760 research outputs found

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    A Reconfigurable Framework for Vehicle Localization in Urban Areas

    Get PDF
    Accurate localization for autonomous vehicle operations is essential in dense urban areas. In order to ensure safety, positioning algorithms should implement fault detection and fallback strategies. While many strategies stop the vehicle once a failure is detected, in this work a new framework is proposed that includes an improved reconfiguration module to evaluate the failure scenario and offer alternative positioning strategies, allowing continued driving in degraded mode until a critical failure is detected. Furthermore, as many failures in sensors can be temporary, such as GPS signal interruption, the proposed approach allows the return to a non-fault state while resetting the alternative algorithms used in the temporary failure scenario. The proposed localization framework is validated in a series of experiments carried out in a simulation environment. Results demonstrate proper localization for the driving task even in the presence of sensor failure, only stopping the vehicle when a fully degraded state is achieved. Moreover, reconfiguration strategies have proven to consistently reset the accumulated drift of the alternative positioning algorithms, improving the overall performance and bounding the mean error.This research was funded by the University of the Basque Country UPV/EHU, grants GIU19/045 and PIF19/181, and the Government of the Basque Country by grants IT914-16, KK-2021/00123 and IT949-16

    Regenerative Patterning in Swarm Robots: Mutual Benefits of Research in Robotics and Stem Cell Biology

    Get PDF
    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering

    Autonomous Operation of a Reconfigurable Multi-Robot System for Planetary Space Missions

    Get PDF
    Reconfigurable robots can physically merge and form new types of composite systems. This ability leads to additional degrees of freedom for robot operations especially when dynamically composed robotic systems offer capabilities that none of the individual systems have. Research in the area of reconfigurable multi-robot systems has mainly been focused on swarm-based robots and thereby to systems with a high degree of modularity but a heavily restricted set of capabilities. In contrast, this thesis deals with heterogeneous robot teams comprising individually capable robots which are also modular and reconfigurable. In particular, the autonomous application of such reconfigurable multi-robot systems to enhance robotic space exploration missions is investigated. Exploiting the flexibility of a reconfigurable multi-robot system requires an appropriate system model and reasoner. Hence, this thesis introduces a special organisation model. This model accounts for the key characteristics of reconfigurable robots which are constrained by the availability and compatibility of hardware interfaces. A newly introduced mapping function between resource structures and functional properties permits to characterise dynamically created agent compositions. Since a combinatorial challenge lies in the identification of feasible and functionally suitable agents, this thesis further suggests bounding strategies to reason efficiently with composite robotic systems. This thesis proposes a mission planning algorithm which permits to exploit the flexibility of reconfigurable multi-robot systems. The implemented planner builds upon the developed organisation model so that multi-robot missions can be specified by high-level functionality constraints which are resolved to suitable combinations of robots. Furthermore, the planner synchronises robot activities over time and characterises plans according to three objectives: efficacy, efficiency and safety. The plannera s evaluation demonstrates an optimization of an exemplary space mission. This research is based on the parallel development of theoretical concepts and practical solutions while working with three reconfigurable multi-robot teams. The operation of a reconfigurable robotic team comes with practical constraints. Therefore, this thesis composes and evaluates an operational infrastructure which can serve as reference implementation. The identification and combination of applicable state-of-the-art technologies result in a distributed and dynamically extensible communication infrastructure which can maintain the properties of reconfigurable multi-robot systems. Field tests covering semi-autonomous and autonomous operation have been performed to characterise multi-robot missions and validate the autonomous control approach for reconfigurable multi-robot systems. The practical evaluation identified critical constraints and design elements for a successful application of reconfigurable multi-robot systems. Furthermore, the experiments point to improvements for the organisation model. This thesis is a wholistic approach to automate reconfigurable multi-robot systems. It identifies theoretical as well as practical challenges and it suggests effective solutions which permit an exploitation of an increased level of flexibility in future robotics missions

    Hitch Hiker 2.0: a binding model with flexible data aggregation for the Internet-of-Things

    Get PDF
    Wireless communication plays a critical role in determining the lifetime of Internet-of-Things (IoT) systems. Data aggregation approaches have been widely used to enhance the performance of IoT applications. Such approaches reduce the number of packets that are transmitted by combining multiple packets into one transmission unit, thereby minimising energy consumption, collisions and congestion. However, current data aggregation schemes restrict developers to a specific network structure or cannot handle multi-hop data aggregation. In this paper, we propose Hitch Hiker 2.0, a component binding model that provides support for multi-hop data aggregation. Hitch Hiker uses component meta-data to discover remote component bindings and to construct a multi-hop overlay network within the free payload space of existing traffic flows. Hitch Hiker 2.0 provides end-to-end routing of low-priority traffic while using only a small fraction of the energy of standard communication. This paper extends upon our previous work by incorporating new mechanisms for decentralised route discovery and providing additional application case studies and evaluation. We have developed a prototype implementation of Hitch Hiker for the LooCI component model. Our evaluation shows that Hitch Hiker consumes minimal resources and that using Hitch Hiker to deliver low-priority traffic reduces energy consumption by up to 32 %

    Autonomous Operation of a Reconfigurable Multi-Robot System for Planetary Space Missions

    Get PDF
    Reconfigurable robots can physically merge and form new types of composite systems. This ability leads to additional degrees of freedom for robot operations especially when dynamically composed robotic systems offer capabilities that none of the individual systems have. Research in the area of reconfigurable multi-robot systems has mainly been focused on swarm-based robots and thereby to systems with a high degree of modularity but a heavily restricted set of capabilities. In contrast, this thesis deals with heterogeneous robot teams comprising individually capable robots which are also modular and reconfigurable. In particular, the autonomous application of such reconfigurable multi-robot systems to enhance robotic space exploration missions is investigated. Exploiting the flexibility of a reconfigurable multi-robot system requires an appropriate system model and reasoner. Hence, this thesis introduces a special organisation model. This model accounts for the key characteristics of reconfigurable robots which are constrained by the availability and compatibility of hardware interfaces. A newly introduced mapping function between resource structures and functional properties permits to characterise dynamically created agent compositions. Since a combinatorial challenge lies in the identification of feasible and functionally suitable agents, this thesis further suggests bounding strategies to reason efficiently with composite robotic systems. This thesis proposes a mission planning algorithm which permits to exploit the flexibility of reconfigurable multi-robot systems. The implemented planner builds upon the developed organisation model so that multi-robot missions can be specified by high-level functionality constraints which are resolved to suitable combinations of robots. Furthermore, the planner synchronises robot activities over time and characterises plans according to three objectives: efficacy, efficiency and safety. The plannera s evaluation demonstrates an optimization of an exemplary space mission. This research is based on the parallel development of theoretical concepts and practical solutions while working with three reconfigurable multi-robot teams. The operation of a reconfigurable robotic team comes with practical constraints. Therefore, this thesis composes and evaluates an operational infrastructure which can serve as reference implementation. The identification and combination of applicable state-of-the-art technologies result in a distributed and dynamically extensible communication infrastructure which can maintain the properties of reconfigurable multi-robot systems. Field tests covering semi-autonomous and autonomous operation have been performed to characterise multi-robot missions and validate the autonomous control approach for reconfigurable multi-robot systems. The practical evaluation identified critical constraints and design elements for a successful application of reconfigurable multi-robot systems. Furthermore, the experiments point to improvements for the organisation model. This thesis is a wholistic approach to automate reconfigurable multi-robot systems. It identifies theoretical as well as practical challenges and it suggests effective solutions which permit an exploitation of an increased level of flexibility in future robotics missions
    • …
    corecore