.2.1.1 Car Following Model

A variety of methods exist in the literature which model a car that follows a leading car,

e.g. safe-distance models, stimulus-response models, and psycho-spacing models [27]. In this work

we assume a safe-distance following model in which the follower maintains a velocity dependent gap
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with the lead car:

D(t) = r(t)− x(t) ≥ Lmin + Tv, (4.1)

here r(t) and x(t) are the position of front and following cars respectively; Lmin is the minimum

distance and usually is estimated as Lmin = 1000
ρjam

, where ρjam (vehicles/km) is the density of traffic

jam; T is the reaction time constant; and v = ẋ.

4.2.1.2 Vehicle Kinematics

The vehicle longitudinal motion is modeled based on simple kinematic relationships and a

first order lag between acceleration command and actual acceleration:





ẋ = v

v̇ = a

ȧ = − 1
τ a + 1

τ u(t)

, (4.2)

where u(t) is the control input and can be understood as the steady-state acceleration command and

τ is a time constant. The state vector is denoted by z = [x v a]T . The discretized state-space

model can be written as :

z(k + 1) = Adz(k) + Bdu(k), (4.3)

where Ad and Bd are the discretized system matrices.

4.2.2 Control Problem Formulation

A model predictive control approach is used for the cruise control of the follower vehicle.

To clarify the notations between the real states and predicted states, we use z(i + k|k) denoting the

i step prediction of z from time step k. The state dynamics of the following car is predicted by Eq.

(4.3) as function of control input u as:

z(i + k|k) = Ā(i)z(k) + B̄(i)U, (4.4)
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where U = [u(0 + k|k) ... u(i + k|k) ... u(Nc − 1 + k|k)]T and Nc is the number of steps of

control horizon; beyond which the control inputs are assumed to be zero. Matrices Ā(i) ∈ R3×3,

B̄(i) ∈ R3×Nc are obtained as functions of Ad, Bd.

At each time step k, a cost J , which may be a function of predicted states, control inputs,

and the reference input is optimized yielding the optimal control input u∗(i+k|k), i = 0 ... Nc−1.

But only the first control input of this sequence, u∗(i + k|k), i = 0, is applied and the calculations

are repeated with the new initial conditions. Of course, the optimization should also satisfy the

constraints imposed by systems design requirements.

Note that in our problem, the cost function and the constraints may be the function of the

preceding car position r(t), which is uncertain. With assumption of exact knowledge of r(t), we can

solve it as a standard MPC problem. In practice, however, r(t) is not exactly known in advance

and needs to be predicted. This could be done either in a deterministic way or stochastic way. In

this study, we propose to predict r(t) stochastically yielding a stochastic MPC problem. In order to

evaluate the proposed methodology, a passive car following model is also developed for comparison.

4.2.2.1 Cost Function

The goal is to reduce fuel consumption without sacrificing drivability and following behavior.

Instead of minimizing the fuel consumption directly, which is a highly nonlinear problem, we will

minimize the acceleration over the prediction horizon. The effectiveness of this cost function is

tested separately through the use of a commercial vehicle powertrain simulation software-Powertrain

Simulation and Analysis Toolkits(PSAT)-developed by Argonne National Laboratory [40]. Moreover,

we penalize the car following error at the end of each prediction horizon Np. This can be achieved

by the following cost function:

J =
Nc−1∑
i=0

u2(i + k|k)

+ q{r(Np + k|k)− x(Np + k|k)− T ẋ(Np + k|k)− Lmin},
(4.5)

where q is the penalty weight for car following distance error. Other forms of cost functions can

be found in [42, 28]. Note that we have a quadratic cost for acceleration but only a linear cost

for tracking error. The gap constraints introduced later will ensure that this linear term remains

positive.
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By substituting the Eq.(4.4) into Eq.(4.5) and defining Γ = [1 T 0], the cost function

can be written as:

J =
Nc−1∑
i=0

u2(i + k|k)

+q{r(Np + k|k)− Γz(Np + k|k)− Lmin}
=UTΛU − qB̄(Np)U + C,

(4.6)

where C = q{r(Np + k|k)− ΓĀ(Np)z(k)− Lmin}.
As we can see, the term C is independent of the control input u. Using a linear cost for

following distance in Eq. (4.5) keeps the control input decoupled from the future position of front

car. As a result, the position of the leading car, which is not a function of control input can be

dropped from the cost function. If the following distance error cost has a quadratic form as in [6],

the cost function will be coupled with the position of the lead car, complicating the next steps of

this derivation.

4.2.2.2 Constraints

With the cost function in a quadratic form in Eq. (4.6), we now need to consider the con-

straints imposed by vehicle system limitations and safety requirements: the maximum and minimum

acceleration constraints, non-negative velocity, maximum velocity constraints, and safe following dis-

tance. Specifically, the constraints on control input are formulated as:

umin ≤ u(i + k|k) ≤ umax, (4.7)

for i = 0, 1, 2...Nc− 1, where umin and umax are the minimum and maximum allowable acceleration

respectively.

The constraints for velocity are expressed as:

vmin ≤ v(i + k|k) ≤ vmax, (4.8)

for i = 1, 2, ...Np, where vmin and vmax are minimum and maximum velocity, and vmin is set to 0

in our study.

With the position of the front car, r(t), exactly known or with deterministic prediction, the

car following distance, D(t) in Eq.(4.1), should be kept in a reasonable range; the constraints are
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given by:

Lmin ≤ r(i + k|k)− x(i + k|k)− T ẋ(i + k|k) ≤ Lmax, (4.9)

where Lmax is the maximum following distance. These constraints should be satisfied at each

sampling time.

