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Abstract The overall mission of the 4S project (Smart Chips for Smart Surroundings) 
was to define and develop efficient flexible, reconfigurable core building blocks, 
including the supporting tools, for future Ambient System Devices. Reconfigurability 
offers the needed flexibility and adaptability, it provides the efficiency needed for 
these systems, it enables systems that can adapt to rapidly changing environmental 
conditions, it enables communication over heterogeneous wireless networks, and it 
reduces risks: reconfigurable systems can adapt to standards that may vary from place 
to place or standards that have changed during and after product development.

In 4S we focused on heterogeneous building blocks such as analogue, hardwired 
functions, fine and coarse grain reconfigurable tiles and microprocessors. Such a 
platform can adapt to a wide application space without the need for specialized 
ASICs. A novel power aware design flow and runtime system was developed. The 
runtime system decides dynamically about the near-optimal application mapping to 
the given hardware platform.

The overall concept was verified on hardware platforms based on an existing 
SoC and in a second step with novel silicon. DRM (Digital Radio Mondiale) and 
MPEG4 Video applications have been implemented on the platforms demonstrating 
the adaptability of the 4S concept.
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6.2  Introduction

The development of energy efficient computing and software architectures for 
future Ambient Systems was at the core of the 4S project. Ambient Systems (also 
known as ambient intelligence or ubiquitous computing) are networked embedded 
systems wirelessly integrated with everyday environments and supporting people 
in their activities. The architecture of Systems-on-Chips (SoC) architecture suit-
able for Ambient Devices poses a lot of challenges: these devices have a very small 
energy budget, they are always operational (although quite often in a low-power 
mode), are small in size but require high processing performance. State-of-the-art 
architectures could not provide the processing power required by a fully opera-
tional Ambient Device given the tight energy limitations. To realize devices within 
the energy budget, flexible and highly efficient hardware and software architec-
tures are needed. Moreover, without significant energy reduction techniques and 
energy-efficient adaptive architectures, battery-life constraints will severely limit 
the capabilities of these devices.

6.2.1  Heterogeneous Reconfigurable Computing

Reconfigurable systems offer the required flexibility and can adapt processing 
resources dynamically to the demand of applications. We distinguish several processing 
structures in a heterogeneous reconfigurable system, for example: bit-level 
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 reconfigurable units (e.g. FPGAs), word-level (coarse-grained) reconfigurable units, 
and general-purpose programmable units (DSPs and microprocessors). Unlike 
microprocessors and DSPs, reconfigurable units adapt the layout and functionality of 
hardware elements to the task to be performed. This enables exploiting the implicit 
parallelism of the algorithm and provides much higher performance for a given 
energy budget.

The adaptability of the architecture enables the system to be targeted at multiple 
applications. The architecture and firmware can be upgraded at any time (even when 
the system is already installed and running) and reconfigurability allows adaptation 
of the architecture for testing and maintenance purposes during and after the 
production phase.

Typically, some algorithms are more suitable for bit-level reconfigurable 
 architectures (e.g. Software defined Radio PN-code generation), others for DSP-
like hardware and others for word-level reconfigurable platforms (e.g. FIR filters or 
FFT algorithms). Most stream-based algorithms can be mapped efficiently to word-
level reconfigurable architectures [10]. Application designers or, at best, high-level 
 compilers choose the most efficient processing unit for the type of processing 
needed for a given application task.

This raises the question how to map various application tasks to such a heteroge-
neous platform and which tools will enable the application designer to benefit from a 
specific hardware architecture. In 4S we addressed the question by means of a runtime 
operating system and communication framework as described in subsequent sections.

6.2.2  Energy Efficiency

Perhaps the most significant property of ambient and unobtrusive wireless devices 
is their resource limitation, in terms of energy, memory and processing power. In 4S 
we qualified energy as the premium resource, and built time/energy adaptive archi-
tectures that adequately operate under these constraints. We applied energy-efficient 
design principles at all layers, including those where these considerations were not 
consequently applied in combination in the past. For example: analogue/digital 
tradeoffs, energy-efficient data processing and communication, run-time reconfigu-
ration for efficiency, as well as high-level tools for (energy-) efficient mapping of 
applications to dynamic reconfigurable architectures.

Furthermore, heterogeneous reconfigurable Systems on Chip (SoC) can adapt 
 supply voltage and clock frequency per module and so provide additional potential to 
save power.

6.2.3  Flexibility

Ambient Devices are able to choose from a wide range of services from various 
wireless access networks in its surrounding, each having their own characteristics, 
costs, and ownership. They operate in a heterogeneous environment where it is 
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 possible to use a combination of networks (simultaneously), each of which is 
optimised for some particular service. For example, Ambient Devices will have to 
support multiple multimedia standards, e.g. different audio and video standards 
(such as MP3, MPEG4, H.264). In addition, devices should be prepared to perform 
e.g. speech recognition/generation algorithms, signal processing algorithms for 
biometrics (e.g. fingerprint recognition) and security algorithms. Finally, the archi-
tecture should have the flexibility to anticipate future emerging standards.

6.2.4  Development Tools for Reconfigurable Architectures

Programming heterogeneous reconfigurable SoCs is considered to be non-trivial. 
Thus software designers must be supported by sophisticated tools. Furthermore, 
new tools must be accepted by application software designers. In 4S we developed 
a set of new tools on top of existing well known standards. This strategy not only 
provides a clearly defined migration path from state-of-the-art tools but also pro-
vides flexibility and less risk because only small steps are required to launch a new 
architecture for commercial products.

6.2.5  Structure of Subsequent Sections

In the following section we first introduce the 4S heterogeneous reconfigurable plat-
form from the hardware and runtime system perspectives. The operating system 
section introduces the concepts of the runtime framework. Then we describe the 
demonstration platforms, the realisation of implemented heterogeneous hardware 
and the silicon implementations. The Proof of Concept section presents experimen-
tal results based on two target applications. The 4S chapter is finished with an 
outlook and the conclusion summarizing the achieved results.

6.3  The 4S Approach

6.3.1  The Essential Ideas

The 4S project targets the system architecture, hardware building blocks and the 
supporting energy efficient design and runtime tools.

6.3.1.1  Heterogeneous System Architecture

The system architecture consists of a set of heterogeneous building blocks like ana-
logue blocks, hardwired ASIC functions, reconfigurable blocks, signal processors 
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and microprocessors. We name the processing building blocks “tiles”. The entirety 
of the building blocks must support a wide spectrum of possible applications for 
Ambient Devices, including wireless communication as well as audio and video 
processing. As those application fields have different requirements that cannot 
always be handled efficiently by one single tile, several tiles with different capabili-
ties are included in the architecture.

