3,681 research outputs found

    Rocket Testing and Integrated System Health Management

    Get PDF
    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Agent-based real-time assembly line management for wireless job shop environment

    Get PDF
    Recent developments in wireless technologies have created opportunities for developing next-generation manufacturing systems with real-time traceability, visibility and interoperability in shop floor planning, execution and control. This paper discusses how to deploy wireless and intelligent technologies to convert physical objects in manufacturing systems into smart objects to introduce and improve the interoperability and visibility between them and thus with manufacturing decision support systems. A reference architecture for wireless manufacturing (WM) is proposed where three types of smart objects are identified. At the same time, the concept of smart object agent (SOA) is presented and the corresponding framework of smart objects management system (SOMS) is constructed. Under this framework and the concept of SOA, a SOA-based WM environment is studied and demonstrated using a near real-life simplified product assembly line for the collection and synchronization of the real-time field data from manufacturing workshops. © 2010 IEEE.published_or_final_versionThe IEEE International Conference on Mechatronics and Automation (ICMA) 2010, Xi'an, China, 4-7 August 2010. In Proceedings of the IEEE International Conference on Mechatronics and Automation, 2010, p. 2013-201

    Monitoring System for Storm Readiness and Recovery of Test Facilities: Integrated System Health Management (ISHM) Approach

    Get PDF
    Severe weather events are likely occurrences on the Mississippi Gulf Coast. It is important to rapidly diagnose and mitigate the effects of storms on Stennis Space Center's rocket engine test complex to avoid delays to critical test article programs, reduce costs, and maintain safety. An Integrated Systems Health Management (ISHM) approach and technologies are employed to integrate environmental (weather) monitoring, structural modeling, and the suite of available facility instrumentation to provide information for readiness before storms, rapid initial damage assessment to guide mitigation planning, and then support on-going assurance as repairs are effected and finally support recertification. The system is denominated Katrina Storm Monitoring System (KStorMS). Integrated Systems Health Management (ISHM) describes a comprehensive set of capabilities that provide insight into the behavior the health of a system. Knowing the status of a system allows decision makers to effectively plan and execute their mission. For example, early insight into component degradation and impending failures provides more time to develop work around strategies and more effectively plan for maintenance. Failures of system elements generally occur over time. Information extracted from sensor data, combined with system-wide knowledge bases and methods for information extraction and fusion, inference, and decision making, can be used to detect incipient failures. If failures do occur, it is critical to detect and isolate them, and suggest an appropriate course of action. ISHM enables determining the condition (health) of every element in a complex system-of-systems or SoS (detect anomalies, diagnose causes, predict future anomalies), and provide data, information, and knowledge (DIaK) to control systems for safe and effective operation. ISHM capability is achieved by using a wide range of technologies that enable anomaly detection, diagnostics, prognostics, and advise for control: (1) anomaly detection algorithms and strategies, (2) fusion of DIaK for anomaly detection (model-based, numerical, statistical, empirical, expert-based, qualitative, etc.), (3) diagnostics/prognostics strategies and methods, (4) user interface, (5) advanced control strategies, (6) integration architectures/frameworks, (7) embedding of intelligence. Many of these technologies are mature, and they are being used in the KStorMS. The paper will describe the design, implementation, and operation of the KStorMS; and discuss further evolution to support other needs such as condition-based maintenance (CBM)

    IIoT Based Efficiency Optimization in Logistics Applications

    Get PDF
    The Industrial Internet of Thing (IIoT) approach to an Industry plant design, devises a comprehensive interconnection of the system components, from sections up to single devices, in order to get a general and punctual understanding of the process. Such an intelligent network, mostly based on Ethernet basic layers, when properly conceived, should be able to add relevant value to the plant operation. This paper shows how, within the IIoT frame topics, the plant efficiency can be addressed and bring relevant improvement. The reason is that variables directly related to the energy consumption, such as current, electric power, actuator and motor torque, speed, etc., can be timely and easily monitored in the entire plant, since they are already conveyed on the network, due to real time control and diagnostics purpose. A power consumption diagram can be derived, and give hints on how to optimize operations, based on some efficiency index. The paper, after a general discussion, proves it with practical examples based on a Gantry robot, driven in an EtherCAT based automation network, and on the stacker cranes of an automated warehouse
    corecore