347 research outputs found

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Quarc: a novel network-on-chip architecture

    Get PDF
    This paper introduces the Quarc NoC, a novel NoC architecture inspired by the Spidergon NoC. The Quarc scheme significantly outperforms the Spidergon NoC through balancing the traffic which is the result of the modifications applied to the topology and the routing elements.The proposed architecture is highly efficient in performing collective communication operations including broadcast and multicast. We present the topology, routing discipline and switch architecture for the Quarc NoC and demonstrate the performance with the results obtained from discrete event simulations

    Master of Science

    Get PDF
    thesisThis thesis designs, implements, and evaluates modular Open Core Protocol (OCP) interfaces for Intellectual Property (IP) cores and Network-on-Chip (NoC) that re- duces System-On-Chip (SoC) design time and enables research on di erent architectural sequencing control methods. To utilize the NoCs design time optimization feature at the boundaries, a standardized industry socket was required, which can address the SoC shorter time-to-market requirements, design issues, and also the subsequent reuse of developed IP cores. OCP is an open industry standard socket interface speci cation used in this research to enable the IP cores reusability across multiple SoC designs. This research work designs and implements clocked OCP interfaces between IP cores and On-Chip Network Fabric (NoC), in single- and multi- frequency clocked domains. The NoC interfaces between IP cores and on-chip network fabric are implemented using the standard network interface structure. It consists of back-end and front-end submodules corresponding to customized interfaces to IP cores or network fabric and OCP Master and Slave entities, respectively. A generic domain interface (DI) protocol is designed which acts as the bridge between back-end and front-end submodules for synchronization and data ow control. Clocked OCP interfaces are synthesized, placed and routed using IBM's 65nm process technology. The implemented designs are veri ed for OCP compliance using SOLV (Sonics OCP Library for Veri cation). Finally, this thesis reports the performance metrics such as design target frequency of operation, latency, area, energy per transaction, and maximum bandwidth across network on-chip for single- and multifrequency clocked designs

    A performance model of communication in the quarc NoC

    Get PDF
    Networks on-chip (NoC) emerged as a promising communication medium for future MPSoC development. To serve this purpose, the NoCs have to be able to efficiently exchange all types of traffic including the collective communications at a reasonable cost. The Quarc NoC is introduced as a NOC which is highly efficient in performing collective communication operations such as broadcast and multicast. This paper presents an introduction to the Quarc scheme and an analytical model to compute the average message latency in the architecture. To validate the model we compare the model latency prediction against the results obtained from discrete-event simulations

    Performance realization of Bridge Model using Ethernet-MAC for NoC based system with FPGA Prototyping

    Get PDF
    The System on Chip (SoC) integrates the number of processing elements (PE) with different application requirements on a single chip. The SoC uses bus-based interconnection with shared memory access. However, buses are not scalable and limited to particular interface protocol. To overcome these problems, The Network on Chip (NoC) is an emerging interconnect solution with a scalable and reliable solution over SoC. The bridge model is essential to communicate the NoC based system on SoC. In this article, a cost-effective and efficient bridge model with ethernet-MAC is designed and also the placement of the bride with NoC based system is prototyped on Artix-7 FPGA. The Bridge model mainly contains FIFO modules, Serializer and de-serializer, priority-based arbiter with credit counter, packet framer and packet parser with Ethernet-MAC transceiver Module. The bridge with a single router and different sizes of the NoC based systems with mesh topology are designed using adaptive-XY routing. The performance metrics are evaluated for bridge with NoC in terms of average latency and maximum throughput for different Packet Injection Rate (PIR)

    A performance model of multicast communication in wormhole-routed networks on-chip

    Get PDF
    Collective communication operations form a part of overall traffic in most applications running on platforms employing direct interconnection networks. This paper presents a novel analytical model to compute communication latency of multicast as a widely used collective communication operation. The novelty of the model lies in its ability to predict the latency of the multicast communication in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    A communication model of broadcast in wormhole-routed networks on-chip

    Get PDF
    This paper presents a novel analytical model to compute communication latency of broadcast as the most fundamental collective communication operation. The novelty of the model lies in its ability to predict the broadcast communication latency in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    Asynchronous design of Networks-on-Chip

    Get PDF

    Smart Chips for Smart Surroundings -- 4S

    Get PDF
    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it provides the efficiency needed for these systems, it enables systems that can adapt to rapidly changing environmental conditions, it enables communication over heterogeneous wireless networks, and it reduces risks: reconfigurable systems can adapt to standards that may vary from place to place or standards that have changed during and after product development. In 4S we focused on heterogeneous building blocks such as analogue, hardwired functions, fine and coarse grain reconfigurable tiles and microprocessors. Such a platform can adapt to a wide application space without the need for specialized ASICs. A novel power aware design flow and runtime system was developed. The runtime system decides dynamically about the near-optimal application mapping to the given hardware platform. The overall concept was verified on hardware platforms based on an existing SoC and in a second step with novel silicon. DRM (Digital Radio Mondiale) and MPEG4 Video applications have been implemented on the platforms demonstrating the adaptability of the 4S concept
    corecore