Figure 6.1 shows the main building blocks of a universal Ambient System. For the 
specific realisation of an Ambient Device not all of these building blocks might be 
needed. If – for example – the purpose of a device is the reception of audio streams, 
no building blocks for video processing are needed in this special device and thus can 
be omitted in order to save power and silicon area. For another device that is targeted 
for mobile video reception other building blocks will be included or left out.
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In that sense the proposed architecture provides the building blocks needed to 
support most of the demands of Ambient Systems but the amount of blocks used for 
an individual product might change from application field to application field. 
However, within one field of application the platform provides full flexibility.

6.3.1.2  Heterogeneous SoC Infrastructure

A flexible communication infrastructure connects the building blocks. A standard 
shared bus system (e.g. AMBA) provides interfaces for all heterogeneous blocks. 
Most of existing and commercially available IP blocks use standard busses. However, 
a shared bus system is not optimal for high bandwidth data streams which are 
 common in multimedia and wireless applications requiring guaranteed bandwidth. 
Therefore, we propose a Network-on-Chip (NoC) which unloads busses from high 
bandwidth and uniform data streams.

6.3.1.3  Power Aware Runtime System

The main task of the runtime system is to map the applications or single functions at 
a specific point in time on available heterogeneous hardware resources. With existing 
standard operating systems the mapping to hardware was defined manually during 
compile time. Thus a specific function can only be executed on the initially planned 
hardware building block. One of the 4S inventions was the development of a flexible 
runtime system and spatial mapping tool that allows for dynamic scheduling and 
 mapping of functions to hardware building blocks. The purpose of dynamic spatial 
mapping is to allow loading of new applications to the platform during  runtime and 
to minimise the overall power consumption of the Ambient System. To fulfil this task 
the runtime system takes into account user demands, the environment such as current 
wireless coverage as well as the status of the system such as current battery status.

To support this, a runtime system and the corresponding design time tool flow 
have been developed in the 4S project. The development environment consists of 
specific tools for each tile for generation of binary code needed to configure and 
operate each block. The application software uses the configuration and communi-
cation mechanisms of the underlying real-time operating system and the runtime 
system. On top-level a XML-description specifies and characterizes the applications, 
the building blocks and the overall system architecture in order to gain decision 
criteria for the dynamic runtime mapping.

To allow for early design space exploration and concept verification, a 
 co-simulation framework was developed. It allows not only to co-simulate already 
existing building blocks but also to verify newly developed hardware blocks, 
 software drivers and their interaction with other parts of a system.

Figure 6.2 shows the tool flow. At top level the system properties such as the 
system topology, interconnect and available bandwidth are specified. The second 
step is describing the application in form of a task graph. The graph’s nodes specify 
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the function to be performed while the edges specify the communication with other 
tasks. Then the designer has to decide which task should be implemented on which 
hardware tile. Note that in the context of the operating framework OSYRES as 
described later, a task is a “Functional Node” (FN) and a hardware tile a “Processing 
Unit” (PU). Where possible a task is implemented functional identically for several 
tiles. This allows the runtime system to choose among different realisations according 
to the actual system status and external requirements. The third step is to implement 
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and characterize all tasks per tile in terms of energy, processing time and bandwidth 
requirements. This characterization can be done with RTL design compiler power 
tools or – preferably – with power estimators as part of the design environment of 
the specific hardware block. Co-simulation now allows to verify the application and 
to perform design iterations and optimization where required.

The output of the design-time activities is a database of so-called Task Sets. Each 
Task Set contains the executables implemented for one or more hardware tiles com-
bined with the performance model and a XML-file describing the realisation and 
connection of the different implementations.

The runtime system finally uses Task Sets as input. The runtime scheduler 
 continuously analyses the current system state, checks parameters such as requested 
and running applications, battery status and wireless coverage and then tries to find 
the most power efficient mapping. The scheduler defines which task should be exe-
cuted on which hardware tile whenever the system status changes (spatial mapping).

Based on the scheduler’s decision, the runtime system loads the tasks to the hard-
ware tiles and starts them. Sometimes it may be required to remove a running task 
from one tile and to load and re-launch it on another. Since the current application 
must not be interrupted during re-mapping, special switch points are defined in the 
application. Switch points should be defined where the application state complexity 
is small and when buffers have sufficient data to bridge short term intermitted 
processing, since remapping may take some time.

6.4  Realisation

The 4S concept makes use of several hardware blocks which are capable to perform 
functionally identical software tasks. To support this in an efficient way existing 
hardware IP has been newly designed or extended:

The •	 Montium Reconfigurable core
A NoC routers and AHB interfacing for Montium Tiles•	
The •	 XPP reconfigurable processor was extended by new instructions and features 
to improve the area and power efficiency
The RF front end chip was extended by configurable features•	
New ASIC cores for software defined radio (SDR) such as the Digital Down •	
Converter (DDC), the Viterbi Decoder and the Signal Analyser have been 
implemented.

6.4.1  Montium Reconfigurable Tile

The Montium is a coarse-grained reconfigurable processor core and targets the 
16-bit DSP algorithm domain. The Montium architecture originates from research 
by the University of Twente and has been further developed by Recore Systems.
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A single Montium processing tile is shown in Fig. 6.3. At first glance the Montium 
architecture bears a resemblance to a VLIW processor. However, the control struc-
ture of the Montium is very different. The lower part of Fig. 6.3 shows the 
Communication and Configuration Unit (CCU) and the upper part show the coarse-
grained reconfigurable Montium Tile Processor (TP).

6.4.1.1  Communication and Configuration Unit

The CCU implements the network interface controller between the NoC and the 
Montium TP. The CCU provides configuration and communication services to the 
Montium TP. The definition of the network interface depends on the NoC technology 
that is used in a SoC in which the Montium processing tile is integrated [3].

The CCU enables the Montium TP to run in “streaming” as well as in “block” 
mode. In “streaming” mode the CCU and the Montium TP run in parallel. Hence, 
communication and computation overlap in time. In “block” mode, the CCU first 
reads a block of data, then starts the Montium TP, and finally after completion of the 
Montium TP, the CCU sends the results to the next processing unit in the SoC (e.g., 
another Montium processing tile or external memory).