In practice, the future position r(i+k|k) is not exactly known. By assuming that r(i+k|k)

is a random variable, we can require the constraints to be satisfied at a given probability α. For

example, the minimum safety distance constraint in Eq.(4.9) is rewritten as:

P{r(i + k|k)− x(i + k|k)− T ẋ(i + k|k) ≤ Lmin} ≤ 1− α(·), (4.10)

where α(·) is a non-constant value as function of parameters of prediction step i and the acceleration

of preceding vehicle ar(t) discussed in Section 4.2.3. The probabilistic inequality (4.10) can be

transformed to the following deterministic inequality:

Lmin + x(i + k|k) + T ẋ(i + k|k) ≤ r1−α
t (i), (4.11)

where r1−α
t (n) is a value at which the cumulative distribution function of position is equal to 1−α,

namely:

P{r(i + k|k) ≤ r1−α
t (i)} = 1− α

Similarly, we can convert the maximum following distance constraint in (4.9) to probability

constraints. We will have the following deterministic constraint:

rβ
t (i)− Lmax ≤ x(i + k|k) + T ẋ(i + k|k) ≤ r1−α

t (i)− Lmin, (4.12)

where β is a given, satisfying probability value for maximum following distance.

4.2.2.3 Stochastic Prediction of the Position r(i + k|k)

For the effective use of the model predictive cruise control, a significant challenges is to

predict uncertain future inputs. For immediate predictions (≈ 0 − 5s), this may be done using a

Kalman filter and autoregressive moving average algorithms (ARMA). For short term prediction
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(≈ 0− 300s), prediction with future event information may increase the prediction accuracy. Some

examples of future events are: vehicle cut-in, local traffic jams, sudden changes of speed limits, or

even road elevation changes. In our discussion, a Markov chain model is developed to predict the

uncertainty of the preceding vehicle driving condition over a short horizon and the distribution of

the position r(i + k|k) is found through Monte Carlo simulations.

Markov chain Monte Carlo (MCMC) is a powerful means for generating random samples

that can be used in computing statistical estimates [68]. References [32,44,59] introduce the Markov

chain construction methods for velocity, acceleration, and driver’s power demand transition in the

application of energy management of hybrid electric vehicles. In our discussion, we only consider

the velocity transition of the lead car and exclude the acceleration as a stochastic process assuming

the velocity at a next step only depends on its previous step. Another option is to combine the

velocity and acceleration as the transition state and construct the Markov chain. However, this

method would require a large amount of training data and is unrealistic for this preliminary study.

The transition probability matrix is a square matrix, PNv×Nv
, trained from historical driving

data, where Nv is the number of the discretized points for the velocity. The one step transition

probability from any state, indexed as m, to another state, indexed as n, is Pm,n. For multiple e.g.

i step transition, the transition matrix is calculated as Pi = P i.

With known state transition probability and current state value, the probability distribution

of the future position over the prediction horizon can be calculated using Monte Carlo simulations.

Monte Carlo methods are a class of computational algorithms that rely on simulated random sam-

pling to compute their results. Specifically, in our problem, different possible realizations, usually

called scenario tree [67], of the velocity vr(i + k|k) of preceding car are simulated according to the

Markov chain transition matrix. The vehicle position is the integral of the velocity and it has the

following form in discrete space:

r(i + k|k) = r(k) +
1
2

n−1∑

i=0

(vr(i + k|k) + vr(i + 1 + k|k))∆t(i),

where ∆t(i) is the sampling time at i step prediction.

The distribution of r(i+ k|k) is approximated from the simulation of a large size of pseudo-

random numbers using the Metropolis-Hastings algorithm [68]. Monte Carlo simulation generally

takes substantial computation time but this work may be done off-line in a real application.
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4.2.2.4 Predictive control with prescient information and passive control with state

feedback

We compare the results of predictive car following with stochastic preview information to

two other cases:

1) Predictive control with precise prescient information

With precise prescient information of the car ahead, r(i + k|k) in Eq. (4.9) is assumed to

be exactly known. This is non-causal, but the performance with this level of preview is expected as

the benchmark: the best performance that the controller can achieve. The simulation results later

shown coincide with this expectation.

2) Passive following model

In a passive following model, the car behind follows the preceding without any knowledge of

future driving conditions and a safety following distance is maintained. This is done by a feedback

control law u(t) = k1∆v + k2∆s − k3
∆v2

2∆s (∆v < 0) + k4, where ∆v = vr(t) − v(t),∆s = r(t) −
x(t)− T ẋ(t)−Lmin, and k1, k2, k3, k4 are coefficients as function of ∆v. More details about passive

following methods may be found in [56].

4.2.3 Case Study and Result Analysis

4.2.3.1 Pre-setting of simulation data

The proposed strategies are evaluated through two driving cycles shown in Fig. 4.4 obtained

by driving a vehicle from Clemson, South Carolina to Highland North Carolina with the same driver.

The data was obtained from a Garmin GPS 20x receiver with a sampling time of 1 second. In

stochastic MPC, the probability of state transition matrix P is trained from the first driving cycle

and the MPC with the same P is applied to the two cycles. For the final evaluation of different

control strategies, instead of using the cost function J , the fuel economy in miles per gallon(MPG),

emissions(CO2), and tracking distance D(t) are used. With the optimal following velocity calculated

using the different control methods, the fuel economy and emissions are computed separately using

PSAT. Tracking distance indicates the tracking ability and is expected to stay within a reasonable

range.

The probability of the constraint satisfaction, α, has the form α(·) = λ0λ
i−1
1 , where i is the

prediction step and λ0 = λ1 = 0.96. As will be seen later, if we change λ0 according to the current
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Figure 4.4: Two cycle profiles from the real driving of the same driver

acceleration, better results will be obtained. The setting of β is nearly the same as α; however, β

is not adjusted by the acceleration. All other main parameters used in the simulation are listed as

follows:

Table 4.1: Simulation parameters
Lmin(m) Lmax(m) T(s) k Nc Np ∆t(i)(s)

6 200 1.5 0.2 10 10 1

4.2.3.2 Simulation and Analysis

The simulation results of cycle 1 are shown and discussed first followed by that of cycle

2. Fig. 4.4 shows the optimal vehicle velocity from strategies of passive control (P-control), MPC

with stochastic input (MPC-STO), and MPC with prescient knowledge (MPC-PRE) and Table 4.2

summarizes the performance including the fuel economy, emissions, and tracking ability. The zoomed

figures show that all strategies, like a filter, smooth the velocity trajectory of the following car and the

resulting fuel economy improves compared to the leading car. Among the three, the velocity profile

from prescient MPC yields the best results for a fuel economy improvement of 32% compared to the

leading car. Also, the average tracking distance (34m) is less than the stochastic MPC (48m) and

passive following (39m). The excellent performance of MPC with prescient information indicates

the improvement margin for other control method. Even though the fuel economy of stochastic

MPC(12.1%) is better than that of passive following (11.4%), the larger tracking distance (48m)

shows that this benefit comes at a performance disadvantage.

By analyzing the stochastic MPC method, the factors contributing to the large following
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Figure 4.5: Velocity profiles from different control strategies: the first one is from passive control,
the second one from MPC with stochastic prediction, and the third one from MPC with prescient
driving condition.

distance are found to be the ignorance of acceleration in the probability transition matrix P and

a strict setting for α. One option is to add acceleration as an additional state in the transition

matrix, however, this will increase the size of P , complicating calculations further and requiring

more training data. As an alternative method, we can set the value of α using the current value

of acceleration. Specifically, the acceleration of the reference vehicle can be stratified as: hard

deceleration, normal deceleration, normal acceleration, or hard acceleration. The value of λ0 in α

is relaxed as 0.96, 0.7, 0.4, 0.2 depending on the level of acceleration. By doing so, the fuel economy

of adjusted MPC-STO can be improved up to 15.5%, the average following distance is reduced to

38m, and the maximum following distance improves as well.

Table 4.2: Performance comparison of different control methods. 1) P-control: passive control, 2) MPC-PRE:MPC
with prescient knowledge of future uncertainty 3) MPC-STO: MPC with prediction of the velocity as a Markov chain

Control method
MPG

(normalized)
CO2

(normalized)
E(D(t)), min(D(t)),

max(D(t))(m)
Ref. Veh. 1 1 -

P-Control1) 1.114 0.89 39.34, 6.00, 71.41

MPC-PRE2) 1.320 0.76 34.03, 6.00, 55.52

MPC-STO3) 1.121 0.88 48.56, 6.00, 93.32

MPC-STO(adj)4) 1.155 0.86 38.30 6.00, 74.34

In above simulations using MPC-STO, the velocity transition matrix P has been trained

from cycle 1 itself. As further validation of the proposed MPC-STO control, the same simulations

are repeated for cycle 2 while using the transition matrix P trained from cycle 1. These results are
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summarized in Table 4.3. To ensure fair comparisons between the performance of MPC-STO and

passive following, the parameters in passive following are tuned to match the tracking distance with

MPC-STO. The results of these simulations indicate the same findings as seen before for cycle 1.

Table 4.3: Performance comparison for different control methods for cycle 2
Control method

MPG
(normalized)

CO2
(normalized)

E(D(t)), min(D(t)),
max(D(t))(m)

Reference Veh. 1 1 -
P-Control 1.075 0.93 39.42, 6.00, 73.54
MPC-PRE 1.317 0.76 35.40, 6.00, 57.59

MPC-STO(adj) 1.145 0.87 39.40, 6.00, 84.54

Table 4.4 summarizes all the information required for different control strategies. Passive

control needs the least information-current velocity and position of the reference vehicle. MPC-PRE

requires the most information-the prescient driving condition for prediction horizon at the beginning

of each step. MPC-STO requires only the historical driving information from the reference vehicle.

Table 4.4: Comparison of different control method for the requirement of driving information.
r(t):reference vehicle position at current time step t, vr(t): current reference vehicle veloc-
ity, ar(t):current reference vehicle acceleration, ar(τ), τ < t: historical time series acceleration,
ar(τ), τ > t: (prediction of) future acceleration, P :velocity transition matrix for reference vehicle

Method Information Requirement

r(t) vr(t) ar(t)
ar(τ)
τ < t

vr(τ)
τ > t

P

P-Control
√ √ × × × ×

MPC-PRE
√ √ × × √ ×

MPC-STO
√ √ × × × √

MPC-STO(adj)
√ √ √ × × √

We should note that the improvement result strongly depends on the driving cycles and the

results will be different for different cycles and vehicles considered. Testing the proposed algorithms

with further data from the same driver in general needs further investigation. Also, even though

some safety constraints are considered in Eq.(4.9), additional safety constraints could be added if

necessary.
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4.3 Predictive Control Based on Macroscopic Traffic Infor-

mation

This part formulates predictive planning of velocity using macroscopic traffic predictions

and demonstrates its impacts on fuel economy and emissions of passenger and commercial vehicles

via several simulation case studies. We cast the problem as an optimal control problem with the

goal of reducing velocity transients while also penalizing trip time. This optimal control problem

will be solved numerically by a two dimensional dynamic program. A key to this work is realizing

the traffic-imposed constraints on the velocity which requires spatiotemporal estimation of traffic

velocity. In this part we focus on highway trips where a longer traffic preview horizon along with

coarser traffic information can be effective. For this type of planning knowledge of current state of

traffic is not sufficient and a predictive traffic model may be used to estimate the evolving pattern

of traffic down the road.

Because a feedfoward traffic estimator that predicts evolution of traffic along the vehicle

route is a key part of this work, it is discussed in detail next in Section 4.3.1.1. This is followed

by formulation of the optimal velocity planning problem in Section 4.3.1.2. The numerical dynamic

programming solution process is described in Section 4.3.1.3. Several simulation case studies are

presented in Section 4.3.2.