Fig. 6.3 Montium processing tile
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6.4.1.2  Montium Tile Processor

The TP is the computing part of the Montium processing tile. The Montium TP can 
be configured to implement a particular DSP algorithm. DSP algorithms that have 
been implemented on the Montium are, for instance, all power-of-2 FFTs upto 2,048 
points, non- power-of-2 FFT up to 1,920 points, FIR filters, IIR filters, matrix vector 
multiplication, DCT decoding, Viterbi decoders, and Turbo (SISO) decoders [4].

Figure 6.3 reveals that the hardware organization of the Montium TP is very 
regular. The five identical arithmetic logic units (ALU1 through ALU5) in a tile 
can exploit data level parallelism to enhance performance. This type of parallel-
ism demands a very high memory bandwidth, which is obtained by having 10 
local memories (M01 through M10) in parallel. The small local memories are also 
motivated by the locality of reference principle. The data path has a width of 
16-bits and the ALUs support both signed integer and signed fixed-point arithme-
tic. The ALU input registers provide an even more local level of storage. Locality 
of reference is one of the guiding principles applied to obtain energy efficiency in 
the Montium TP.

A relatively simple sequencer controls the entire Montium TP. The sequencer 
selects configurable TP instructions that are stored in the decoder blocks of Fig. 6.3. 
For (energy) efficiency it is imperative to minimize the control overhead. The 
Montium TP instructions, which comprise ALU, AGU, memory, register file, and 
interconnect instructions, are determined by a DSP application designer at design 
time. All Montium TP instructions are scheduled at design time and arranged into 
a Montium sequencer programme. By statically scheduling the instructions as 
much as possible at compile time, the Montium sequencer does not require any 
sophisticated control logic which minimizes the control overhead of the reconfigu-
rable architecture.

The Montium TP has no fixed instruction set, but the instructions are configured 
at configuration time. During configuration of the Montium TP, the CCU writes the 
configuration data (i.e., instructions of the ALUs, memories and interconnects, 
sequencer and decoder instructions) in the configuration memory of the Montium 
TP. The size of the total configuration memory of the Montium TP is about 
2.6 kByte. However, configuration sizes of DSP algorithms mapped on the Montium 
TP are typically in the order of 1 kByte. For example, a 64-point fast Fourier 
 transform (FFT) has a configuration size of 946 bytes, which typically takes about 
500 clock cycles required for configuring the Montium TP. Hence, the Montium 
TP can be configured for FFT-64 in less than 5 ms (assuming a configuration clock 
of 100 MHz). By sending a configuration file containing configuration RAM 
addresses and data values to the CCU, the Montium TP can be configured via the 
NoC interface. The configuration memory of the Montium TP is implemented as a 
16-bit wide SRAM memory that can be written by the CCU. By only updating 
certain configuration locations of the configuration memory, the Montium TP can 
be  partially reconfigured.
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6.4.1.3  Montium Design Methodology

The Montium development tools start with a high-level description of an application 
(e.g. in C/C++ or MATLAB) and translate this description to a Montium TP con-
figuration. The Montium design methodology to map DSP applications on the 
Montium TP is divided into three steps:

 1. The high-level description of the DSP application is analyzed and computation 
intensive DSP kernels are identified.

 2. The identified DSP kernels or parts of the DSP kernels are mapped on one or 
 multiple Montium TPs that are available in a SoC. The DSP operations are 
programmed on the Montium TP using an embedded C language, called 
MontiumC.

 3. Depending on the layout of the SoC in which the Montium processing tiles are 
applied, the Montium processing tiles are configured for a particular DSP kernel 
or part of the DSP kernel. Furthermore, the channels in the NoC between the 
processing tiles are defined.

6.4.2  Circuit Switched Network-on-Chip

The Network-on-Chip was designed as a circuit switching NoC, i.e. communication 
between any two tiles in the SoC goes via pre-configured routes. These routes are 
 configured in the routers using a dedicated configuration interface of the routers [5]. 
Typically, in the applications considered in this project data streams are fixed for a 
relatively long time. Therefore, a connection between two tiles is required for a long 
period (e.g. seconds or longer). A large amount of the traffic between tiles will need 
a guaranteed throughput, which can be easily guaranteed in a circuit-switched con-
nection. Current SoC architectures have a large amount of wiring resources that give 
enough flexibility for streams with different bandwidth demands. Internally, a circuit 
switching router has a minimal amount of control in its data pad (e.g. no arbitration). 
This increases the energy- efficiency per transported bit and the maximum 
throughput.

The network-on-chip consists of two circuit switched routers. It enables concur-
rent communication between the four Montium processing tiles and the rest of the 
SoC via an AHB bridge.

The network router interface consists of two identical unidirectional physical 
channels, each containing four 20-bit wide lanes. A lane consists of 16-bit data, 
2-bit flit type (FT), 1-bit data valid and 1-bit acknowledge signals.

Each Montium processing tile is connected to a router via two unidirectional 
physical channels. In order to send data to the network a tile has to send a 20-bit 
network packet onto one of its output lanes. Up to four packets can be sent in parallel 
by a single tile, by using all outgoing lanes.
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6.4.3  XPP Reconfigurable Tile

The XPP Array is a coarse grained reconfigurable processing unit designed by 
PACT XPP Technologies [6]. The XPP Array (Fig. 6.4) is built from a rectangular 
array of two types of Processing Array Elements (PAEs): Those in the centre of 
the array are ALU-PAEs. At the left and right side are RAM-PAEs with I/O. An 
ALU-PAE contains three integer ALUs, two in top-down direction and one in 
bottom-up direction. A RAM-PAE contains two ALUs, a small RAM block and 
an I/O object. The I/O objects provide access to external streaming data sources 
or destinations.

The horizontal routing busses for point-to-point connections between XPP 
objects (ALUs, RAMs, I/O objects, etc.) are integrated in the PAEs. Separate busses 
for 16-bit data values and 1-bit events are available. Furthermore, vertical routing 
connections are provided within the ALU-PAEs and RAM-PAEs

An application is described as a flow graph where the nodes define the function to 
be performed (e.g. addition, multiplication). Each node is then mapped to one ALU 
while the graph’s edges define the connections. Data flows through the network of 
operators. The event network can steer the data flow based on calculation results. This 
enables conditional execution and while loops. The strength of the XPP Array origi-
nates from the combination of parallel array processing with fast run-time reconfigu-
ration mechanisms [7, 8]. PAEs can be configured while neighbouring PAEs are 
processing data. Entire algorithms can be configured and run independently on 
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different parts of the array. A configuration typically requires only a few thousand 
cycles. This is several orders of magnitude faster than reconfiguration of large FPGAs.

In the course of the 4S project the XPP Array was extended in order reduce area 
and thus power consumption for a given application. One strategy to achieve this is 
automatic cutting of small sub-graphs from the overall graph and mapping them to 
PAEs which execute this graph sequentially, but at higher frequency [9].

6.4.3.1  Streams

The basic communication concept of the XPP-III architecture is based on streams. 
A data stream is a sequence of single data packets travelling through the flow graph 
that describes the algorithm. In addition to data packets, state information packets 
(“events”) are transmitted through independent event connections. Event packets 
containing one bit of information are used to control the execution of the processing 
nodes or may synchronize external devices.

The XPP communication network enables automatic synchronization of packets. 
An XPP object (e.g. an ALU) operates and produces an output packet only when 
all input data and event packets are available. The benefit of the resulting self-
synchronizing network is that only the number and order of packets travelling 
through a graph is important. There is no need for the programmer or compiler to 
care about absolute timing of the pipelines during operation.

6.4.3.2  XPP Design Tools

The XPP comes with a complete tool chain [8]. The array is either programmed 
with a proprietary mapping description language or a vectorizing C Compiler. The 
C-Compiler extracts implicit parallelism form standard C-code (e.g. inner loops) 
and converts it to control and data flow graphs which then are mapped on the PAEs. 
Data flow graphs are simulated and visualized graphically.

6.4.3.3  Power Estimation

The XPP tool chain was extended by an Application Power Estimator. The power 
requirement of the XPP Array is highly dynamic. A PAE which is not contributing to 
calculating in a specific clock cycle consumes nearly no power (besides leakage and 
clock tree). The tool parses the simulator output per cycle and integrates the 
power consumption for a specific task. The power tool was calibrated with the 
Synopsys power compiler for a specific silicon library (e.g. ST CMOS 90 nm). 
The output of this tool in terms of nJ per task, described in XML format is then used 
by the Spatial Mapper (as described later). The power consumption over time can 
also be visualized graphically. This enables to profile the application partitioning 
and reconfiguration strategy in terms of power.
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6.4.3.4  XPP Hardware

In the 4S project an existing processor, the XPP64-A, with 64 24-bit wide ALU 
PAEs and 16 RAM-PAEs was used. The chip is mounted on an evaluation board 
with a MIPS processor which is responsible for administrative tasks, XPP recon-
figuration and communication. A video board provides a frame buffer and video 
output enabling test and demonstration of video algorithms. This board was linked 
through parallel streaming interfaces to the basic verification platform’s FPGA 
board. The FPGA multiplexes several data streams originating from the SoC (i.e. 
ARM or DMA) to be processed by the XPP Array acting as coprocessor.

6.4.4  Demonstrators

Hardware and software for two demonstrator platforms have been designed. The 
first, the Basic Verification Platform (BCVP) is used as a multi-purpose platform:

Operating System verification at an early project stage•	
Test and verification of new hardware tiles on FPGA•	
Interfacing to other board-level hardware tiles and legacy hardware•	
Application test and benchmarking•	
Early demonstration of the 4S concept.•	

The second demonstrator hardware, the Highly Integrated Verification Platform, 
replaces some modules of the basic platform by new chips that integrate new hard-
ware tiles on silicon.

6.4.4.1  Basic Verification Platform

This platform is built from existing boards and chips. The specification was driven 
by the 4S target applications which are the radio broadcast standard Digital Radio 
Mondiale (DRM) and MPEG4 video decoding. Following the needs of those appli-
cations the hardware is built from:

A SoC board based on an ATMEL SoC that integrates peripherals and two ARM •	
processors
An FPGA extension board with interfaces•	
An Radio RF front-end based on an ATMEL RF chip•	
An XPP Evaluation board with video interface which is connected to the FPGA •	
extension board

Most evaluation and demonstration tasks were performed on this platform. The 
FPGA was used for the implementation and initial verification of the Montium 
reconfigurable cores and associated NoC routers. Another FPGA configuration 
 provides a parallel interface to the XPP evaluation board with the XPP64A recon-
figurable processor chip. The interface is capable to multiplex several independent 
data streams which are required for the video decoding application.
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6.4.4.2  Highly Integrated Verification Platform

To show that the complexity of a heterogeneous architecture can be handled on 
silicon, a SoC (named Annabelle, ATMEL CMOS 130 nm) and analogue RF frontend 
(Amelie) have been designed and produced. The hardware platform reuses most 
modules of the Basic Verification Platform. However the SoC board and Radio front 
end have been replaced by boards for the new silicon chips.

6.5  Silicon Implementation

Implementation of a complex System on Chip on silicon was one of the project 
objectives. As outlined in the introduction one first needs to specify the application 
field. In 4S we decided to demonstrate the DRM on silicon. It became obvious that 
two chips need to be designed. One is a flexible RF radio front end, the second was 
the heterogeneous SoC. The chips integrate all functions which are required for a 
universal digital radio receiver. The DRM requires lots of signal processing power 
and flexibility.

6.5.1  Analogue RF Frontend

RF processing is a typical field where analogue hardware is required. We have 
developed a widely configurable analogue RF building block which connects 
directly to the SoC. The chip provides the analogue building block of the proposed 
heterogeneous tiled 4S architecture model. Though this device is not part of the 
overall task mapping scheme – simply because no alternative implementation 
exists – it is mandatory for the DRM proof of concept.

The new analogue RF chip is an advanced AM/FM/DRM frontend tuner with 
fast PLL integrated on a single chip. It represents a complete, automatically 
adjustable AM/FM/DRM front end, containing an analogue AM/DRM up/down 
conversion and FM down conversion system for an Intermediate Frequency (IF) 
of 10.7 MHz which allows an economic filter concept. The impedance driver at 
the IF output is designed for the A/D converter which is integrated in the new 
digital SoC. The chip registers are programmed through a 3-wire serial protocol 
originating from the SoC.