4.3.1 Methodology

4.3.1.1 Spatiotemporal Prediction of Traffic

There is a vast body of work by traffic engineers, physicists, and computer scientists on

traffic modeling. Excellent and thorough review of such models can be found in [27, 50, 51]. Micro-

scopic traffic models use simple car-following rules to model procession and interaction of individual

vehicles. These models are described by a system of ordinary differential equations or in the cellular

automata approach by rules for advancing individual vehicle in a fine grid in discrete time steps. The

drawback of microscopic models is the high computational load as the number of vehicles increases.

Macroscopic models use the analogy of traffic flow to fluid flow and formulate spatiotemporal evo-

lution of speed and traffic density using coupled partial differential equations (PDEs). Aggregating

a large number of vehicles into a continuum macroscopic model has the advantage of being much
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faster computationally. At the same time via macroscopic models it is possible to capture complex

traffic phenomena such as a congestion wave, instabilities, and phase transitions of traffic flow [24].

Macroscopic models have also been used for calculating average travel times, fuel consumption and

emission levels [55], for short-term forecasts of traffic flow for rerouting [26, 39], and for design of

traffic flow control systems [23, 33]. More recently in [20], a gas-kinetic traffic model is used to

estimate the future velocity of a plug-in hybrid vehicle. Missing from the literature are methods

that help plan the velocity of an individual vehicle to reduce the possibility of its untimely arrival

at a local traffic wave.

One way of forming a spatiotemporal traffic map is through these existing gas-kinetic PDE

models of traffic to predict its evolution. Specifically in inter-city highway driving use of a predictive

model is important due to the long planning horizon. The evolution of average traffic velocity at each

point and time vt(x, t), and average traffic density ρt(x, t), are predicted by the following coupled

PDEs [27]:

∂ρt

∂t
+

∂(ρtvt)
∂x

= q(x, t) (4.13)

dvt

dt
=

∂vt

∂t
+ vt

∂(vt)
∂x

=
ve(ρt)− vt

τ
− 1

ρt

∂P

∂x
+

η

ρt

∂2vt

∂x2
(4.14)

The first equation describes balance of vehicles; there q(x, t) models the incoming or outgoing traffic

at discrete road junctions. The second equation models dynamics of the velocity, characterized by a

traffic pressure P expressed as P = c2
0ρt and traffic viscosity η in which both η and c0 are constants.

The function ve(ρt) captures the speed-density relationship at steady-state. Details on the choice

of parameters P and η and the function ve(ρ) can be found in [24, 35, 47]. Approximate boundary

and initial conditions and the ramp inputs q(x, t) can be retrieved from real-time traffic information

systems as well as time of the day, season, holidays, current and forecast weather, accidents, or

events such as school schedules, sports games and concerts, and even uniquely local variables [13].

The set of coupled PDEs will be solved using a finite-difference approach in real-time to determine

traffic-imposed constraints in the future path of a vehicle. For inner-city driving, the immediate

traffic-imposed bounds on speed can be obtained via infrastructure-to-vehicle communication [31]

or via ad-hoc [70,76] vehicle-to-vehicle communication networks.
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4.3.1.2 Optimal Control Problem Setup

The average traffic velocity vt(x, t) estimated above will be an upper limit to the velocity

each vehicle can assume at position x at time t. The goal is to find a velocity profile that i) meets this

traffic-imposed speed limit (and the speed limits of the road) and ii) lowers fuel use without too much

compromise on trip time. In other words, the slope of each feasible path is upper-bounded by the

spatiotemporally varying limit vt(x, t) imposed by traffic. The problem of finding the optimal speed

trajectory v(x, t) can be formalized as an optimal control problem which will be solved numerically.

The cost function is:

min
v(x,t)

J =
∫ xf

xi

‖L (v(x, t))‖2Q
dx

v(x, t)
(4.15)

subject to road speed limits [vmin, vmax], traffic-imposed bound on speed vt(x, t), and driver set

speed vset:

vmin 6 v(x, t) 6 min(vmax, vt(x, t), vset) (4.16)

and with acceleration and deceleration constraints imposed on v̇(x, t). In (4.15), xi and xf are the

origin and destination and ‖ • ‖Q denotes the weighted 2-norm with the diagonal penalty weighting

matrix Q. Appropriate choice of the the integrand L(v(x, t)) is an open problem. For example

the choice L(v) =
[

ṁf NOx (v(x, t)− vset)

]T

penalizes the fuel rate ṁf and NOx emissions,

while also penalizing deviations from the driver set speed. The latter ensures travel time is not com-

promised. Another choice is to explicitly penalize trip time by selecting L(v) =
[

ṁf NOx 1

]T

which will result in trip time tf − ti, appearing in the cost function. However inclusion of fuel rate

and emissions in the cost function add to the complexity of this optimal control problem, because it

requires inclusion of a detailed model of the vehicle powertrain. Therefore in this first investigation

we use a simpler form L(v) =
[

v̇2 1

]T

to penalize trip time and velocity transients v̇ (accel-

erations and decelerations) which indirectly contribute to increase in fuel use. This correlation of

the cost function with the fuel economy is tested in the simulations with PSAT a commercialized

vehicle powertrain simulation software developed by Argonne National Laboratory. Another benefit

of using this cost function is that it is independent of a specific powertrain and could be directly

transferred among different vehicles. The other factor increasing the fuel use is idling at zero speed;

penalizing the total trip time should cut unnecessary idling. The solution v(x, t) can then be issued

as a reference to the low-level vehicle controller. Alternatively the velocity v(x, t) can be suggested
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to the driver as the eco-friendly speed by a mobile phone or intelligent speed assistant system which

has been experimented in Australia and Europe [73]. The PSAT software including a driver model

and independent of the optimal control process was used to test the effectiveness of the suggested

velocity profile.