The fast tuning concept realized in this part is based on patents and allows lock 
times less than 1 ms for a jump over the FM band with a step width of 12.5 kHz. An 
automatic tuner alignment is provided by built-in D/A converters for gain and offset 
compensation (to support the computer-controlled alignment). The frequency range 
of the IC covers the AM/DRM band as well as the FM broadcasting band, the Japan 
band and the Weather band.
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6.5.2  Digital System on Chip

The SoC (Fig. 6.5) incorporates the complete digital signal processing chain 
required for a software defined radio receiver. Analogue inputs from the RF chip 
are  converted by two integrated A/D converters. The digital samples are fed into 
new signal analysers providing quick information about the signal quality and to 
two Digital Down Converters (DDC) which provide the digital input to be pro-
cessed by the processor tiles. The mentioned digital modules have been designed 
in the course of the project. The Viterbi decoder is also a new ASIC tile that 
unburdens the processors and provides best performance/power ratio for this task. 
Baseband processing is  performed by the reconfigurable fabric which contains 
four reconfigurable Montium cores that are connected to the NoC. The reconfigu-
rable fabric is connected to the AHB bus and serves as a slave to the AMBA 
system. In fact, the reconfigurable fabric acts as a reconfigurable co-processor for 
the ARM926 processor. Computation intensive DSP algorithms are typically 
offloaded from the ARM926 processor and processed on the coarse-grained 
reconfigurable Montium cores inside the reconfigurable fabric.
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6.5.3  Runtime System and Tools

6.5.3.1  RTOS

Systems on chip need to perform several tasks with partially hard real-time 
 constraints. In 4S the eCos real-time operating system was chosen as target operating 
system [1]. eCos, released under the GNU GPL license, is during design-time 
widely configurable to the final processor footprint and has been designed to sup-
port applications with real-time requirements. It is fully pre-emptive and provides 
minimal interrupt latencies, the necessary synchronization primitives, scheduling 
policies and interrupt handling mechanisms needed for real-time applications. eCos 
also provides all the functionality required for general embedded application  support 
including device drivers, memory management, exception handling, C, math librar-
ies, etc. The eCos’ hardware abstraction layer (HAL) was adapted to support the 
digital SoCs, e.g. communication with the reconfigurable tiles, hard-wired accelera-
tors and the peripherals. For booting services the RedBoot debug and bootstrap tool 
was used. Both 4S demonstrator platforms are using eCos.

6.5.3.2  OSYRES Framework

The goal of OSYRES is to provide an abstraction of the multi-processing platform. 
OSYRES [2] hides the details of the communication between functional nodes and 
hides the details of instantiation and allocation of functional nodes on a multi-pro-
cessor platform. The OSYRES framework has been used for proof of concept and 
implementation of the DRM and MPEG4 applications.

OSYRES is built on top of eCos and provides the 4S-specific features. The archi-
tecture of OSYRES is optimized to support of data flow applications. The design of 
a data flow application differs from the traditional sequential designed application. 
In a sequential designed application, functions are called in a sequence, which is 
defined by the application’s state machine. In a data flow application, functions are 
triggered by the availability of data or messages at their input ports. In a multi-
processor system with a run-time function allocation, the arrival of messages and 
thus the order at which functions are called is not predictable anymore unless they 
are explicitly synchronized. In OSYRES synchronization is explicitly done via mes-
sages that automatically synchronize two functions. In addition, functions may run 
in parallel on different processors. This requires a different way of defining the 
application in Functional Nodes (FN).

6.5.3.3  Application Specification

An application in OSYRES is defined by a set of task graphs consisting of Functional 
Nodes connected by channels described in a data flow graph (see Fig. 6.6). A task 
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graph is a combination of functionality, which is always instantiated as a whole. It 
is possible to instantiate multiple instances of the same task graph. A task graph 
instantiation is performed by one of the already running functional nodes.

A FN will always be instantiated on one processing device. It is a self-contained 
functional entity, which communicates only via its ports with other FNs. These 
ports form the end-points of uni-directional channels. The channels will be instanti-
ated on the communication links between the processing devices such as a bus or 
Network on Chip (NoC).

The approach of task graphs and self-contained entities, which communicate via 
well-defined messages results by definition in a modular design of the overall 
application.

6.5.3.4  Functional Node Design Concept

An OSYRES Functional Node is defined by its functionality at its ports. There may 
be different Functional Node implementations for each different type of processing 
unit but the external behaviour must be the same for all implementations. The FN 
implementation itself does not take any resource of the processing unit, except for 
the storage of the functional implementation image. At run-time instances of func-
tional implementations are created and it is only then, when they take resources 
from the processing unit. The amount of resources that is needed for an instance of 
a FN implementation will be defined at design time and specified in the system defi-
nition (memory, MIPS, energy) characterizing the node.

All instances of a Functional Node implementation executed by the same processor 
type use the same code. To allow multiple instances, each instance has its own 
administration, which is created at FN instantiation. This administration is the storage 
of all FN local data.

In addition of the operational functionality, a FN also contains special functionality 
to control the instantiation of new instances. Control events may be events to Create, 
Delete, Start and Stop a FN instance as well as channel connection events like Add 
and Remove ports.

FN1 FN2 FN2

FNa FNb FNc

Set of Task Graphs

Fig. 6.6 Functional Node (FN) definition
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6.5.3.5  Application Verification

As OSYRES can be implemented on different platforms, there is an implementation 
for the most common development or simulation environments; e.g. OSYRES for 
Windows using the Visual C development environment. Before the real target platform 
is available, one can already start simulating the application on such a common PC 
platform, e.g. by using simulators as MatLab for the actual processing.

On this simulation platform, applications can be verified in two steps. The first 
step is the verification of the application structure. In this step, the task graph struc-
ture and the messaging between FNs is verified. The second step is the verification of 
the functionality of the FNs individually. As the interfaces are clearly defined, only 
module-level test is needed. After successful verification, the overall application can 
be simulated first on the PC platform and in a later stage on the target platform. By 
combining the OSYRES platforms of the target (e.g. SoC) and the common PC plat-
form, one unified OSYRES platform is obtained. This allows a smooth transfer from 
the simulation to the target platform. Starting from a running application on the 
 simulation platform, FNs are gradually transferred to the target platform.

Figure 6.7 shows an example where the target is connected with the simulation 
PC via a USB cable. Starting from an application running in the simulation environ-
ment, functional processes are transferred to the target. The abstraction of commu-
nication in OSYRES assures the connections within the application, regardless 
where the functional processes are located.

6.5.3.6  System Definition

OSYRES provides an abstraction of the multi-processing platform. Figure 6.8 shows 
an example of a system platform which could be a dual ARM System on Chip, with 
one shared bus on which the memory and three peripherals are connected.

Each ARM processing device runs its own operating system i.e. eCos. Within this 
local RTOS peripherals and memory areas are allocated to one of the processing devices. 

PU1 PU2

PU3 PU4 PC

Target Platform Simulation Platform

OSYRES

USB

Fig. 6.7 Simulation with a PC and four Processing Units (PU)
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Specific bus drivers are added to access the connected communication medium, in 
this example a shared bus.

A Link in OSYRES is defined as a method to access the other processing device 
via the communication medium. This method is implemented in a Link driver, which 
is built on top of the RTOS bus driver.

A Processing Unit (PU) in OSYRES is defined by the RTOS defined functional-
ity and the OSYRES specific functionality as the communication layer, scheduler 
and control network as well as the previously mentioned Link drivers. In the context 
of the 4S demonstrator platforms a PU may be an ARM core, a Montium processor, 
the XPP processor or a hardwired core such as Viterbi.

The OSYRES functionality is built on top of the local RTOS. The OSYRES com-
munication layer offers access to the platform-wide communication layer. The 
OSYRES control network provides the system-wide instantiation of Functional 
Nodes. Each PU has a local instantiation of this control network in the form of a PU 
Manager. This PU manager is responsible for the instantiation of the FNs on the PU. 
All PU Managers communicate with one central Control Node. This Control Node is 
located on one of the PUs and includes the run-time spatial mapping algorithm.

Reconfigurable structures as introduced in the previous sections may run FNs as 
well. In order for the OSYRES platform to control the reconfigurable processing 
devices, it needs to be adapted to control the reconfigurable structures.

These reconfigurable devices are considered as Processing Units without an 
operating system and will be controlled by a remote PU Manager, which runs on 
one of the generic processing devices like the ARM. The remote PU Manager trans-
lates control commands, like Create, Start and Stop into device specific actions (like 
Load, Configure and Start) towards the reconfigurable device. In addition, the 
remote PU manager controls the communication with the reconfigurable device, 
which does not support the OSYRES communication protocol. This allows the inte-
gration of OSYRES on devices which are not able to run an operating system.

Processing 
Device 1

Processing 
Device 2

Memory

PU1 PU2

Link (BusID)

Addr_PU1

Addr_PU2

Perif. 1

Perif. 2

Perif. 3

Fig. 6.8 Sample system 
platform with two Processing 
Units (PU)
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6.5.4  Spatial Mapper

Common practice is to map applications to a hardware platform at design-time. In 
4S we researched methods and algorithms how to perform the mapping at run-time. 
Run-time mapping offers a number of advantages over design-time mapping. It 
offers the possibility

to adapt dynamically to available hardware resources. The available resources •	
may vary over time due to applications running simultaneously or adaptation of 
the algorithms to the environment.
to enable unforeseeable upgrades after first product release time, e.g. new appli-•	
cations and new or changing standards.
to circumvent defective parts of a SoC. Larger chips mean lower yield. The yield •	
can be improved when the mapper is able to avoid faulty sections of the chip. 
Also aging can lead to faulty parts that are unforeseeable at design-time.

The mapping tool SMIT (Spatial MappIng Tool) [11] is integrated into OSYRES 
and determines at runtime a near-optimal mapping of a given set of applications to 
the 4S heterogeneous architecture. The application is modelled as a set of commu-
nicating Functional Nodes. In the context of the 4S project “optimal mapping” 
means that the energy consumption of the SoC is minimized with regard to the map-
ping, while other constraints are still satisfied. Other optimization criteria such as 
user response time, memory consumption etc. could be the optimization target but 
were not the focus in 4S. SMIT uses the performance characteristics that are deter-
mined for each functional node implementation at design-time.

6.5.4.1  Inputs

A number of inputs are required for SMIT:

Application description
An application is assumed to be given by a set of task graphs, consisting of Functional 
Nodes and interconnections between processes needed for communication. This 
partitioning is typically done manually by an experienced designer, but future tools 
may perform partitioning also automatically. Additional Quality of Service require-
ments for the application such as required timing behaviour (e.g. throughput, 
latency) are also specified in the application description.

Library description
For each Functional Node of an application, one or more implementations have to 
be provided. A FN implementation is the implementation of a FN on a particular 
type of tile, e.g. object code for an ARM or configuration data for an FPGA, 
Montium or XPP. A FN implementation is annotated with performance figures, 
e.g. the amount of energy it takes to execute the function on a particular tile of the 
architecture or the amount of cycles it takes to execute the function on a particular 
tile of the architecture.
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Architecture description
The heterogeneous SoC architecture consists of multiple tiles of different types (e.g. 
ARM, reconfigurable cores) interconnected by a Network-on-Chip (NoC) or Bus. For 
each tile a number of characteristics have to be provided on beforehand, such as the 
type of the tile, the amount of available memory, the clock frequency, etc. The NoC 
consists of routers and links. The links are used to interconnect routers or a tile 
with a router. It is possible to have different links in parallel between the same source 
and destination. Also the NoC characteristics have to be provided, such as the topology 
of the network, the frequency of the clock of the network, latency per router, etc.

6.5.4.2  Mapping Approach

The mapping of an application to a multi-processor architecture is a General 
Assignment Problem (GAP), which is known to be NP-complete. To deal with the 
complexity of the mapping problem, SMIT employs a hierarchical iterative approach 
(Fig. 6.9). The idea is to solve the problem using multiple levels. At each level a 
particular decision is made that reduces the search space. Decisions of higher levels 
are considered to be fixed at the lower levels. On higher levels not all details are 
taken into account to improve the speed of evaluation.

In other words, higher levels use a higher abstraction. This hierarchical approach 
has the danger that decisions which seem to be promising on a higher level due to 
the underlying assumptions of the abstraction level, show to be bad or even lead to 
resulting sub problems which are infeasible. The allowed maximum runtime of the 
mapper routine is restricted so far that at least a good mapping solution, can be 
achieved. Good mapping guarantees that the Quality of Service requirements of the 
application are met. Good mapping is preferred over optimal mapping which would 
again consume too much processing power and energy.

Step 1: assign FNs to processing tile types

Step 2: assign (sets of) FNs to processing tiles

Step 3: detailed routing of communication

Step 4: check global constraints (e.g. timing)

Fig. 6.9 Hierarchical 
mapping algorithm
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6.5.5  Mapping Visualization

For debugging and demonstration purposes, the mapping proposed by SMIT can be 
displayed on screen (Fig. 6.10). The visualization tool performs this task by utiliz-
ing the proposed XML tool flow in combination with the platform transparent com-
munication layer of OSYRES (Fig. 6.11).

For visualisation two instances of OSYRES are launched: one instance is active 
on the target platform and the other instance is executed on a PC. Both instances 
communicate via an USB connection. The mapping information that SMIT pro-
vides is sent to the USB interface by a Functional Node (FUmain) of OSYRES. 