4.3.1.3 Numerical Solution Via Dynamic Programming

The optimal control problem posed above cannot be solved analytically due to the spa-

tiotemporally varying constraints imposed on its optimization variables along with several other

pointwise-in-time constraints. In this work we solve this problem numerically using a dynamic

program.

The vehicle kinematics is represented by the following two-state dynamic equations:





ẋ = v

v̇ = u
(4.17)

where x and v are position and velocity of the vehicle respectively and u is its acceleration which

is selected as a control input. Since the final optimal velocity trajectory is evaluated in powertrain

simulation software PSAT, we ignore the the dynamics of the powertrain and driver’s reaction time

at the upper level control. Therefore L =
[

u2 1

]T

is set in the cost function (4.15). In addition

to the velocity constraint (4.16), we impose the acceleration constraint on the input u:

amin ≤ u(x, t) ≤ amax (4.18)

where amax is the positive maximum allowable acceleration and amin is the negative maximum

allowable deceleration.

The cost function can be written as follows:

J =
∫ xf

xi

u2 dx

v(x, t)
+ φ(tf , ti) (4.19)

where φ(tf , ti) is a terminal cost on trip time and proportional to tf − ti by a penalty weight.
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Figure 4.6: Schematic of the DP grid and value function iteration.

The cost function in (4.19) is rewritten in discretized space calculated backward:

J =
Nmax∑
n=0

u2(xn, txn)
v(xn, txn

)
∆x + φ(tf , ti) (4.20)

We also define the the cost function JXN
(v, t) as the cost-to-go from position xN to the final position

which is a function of variables v and t:

JXN
(v, t) =

Nmax∑

n=N

u2(xn, txn
)

v(xn, txn)
∆x + φ(tf , ti) (4.21)

The optimal cost-to-go from position xN to the final position will then be:

J∗XN
(v, t) = min

u

Nmax∑

n=N

u2(xn, txn)
v(xn, txn

)
∆x + φ(tf , ti) (4.22)

The optimal acceleration u∗ can be found relying on Bellman’s optimality principle and by value

function iterations backward-in-position as shown in Fig. 4.6. Given the optimal cost-to-go J∗XN

iterations over each node on the planar grid at xN−1 will yield the optimal cost-to-go J∗XN−1
:

J∗XN−1
(v, t) = min

u(xN−1)
(J∗XN

(v, t) +
u2(xN−1)
v(xN−1)

) (4.23)

and also determines the optimal control u∗(xN−1). The process is continued backward-in-position

until the sequence of optimal control inputs over the entire trip is determined.

The above solution is a constraint-admissible velocity profile that follows the set target

speed as closely as possible. In order to estimate the fuel economy of the vehicle when following this

optimal velocity trajectory, a production vehicle is selected and its powertrain model is assembled
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from the extensive database of Powertrain System Analysis Toolkit (PSAT).

4.3.2 Simulation Results

For the fuel economy evaluation, two different vehicles have been considered: a passenger

vehicle and a mid-size truck. The passenger vehicle is an economy-sized car with 5-speed automatic

transmission, 1000 kg mass and 115 hp maximum power. The midsize truck has 6-speed automatic

transmission, 8500 kg mass, and 500 hp maximum power. The fuel economy evaluation process is

done in PSAT v6.2. In all simulations the maximum acceleration is assumed to be 2 m/s2 which is

a conservative estimate of maximum acceleration capability of a midsize vehicle. Assuming braking

on dry asphalt, the friction coefficient of µb = 0.69 yields the maximum possible deceleration of 6.7

m/s2. However, to exclude aggressive driving, maximum braking deceleration of 3 m/s2 is assumed.

Two simulation case studies were conducted to determine the potential impact on fuel

economy and trip time of a vehicle when future state of traffic is available through the model

formulated in Section 4.3.1.1. The parameters of the system of partial differential equations 4.13

and 4.14 are summarized in Table 4.5. The resolution of the velocity distribution surface is 900 by

450 which corresponds to 20 meters and 1 second along position and time vectors.

Table 4.5: Macroscopic traffic model parameters
Parameter Value Unit

τ 0.01 s
vf 20 m/s

ρjam 0.2 vehicle/m
α 6000 1/m

In order to generate three dimensional spatiotemporal traffic flow surfaces for both back-

ward and forward wave cases, the macroscopic traffic flow governing equations (system of PDEs

in equations 4.13 and 4.14) need to be provided with a set of boundary and initial conditions for

each case. Two sets of boundary and initial conditions have been assumed such that upstream,

downstream and initial steady speed of traffic flow are 18 m/s and 10 m/s for forward and backward

waves respectively. To create a transient congestion wave, a ramp input flow q(x, t) is injected into

equation (4.13) and represents a flow of cars entering the road from a side ramp. Here we assume the

ramp is at position 3200 m and the ramp input is only nonzero during the time interval [100, 200].

In this time interval we assume two constant flow rates of 0.022 and 0.024 vehicle/m/s which result
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in forward and backward congestion waves respectively.

Given the traffic flow information calculated above, the vehicle velocity is calculated by

solving numerically the optimal control problem posed in Section 4.3.1.2 . The results are compared

to those of the conventional vehicle which is expected to move with the traffic stream. In other

words, a conventional vehicle trajectory moves on the solution surface of Figure 4.7 or 4.8.

Figure 4.7: Generated spatiotemporal traffic flow surface for a forward congestion wave.

Figure 4.8: Generated spatiotemporal traffic flow surface for a backward congestion wave.

Tables 4.6 and 4.7 summarize the statistics of the resulting velocity profiles of conventional

and preview vehicles for forward and backward congestion wave cases respectively. Also shown

is the fuel economy when following these trajectories, calculated for a passenger and a midsize

heavy vehicle. The results show that in forward congestion waves, up to 12 percent fuel saving

for a passenger vehicle and 8 percent fuel saving for the heavy vehicle is obtained when the traffic

information is predictively utilized. The savings are less in backward congestion wave. In all cases

there is a compromise on trip time.
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Figure 4.9: Trajectory of the vehicle with and without preview when faced with the forward traffic
wave.