Fig. 6.10 Sample visualization of FNs

USB
connection

FUgen FUmain

BCVP

OSYRES main
controller

OSYRES process
on the PC

MAPPAPPLARCH

XML files

XSLT transformation

PC

MAPPAPPLARCH

Fig. 6.11 Visualization of mapping using OSYRES
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A second Functional Node (FUgen) of OSYRES running on the PC reads the USB 
interface and converts the received data to an XML file with the mapping informa-
tion, which is graphically displayed. The mapping information in XML can be com-
bined with the already present architecture and application descriptions in XML.

The data received by FUgen contains a set of IDs that can be found in the XML 
files describing the architecture and the application. As the processes (i.e. FN instan-
tiations) and channels in a task graph have unique IDs and the processing tiles and 
links in the hardware architecture have unique IDs too, the received mapping infor-
mation only needs to include a mapping of process IDs and process implementation 
IDs to processing tile IDs and channel IDs to link IDs, respectively. The current 
mapping is exported to XML by the FUgen OSYRES process.

This approach demonstrates also the benefits of the OSYRES concept: it is easy 
for the programmer to distribute the functional nodes to several of heterogeneous 
processing units without the need to care about communication details.

6.6  Proof of Concept

The overall concept was verified through several scenarios targeting MPEG4 Video 
and DRM. Applications have been designed according to the proposed tool flow, i.e. 
application definition in XML and mapping to OSYRES functional nodes and links. 
For demonstration the Basic Verification Platform was used since it was available 
early in the project and provided reconfigurable cores (Montium implemented on 
the FPGA and the XPP evaluation board), two ARM processors and hardwired tiles. 
In the following section some of the scenarios which have been successfully dem-
onstrated are presented.

6.6.1  MPEG4

The MPEG4 Video case stands for a typical video decoding application. The appli-
cation was chosen in addition to DRM to demonstrate the usability of the concept 
on very different application fields.

6.6.1.1  MPEG4 Task Graph and Mapping Scenarios

The Task Graph in Fig. 6.12 shows the nodes of the MPEG4 decoding chain which 
is composed out of four Functional Nodes that have been implemented to run on 
several tiles (i.e. PUs in the OSYRES context):

Variable Length Coding (VLC): ARM920•	
Inverse Quantization (IQT): ARM920, ARM946, XPP•	
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Motion Compensation (MC): ARM920, ARM946, XPP•	
Colour Space Conversion (CS): XPP•	

Each implementation provides also a performance model (XML) as input for the 
spatial mapper. The performance models describe the energy for each function, 
memory requirements, processing resource utilization and communication costs. 
The performance models have been generated through simulation and a new power 
estimation tool for the XPP. Energy for the ARM processors has been calculated 
using datasheet values (mW/MHz) and by profiling the number of clock cycles 
which are required for a specific function. Based on the Task Graph and perfor-
mance models SMIT mapped the FNs to the available hardware resources. OSYRES 
provides the abstraction layer for FN creation and channel establishing. Besides 
VLC and CS, which can only be executed on specific tiles, SMIT had the choice to 
distribute the other tasks freely. Note that the dynamic reconfiguration properties of 
the XPP are used to execute the Functional Nodes sequentially.

The application’s switching points have been specified at design time. It is not 
feasible to allow switching at any point in time in an application since the number 
of states to be saved and transferred to the target FN varies during execution. 
Furthermore it may be difficult to transfer processing states from architecture to 
another, because e.g. the internal data and state representation may differ. For 
MPEG4 best switching points are I-Frames, since those frames do not need infor-
mation from previous or subsequent frames.

ARM920 ARM946 XPP

VLC IQT MC CS

MPEG Bit Stream

Display Buffer

VLC IQT

MC

CS

ARM920 ARM946 XPP

VLC IQT

MC

CS

Mapping A

Mapping B

Fig. 6.12 MPEG4 Task Graph and two mapping scenarios
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For demonstration purposes the SMIT has been forced to reassign mapping by 
adding placeholder FNs which can only be executed on a specific tile. SMIT then 
had to recalculate the mapping. Note that the example in Fig. 6.12 shows only a 
subset of potential mappings.

A live demonstration with the basic verification platform and XPP showed that 
with an MPEG4 stream seamless switching between several mappings could be 
done in real-time without disturbing or interrupting the video output.

6.6.2  DRM

The Digital Radio Mondiale (DRM) physical layer was ported to the OSYRES 
environment. According to the OSYRES model, the DRM physical layer was 
described as task graph (Fig. 6.13). The FFT and IFFT used in the DRM interfer-
ence rejection were implemented for both, the ARM and Montium. Additional fea-
tures allowed to switch on/off the interference rejection and to launch a background 
receiver (which is used to scan for alternative frequencies). In addition a “place-
holder” DAB receiver (of which only the FFT was implemented) could be added. 
Several usage scenarios were specified according to the typical needs of a car radio 
receiver. For demonstration purposes the switching between scenarios was done by 
keystrokes mimicking varying reception quality. The tests have been performed on 
the basic verification platform. Available hardware resources (i.e. OSYRES PUs) 
were the ARM processors, the hardwired down converters (DDC), the Viterbi 
decoder and three reconfigurable Montium tiles. For simplicity reasons audio decod-
ing was performed on a PC linked via USB.

Figure 6.14 shows the task graph of a scenario where interference rejection is 
added e.g. because of reception getting worse. Interference rejection requires in 
addition calculating a FFT1920 and an IFFT1920. SMIT selected from all possible 
mapping the most power efficient resource assignment as shown. So, the most 
compute-intensive tasks are mapped on the Montium.

Fig. 6.13 DRM with interference rejection and DAB task graphs
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Another scenario in Fig. 6.15 starts again from a DRM receiver and an already 
mapped DAB receiver running in background (which delivers traffic information in 
a car radio). In this scenario the DAB has utilized already two Montium tiles to 
compute the DAB FFTs. Now interference rejection was switched on: SMIT mapped 
the FFT1920 to the third Montium tile and the IFFT to the ARM. In any case the 
mapping was performed without interruption of audio.

6.6.2.1  SMIT Mapper and OSYRES Benchmarking

Experiments on the basic platform delivered the following figures on an ARM9 
running at 86 MHz while six FNs have been mapped to four PUs.

SMIT mapping algorithm: 0.7 ms•	
OSYRES task graph generation overhead: 13 ms (2 ARMs and 2 Montiums)•	
Message transfer: ~0.15 ms (NoC and Montium driver).•	

6.6.2.2  SoC Demonstration

In order to prove that a complex heterogeneous platform can be implemented on 
silicon using state-of-the-art ASIC design tools, the Highly Integrated Concept 
Verification Platform was realized and functionally tested and an estimation of the 

Fig. 6.14 DRM receiver with interference mapping (FFT1920 and IFFT1920)

Fig. 6.15 Mapping with additional DAB FFTs
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dynamic power was made. The test suite demonstrated that all devices including the 
Montium and routers were fully functional (“first time right”). Dynamic power esti-
mation was performed on the post-layout netlist. Fig. 6.16 shows the ARM9 and 
Montium comparison of energy for single FFTs. The power reduction factor is 
between the factor 20 and 33 in favour of reconfigurable technology compared to 
general purpose processors. Absolute values of dynamic power consumption of the 
Montium are in the range of 0.24–0.6 mW/MHz. Reconfiguration and control over-
head of the reconfigurable hardware is about 10%. In addition, power reduction 
comes in combination with higher processing power.

6.6.3  Outlook

The intention of 4S was to establish a sample heterogeneous reconfigurable  platform 
and to map tasks to the platform resources during runtime. The mapping algorithm 
was setup to optimize overall power consumption. With current SoC architectures 
that have only a small number of heterogeneous cores (< 10) the spatial mapper has 
only a limited set of mapping scenarios to choose from and optimisation potential is 
limited. The situation changes if dozens or even hundreds of cores are available. 
With those complex platforms it is not feasible anymore to define the mapping at 
design time, thus a runtime tool is mandatory to perform the mapping. The mapping 
algorithm does not necessarily need optimising energy consumption only. Also 
other criteria such as QoS may steer the mapping.
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An important outcome of 4S is that task mapping can be controlled dynamically 
during runtime without interrupting the application. The following list gives an 
 outlook to future scenarios which may benefit from the 4S approach:

Devices with silicon geometries below 65 nm will suffer from severe process •	
variations even on the same die. There will be processing cores which can only 
operate with reduced frequency while others achieve full frequency. Based on 
chip test results a performance model for each of cores can be provided and the 
runtime system automatically maps tasks according to requested application 
needs without overloading the slower cores.
Future chips will suffer from defects and silicon lifetime constraints. A spatial •	
mapper can adapt to the availability and current performance of cores during the 
lifetime of a product. This redundancy concept is completely transparent for 
application software.
The 4S concept enables the most aggressive power reduction concepts such as •	
frequency and voltage scaling and dynamic power switching. The operating 
 system maps tasks seamlessly to the configured performance.
Application software does not need to be tailored to a specific heterogeneous •	
device architecture. The same application software will run on different hetero-
geneous platforms and hardware re-spins. For example, imagine high end and 
entry level mobile devices, all running the same application software that 
 automatically distributes its tasks to the available resources.

The mapping concept is currently part of research activities within Thales. They 
extend the 4S mapping concept by further optimisation parameters. Lessons learned 
from 4S are further investigated in e.g. the CRISP project. The CRISP project  studies 
heterogeneous reconfigurable many-core SoCs, runtime mapping and self-repairing 
reconfigurable core concepts for improved dependability. An extended version of the 
XPP reconfigurable processor was implemented in the MORPHEUS [18] project on 
silicon. Both projects are discussed in specific chapters of this book.

6.7  Conclusion

The 4S project researched innovative hardware concepts along with compile-time 
and run-time tools to realize a computational powerful and flexible platform for 
Ambient Systems. On the hardware side, we targeted the development of a dynami-
cally reconfigurable System-On-Chip (SoC) architecture. It basically offers the 
required flexibility to adapt its hardware resources to diverse processing require-
ments that result from the demands of different applications as well as environmen-
tal changing conditions (e.g. different communication protocols or fading channels). 
Different to reconfigurable architectures like RAW [16], Pleiades [17], PicoChip 
[12], MorphoSys [14], Cell [13] or Imagine [15] which are complex multicore 
designs whose focus is not primarily put on power efficiency, our approach particularly 
targeted embedded devices where maintaining an ultra-low power profile is of great 
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importance. Therefore we investigated and developed a heterogeneous SoC platform 
concept, composing miscellaneous hardwired as well as configurable analogue and 
reconfigurable digital core buildings blocks, interconnected by a Network on Chip 
(NoC) communication infrastructure.

We thereby were able to contribute to the research of reconfigurable architectures 
as we applied a holistic view on the overall system to achieve energy efficiency. Unlike 
in the past, various aspects have, therefore, been investigated in depth in an overlap-
ping manner, i.e. tradeoffs in combining reconfigurable analogue and digital building 
blocks, design-time application characterization for energy-efficient data processing 
on heterogeneous processing tiles and dynamic migration of tasks to reconfigurable 
processing tiles to maintain or even improve quality of service and energy efficiency. 
With respect to the technique mentioned last, 4S also extended the run-time tools by 
a system-aware middleware solution, called OSYRES. Based on user demands, envi-
ronmental, power and quality of service constraints its spatial mapper (SMIT) evalu-
ates an optimal assignment of tasks to tiles and thus efficiently exploits the flexibility 
of computation in time and space. The decision where to place tasks is thereby not 
limited to the starting time of applications. It rather reacts dynamically on any changes 
to the mentioned criteria. Thereby, the proposed methodology, to realize applications 
upon a task graph model, enabled overcoming the drawback of ending and restarting 
an application to handle task migration on heterogeneous systems. Instead, the migra-
tion process is handled by the middleware through interaction with the running appli-
cation in background, so that the user is unable to recognize the remapping process.

With all the developed methodologies, techniques and hardware concepts the 
outcome of 4S project had a significant impact on energy efficient embedded com-
puting targeting applications with run-time dynamic behaviour. We have shown that 
heterogeneous dynamically reconfigurable architectures are very suited to realize 
flexible and energy efficient embedded computing platforms. This was not only 
done on theoretical and prototyping level but also verified based on two highly com-
plex chips (analogue and digital) that have been realized within the project. The 
exploitation of the flexibility of the hardware is thereby given by a set of compile- 
and run-time tools that enable dynamic mapping of task to computational tiles with-
out interruption of running applications. For the first time ever, this seamless 
mapping technique has been shown on a heterogeneous dynamically reconfigurable 
SoC architecture based on two complex applications, MPEG4 and DRM.

Besides technical related aspects, 4S also stimulated commercial interests and 
activities in reconfigurable computing by attracting distinguished partners of 
Europe’s leading ICT industry. Upon that, the ideas, concepts, methods and hard-
ware designs researched in 4S have been the basis for further European projects, 
e.g. CRISP [19] and MORPHEUS [18]. Finally, all major industrial and academic 
partners of the 4S project have perused their activities exploiting reconfigurable 
technology by participating in consecutive projects.
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