0
500

1000

0

3000

6000

9000

0

4

8

12

Time(s)

Position(m)

V
e
lo

c
it
y
(m

/s
)

conventional

predictive

Figure 4.10: Trajectory of the vehicle with and without preview when faced with the backward
traffic wave.

Table 4.6: Conventional and preview vehicles in the forward congestion wave.
Conventional Preview Unit

Max. Velocity 18.0 15.0 m/s
Min. Velocity 8.4 5.1 m/s

Trip Time 735 765 s
Fuel Economy

(Passenger Vehicle) 49.26 55.00 mpg
Fuel Economy

(Heavy Vehicle) 7.04 7.93 mpg

Table 4.7: Conventional and preview vehicles in the backward congestion wave.
Conventional Preview Unit

Max. Velocity 11.7 10.0 m/s
Min. Velocity 1.8 1.8 m/s

Trip Time 956 1058 s
Fuel Economy

(Passenger Vehicle) 54.20 56.10 mpg
Fuel Economy

(Heavy Vehicle) 7.97 8.07 mpg

4.4 Conclusion

In this chapter, we propose to utilize the traffic flow information in conventional vehicles

for predictive adaptive control and route velocity planning. The traffic flow prediction is classified
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into three levels, namely, microscopic level, mesoscopic level, and macroscopic level based on the

time-scale of varying and the importance to the driver.

In a microscopic level, an adaptive cruise control system has been formulated using the

model predictive control framework with probabilistic gap constraints on the separation distance

to a leading vehicle. Solution of this problem required velocity prediction of the front car, which

was done using a Markov chain assumption for the velocity transients. The probability distribution

of the velocity over the prediction horizon was calculated using Monte Carlo simulations. This

allowed the conversion of the chance constrained MPC problem into a deterministic problem. The

resulting controller was tested in two case studies based on experimental data which demonstrated

improvement in fuel economy as compared to a passive car following model.

This chapter also investigates the prediction of macroscopic traffic information with gas-

kinetic traffic models. It was assumed that future state of traffic in space and time can be estimated

and used as an spatiotemporal upper bound on how fast a vehicle can travel. One possible method for

estimation of velocity proposed in this work is using real-time traffic information as initial conditions

to a macroscopic traffic model represented by a set of coupled nonlinear partial differential equations.

An optimal control problem was cast with the estimated traffic flow surface as the upper bound on

the velocity and with the target of improving fuel economy. The validity of the approach was

investigated in two different simulation case studies in which the PDE traffic model was solved to

generate the traffic surface. The fuel evaluation simulations showed up to 12 percent improvement

of fuel economy was possible when the future state of traffic was known. This improvement was

achieved at the cost of 4 to 10 percent increase in trip time. The simulations also showed that

traffic preview may be more beneficial to fuel economy when the traffic congestion moves “forward”

in space. The suggested reference velocity could be shown in an add-on accessory such as a smart

phone or used in intelligent speed assistant systems.

The predictive control with mesoscopic information including terrain and traffic light pre-

diction is not discussed in this work and could be found in [4, 49, 25, 29]. A future work may be on

the integration of different level predictions together in predictive cruise control (PCC) systems.

68



Chapter 5

Summary of Contributions and the

Future Work

5.1 Novel Contributions

The contribution of this dissertation is the application of optimal control in three areas of

technology: hybrid electric, plug-in hybrid, and conventional vehicles based on different types of

preview information. More specifically the contributions in each chapter are:

In chapter 2 , the fuel efficiency improvement through previewing future 3D terrain maps

in power management of hybrid electric vehicle was quantified. We

1. Investigated, for the first time, fuel economy benefit of previewing 3D terrain by employing

optimal control methods ECMS and DP.

2. Proposed different baseline strategies without any future information and concluded that the

improvement is baseline dependent.

3. Studied the benefit of preview for reducing energy flow from and to the battery which relates

to life cycle of the battery.

In chapter 3, the fuel economy benefit of partial or full preview of future driving conditions in

plug-in hybrid electric vehicles was investigated by applying optimal control in a systematic manner.

We
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1. Proposed a novel combination of standard ECMS strategy and a backward ECMS or DP

strategy to handle partial preview information in the energy management of a PHEV.

2. Quantified the fuel economy benefit attainable by different preview levels and evaluated its

sensitivity to preview levels.

3. Demonstrated reduction in online computations which is important for optimal use of preview

information in real-time.

In chapter 4, we studied how traffic flow information and prediction can help fuel savings

and emission reduction in passenger and commercial vehicles. We

1. Proposed a multiscale preview and optimal control structure to integrate macroscopic and

microscopic traffic information for fuel saving and emission reduction by optimal velocity

planning.

2. Introduced a stochastic framework for modeling the uncertainty of vehicle velocity in the

microscopic traffic level; applied a stochastic model predictive control method in vehicle’s

adaptive cruise control systems.

3. Proposed the use of a gas-kinetic traffic models for predicting the macroscopic traffic flow evo-

lution, which fed a nonlinear programming (two-dimension dynamic programming) algorithm

for vehicle’s velocity planning as the driver’s reference velocity.

4. Quantified the fuel economy and emission benefit attainable by previewing microscopic and

macroscopic traffic information.

5.2 Future Work

We used different kinds of future information including road terrain, trip distance, traffic

flow in energy management of hybrid electric vehicles, plug-in hybrid electric vehicles, and conven-

tional vehicles and showed noticeable benefit of predictive control for fuel consumption and emission

reduction. However, there is more room for enhancing the proposed methods in different applications

for extending this work. Several directions for future research are suggested below:

1. A real-time implementable algorithm for terrain preview based energy management of HEVs:
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In chapter 2, we investigated the value of the 3D road terrain in improving the energy man-

agement of an HEV with constant cruise speeds. However, the assumption of constant speed

limits its real-time implementation. To deal with the uncertainty of the velocity, the method-

ologies proposed in chapter 3 with preview information for the energy management of PHEVs

can be transferred or adapted for HEVs. Three different methods were proposed to estimate

the optimal operation parameter (s or λ), namely, D-ECMS, E-ECMS, and B-ECMS. The

first two (D-ECMS and E-ECMS) methods for estimating the equivalent factor are directly

transferable for HEVs if the preview of road terrain and trip velocity is assumed. Moreover,

the proposed B-ECMS approach can be utilized for incorporating terrain preview.

The available regeneration energy of an HEV resulting from the elevation change could be

estimated assuming a fixed length prediction horizon. The length of prediction horizon needs

to be optimized for different HEV configurations and system specifications. The estimated

regeneration energy can be converted to a net change of the batter’s state-of-charge (NCSOC).

The SOC to determine the equivalent factor can be adjusted by subtracting the NCSOC from

the real SOC. The equivalent factor s can still be found through the look-up map shown in Fig.

2.6. The preview process will be carried out in a moving horizon manner and can be updated

at each step. Since the value of s is updated according to a pre-defined table not accounting

for the velocity, the prediction of the velocity is not necessary and the computation burden

is reduced significantly enabling efficient online use. By doing so, the regeneration energy is

used predictively and optimally.

2. Further investigating data-based prediction methods for microscopic traffic information pre-

view:

In chapter 4, we investigated a data-based model by stochastic modeling. There exists other

data-based methods as prediction tools including ARMA(autoregressive moving average) and

artificial neural network (ANN) model by predicting the vehicle velocity based on historical

data. In connected vehicles, where the vehicle in the network is supposed to share its instan-

taneous data with neighboring vehicles, the prediction of the lead vehicle’s movement could

be done by utilizing all available (historic) data from the networked vehicles.

3. Developing event-based traffic flow prediction models:

Prediction of traffic events can enhance prediction of traffic flow. Among various events, traffic
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light status is one of the most critical ones to traffic flow and can be predicted given traffic

light triggering logics and real-time and historic traffic information. Recurrent traffic jams,

can be predicted based on historic data. Topographical information such as a downstream

road curve reduces the traffic speed and could also be thought of as an event.

4. Integration of different level control and preview:

We proposed to use predictive control and preview of traffic flow information in different levels.

The predictive control with microscopic information was proposed for adaptive cruise control

systems and that with macroscopic prediction was used to generate the reference velocity for

drivers. In the future work, we propose to combine these different levels of information together.

A high level layer predicts the macroscopic or mesoscopic traffic evolution trend and plans

the vehicle route velocity; a low planning level predicts the mesoscopic or microscopic traffic

condition and applies the predictive adaptive control according to instantaneously updated

vehicle states.
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5.3 Dissemination of Results

Journal

¤ Chen Zhang, Ardalan Vahidi, “Route preview in energy management of plug-in hybrid electric

vehicle”, accepted for publication in IEEE Transaction on Control Systems Technology.

¤ Chen Zhang, Ardalan Vahidi, Pierluigi Pisu, Xiaopeng Li, and Keith Tennant, “Role of terrain

preview in energy management of hybrid electric vehicles”, in IEEE Transactions on Vehicular

Technology, Vol.59, No.3, Pages 1139-1147, 2010.

Conference

¤ Chen Zhang, Ardalan Vahidi, “Model predictive cruise control with probabilistic constraints

for eco-driving”, submitted to 2011 American Control Conference (ACC), 2011

¤ Ali Borhan, Chen Zhang, Ardalan Vahidi, “Nonlinear model predictive control for power-split

hybrid electric vehicles”, in Proceedings of the 49th IEEE Conference on Decision and Control,

Atlanta, Georgia, 2010.

¤ Behrang Asadi, Chen Zhang, Ardalan Vahidi, “The potential of traffic flow preview for planning

fuel optimal vehicle velocity”, in Proceedings of the 3rd Annual Dynamic Systems and Control

Conference (DSCC), Cambridge, Massachusetts, 2010.

¤ Chen Zhang, Ardalan Vahidi, “Real-time optimal control of plug-in hybrid vehicles with trip

preview”, in Proceedings of 2010 American Control Conference, Baltimore, Maryland, 2010.

¤ Chen Zhang, Ardalan Vahidi, Xiaopeng Li, Dean Essenmacher,“Role of trip information pre-

view in fuel economy of plug-in hybrid vehicles”, in Proceedings of ASME Dynamic System

Control Conference, Los Angeles, California, 2009.

¤ Chen Zhang, Ardalan Vahidi, Xiaopeng Li, Tennant Keith,“Utilizing road grade preview for in-

creasing fuel economy of hybrid vehicles”, in Proceedings of Control in Transportation Systems
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Influence of the Parameter Variation on Optimality of Con-

stant Equivalent Factor in a PHEV

In the following discussion, we study how variation of open circuit voltage Voc of the battery

impacts the optimality of a constant equivalent factor. Battery resistance R, and capacitance C, are

assumed to be constants. Recall Eq. (3.8):

λ̇(t) =
−∂H(SOC,u, t)

∂SOC
= −λ(t)

∂SȮC

∂SOC

Taking partial derivative of Eq. (3.1) with respect to SOC and defining Pmax = V 2
oc

4R yield:

∂SȮC

∂SOC
=

1
2RC

(−1 +
1√

1− Pbatt/Pmax

)
∂Voc

∂SOC
(1)

In our next discussion, we assume that Pbatt

Pmax
¿ 1. For example, in the lithium-ion battery package

assumed in this work, the internal resistance is around 0.1−0.15Ω (data from PSAT) and the voltage

is around 270V . Then Pmax = V 2
oc

4R = 2702

4×0.15 = 121500W . Note that this maximum power is typically

larger than the rated maximum power of the battery. The calculated battery operating power for

the selected PHEV in highway driving cycle is usually less than 20kW and less than 12kW for a

same size HEV. In both cases the assumption of Pbatt

Pmax
¿ 1 is not a bad assumption. Using this

assumption and using a Taylor series expansion we can write,

∂SȮC

∂SOC
≈ 1

2RC
(−1 + 1 +

2PbattR

V 2
oc

)
∂Voc

∂SOC
=

Pbatt

V 2
ocC

∂Voc

∂SOC
(2)

The relationship between Voc and SOC can be approximated by an exponential function fitted to

the experimental data available in the PSAT database (see the following figure). Therefore:

∂Voc

∂SOC
= C1Voc, (3)

where C1 is a constant. Substituting Eq. (3) into Eq. (2) yields

∂SȮC

∂SOC
≈ C1Pbatt

VocC
(4)
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Figure 1: Comparison of different fitting methods-linear fitting and exponential fitting for battery
open circuit voltage Voc

Then the co-state dynamics becomes:

λ̇(t) ≈ −λ(t)
C1Pbatt

VocC
(5)

Here we assume that the optimal Pbatt is a random variable. Define a variable µ = E(C1Pbatt

VocC ) and

a random variable r = C1Pbatt

VocC − µ. The above equation is re-written as:

λ̇ = −λµ− λr (6)

This is a stochastic first order differential equation. Since the distribution for r is unknown, it is

hard to study this equation further. A preliminary assumption is that r has Gaussian distribution

with zero mean. Then the above equation is rewritten as:

dλ = −λµdt− λrdt = −λµdt− λσdw, (7)

where w is a Brownian motion (Wiener Process) with Gaussian distribution and variance equal to

time t. Here σ is the standard deviation of r. The solution to this equation using Itô’s calculus is

[18]:

λ(t) = λ0e
−µt−σ2

2 teσw(t) (8)
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And its expected value is:

E(λ(t)) = λ0e
−µt (9)

The value of µ needs to be estimated. For a charge sustaining HEV, µ ≈ 0. Then co-state dynamics

becomes:

λ(t) = λ0e
−σ2

2 teσw(t) (10)

Before we study how the co-state λ(t) evolves as function of time, let’s estimate a value for σ:

σ2 = var(
C1Pbatt

VocC
) =

C2
1

C2
var(

Pbatt

Voc
) =

k2C2
1

C2
var(I), (11)

where I is the battery current and k is a constant representing the average of estimated discharging

efficiency over charging efficiency; and k ≈ 1 for a charge sustaining HEV. Observing the global

optimal solution for the selected configuration at different driving cycles we found that var(I) varies

between 900 and 1600 for a charge sustaining HEV. Defining Iσ =
√

var(I), we have:

σ =
kC1

C

√
var(I) ≈ kC1Iσ

C
(12)

For the selected configuration, k ≈ 1, C1 = 0.16, C = 21.5× 3600, and σ = 8.3× 10−5. Considering

the simulation time t ≤ tmax = 3600s, σ, σw(t), and −σ2

2 t are small; therefore we can approximate

λ(t) in Eq. (10) as:

λ(t) ≈ λ0(1− σ2

2
t)(1 + σw(t)) (13)

Consider the 95% confidence interval of w(t) as [−1.96
√

t, 1.96
√

t]. This interval indicates that the

probability of |w(t)| < 1.96
√

t is 95%. Assume w(t) = ±1.96
√

var(w(t)) = ±1.96
√

t. Then

λ(t) ≈ λ0(1− σ2

2
t)(1± 1.96σ

√
t)

σ2 is very small, thus the term (1− σ2

2 t) can be approximated as 1. Substituting the value of σ and

with the simulation time of tf = tmax = 3600s we obtain:
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λ(tf ) = λ0(1± 1.6× 10−4
√

tf ) = λ0(1± 0.0096)

which indicates that for an HEV the difference between the final co-state λ(t) and its initial guess

is less than 0.96% with probability of 95% within the simulation time of 1 hour.

For a PHEV the following changes should be made,

µ = E(
C1Pbatt

VocC
) ≈ C1k

C
E(I) =

C1kµI

C
,

where µI = E(I). Using Eq. (9), we have:

E(λ(xt)) = λ0e
−C1kµI t

C = λ0e
−C1kCxt ,

where Cxt
is the discharge depth at position xt and expressed as Cxt

= µIt
C .

By the definition of the relation between co-state λ(t) and equivalent factor s in Eq.3.10, at

any position xt, the average value of the equivalent factor E(s(xt)) is expressed as:

E(s(xt)) = −E(
λ(xt)Hf

Voc(xt)C
) = − Hf

Voc(xt)C
E(λ(xt))

The value of Voc(xt) can be solved using Eq. (3):

Voc(xt) = Voc(0)e−C1(SOC0−SOC) = Voc(0)e−C1Cxt

Then E(s(xt)) is related to its initial value si by:

E(s(xt)) = − Hf

Voc(xt)C
λ0e

−C1kCxt

= − Hfλ0

Voc(0)C
e−C1kCxt

e−C1Cxt
= sie

(1−k)C1Cxt

(14)

For the PHEV used in the simulation case studies of this part, the parameter k ≈ 0.96. Thus the

term (1− k)C1Cxt
is very small and E(s(xt)) is approximated by:

E(s(xt)) ≈ si(1 + (1− k)C1Cxt
) ≈ si(1 + 0.0064× Cxt

)

Considering the maximum discharge depth of max(Cxt
) = 0.6, the term (1− k)C1Cxt

is also small.
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Therefore we conclude that the average value of optimal equivalent factor does not vary much

considering variation of Voc along the whole trip with the selected PHEV configuration.
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