

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Asynchronous design of Networks-on-Chip

Sparsø, Jens

Published in:
Proceedings of the 25th IEEE NORCHIP Conference 2007

Link to article, DOI:
10.1109/NORCHP.2007.4481080

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sparsø, J. (2007). Asynchronous design of Networks-on-Chip. In Proceedings of the 25th IEEE NORCHIP
Conference 2007 IEEE. DOI: 10.1109/NORCHP.2007.4481080

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13722865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NORCHP.2007.4481080
http://orbit.dtu.dk/en/publications/asynchronous-design-of-networksonchip(fc3d818e-32a1-4324-96d7-51a8c320a096).html

Asynchronous Design of Networks-on-Chip

Jens Sparsø

Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads, Building 322, DK-2800 Kgs. Lyngby, Denmark

E-mail: jsp@imm.dtu.dk

Abstract— The Network-on-chip concept has evolved as a solu-
tion to a broad range of problems related to the design of complex
systems-on-chip (SoC) with tenths or hundreds of (heterogeneous)
IP-cores. The paper introduces the NoC concept, identifies a
range of possible timing organizations (globally-synchronous,
mesochronous, globally-asynchronous locally-synchronous and
fully asynchronous), discusses the circuitry needed to implement
these timing methodologies, and provides some implementation
details for a couple of asynchronous NoCs designed at the
Technical University of Denmark (DTU). The paper is written to
support an invited talk at the NORCHIP’2007 conference.

I. I

The Network-on-chip concept [1], [2], [3], [4], [5], [6]
has evolved as a solution to a large and diverse set of
challenges ranging from synchronization and long distance
communication in deep submicron technologies to system-
level design methodologies necessary to quickly and safely de-
sign and program complex systems-on-chip (SoC) with tenths
or hundreds of (heterogeneous) IP-cores, such as processors,
memories, I/O-units etc.

This paper addresses timing issues related to the design of
such NoC based SoCs, i.e., clocking, synchronization and use
of asynchronous circuit techniques.

The paper is organized as follows: Section II introduces
some additional NoC fundamentals. Section III identifies pos-
sible timing organizations of NoC based SoCs and section IV
discusses the circuitry involved in implementing these timing
organizations. This leads to conclusions which support asyn-
chronous implementation of NoC routers and links. Section V
reviews the implementation of a couple of asynchronous NoCs
designed at DTU [7], [8], [9], [10], [11], [12], [13], and finally
section VI concludes the paper.

II. N--C

Networks-on-chip (NoCs) are built from communication
links and routers which can be composed to form regular
topologies such as mesh, torus, tree as well as application
specific topologies which are often irregular. IP-blocks are
connected to the network nodes using network adapters (NA)
which provide standard communication sockets like OCP [14]
to the IP-cores. The network itself is typically based on
some form of packet switching and often it provides both
connectionless best-effort (BE) communication and connection
oriented guaranteed-service (GS) communication. Figure 1
shows a fragment of a SoC using a NoC with a 2D-mesh
topology.

Fig. 1. A fragment of a SoC using a mesh-type Network-on-Chip.

Many proposed NoCs provide a traditional bus-like commu-
nication interface to the IP-cores; an interface which provide
read and write transactions into a shared-memory address
space. The NAs must therefore be able to transform a read
or a write transaction into a packet which is sent across
the network. Often NoCs use source routing to simplify the
routers and a routing table in the source NA is used to convert
the shared memory address into a route. The packet payload
normally includes both address and data for the transaction.
Transmission of one packet through a router may stall another
packet and perhaps the only guarantee which can be made is
that the packet eventually arrives at the destination NA. This
is called best effort (BE) routing.

Many proposed NoCs use wormhole routing where a packet
is sent as a sequence of data-words called flits. Often the links
use some form of multiplexing at the flit level in order to allow
simultaneous transmission of several packets across a physical
link. In this way a link may provide several virtual channels
between two neighboring router nodes. Using a sequence of
such virtual channels it is possible to create an end-to-end
virtual circuit connecting a source NA to a sink NA effectively
connecting two IP-cores. In this way it may be possible to
provide hard latency and/or bandwidth guarantees. This is
called guaranteed service (GS) routing.

A router consists of some form of crossbar switch and a
number input buffers and/or output buffers—one buffer per
port or per virtual channel per port. The switch connects input
buffers/ports to output buffers/ports on a per flit basis, and flits
belonging to different packets may be handled concurrently

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 18, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

provided they do not compete for the same output port/buffer.
Consider as an example a CPU IP-core performing a read

from memory IP-core. This transaction results in two packet
transmissions: a read-request from the CPU to the memory
and a subsequent read-response from the memory to the CPU.
In principle the two packets can be transmitted using BE or
GS routing or any combination thereof. For more background
on NoCs the reader is referred to [3], [4], [5], [6].

The area and power figures for NoC router designs which
have been published so far have been on the high side, and
many 2nd generation designs have aimed at reducing area and
power. A latency of 1-2 clock cycles through a router is often
listed as a key design goal.

III. T NC SC

For the circuit level implementation of a NoC-based SoC a
number of timing methodologies are possible:

Several published NoC-based SoCs assume a globally syn-
chronous operation of the entire SoC. This is somewhat
unrealistic. Large SoCs containing many different IP-blocks
typically involve a number of independent clock domains,
and techniques for passing signals between different clock
domains are now standard design practice [15, Chapter 10].
Other proposed NoC-designs implement the entire NoC as
a single clocked module, arguing that the regularity of the
NoC allows clock-skew problems to be handled at modest
effort. Synchronization is thus only required on the interfaces
between the NoC and the (independently) clocked IP-cores.
Many globally-synchronous NoC-implementations have been
published, including [16], [17], [18].

As the NoC is a chip-wide structure, it is becoming in-
creasingly difficult to implement as a simple synchronous
module. The International Technology Roadmap for Semi-
conductors [19] predicts a shift towards schemes which can
tolerate timing uncertainty. This includes mesochronous op-
eration which tolerate a phase difference between the clocks
in the communicating blocks [15, Chapter 10], [20], [21] and
globally-asynchronous locally-synchronous (GALS) operation
[22], [23] where clock domains are confined to the individual
IP-blocks and individual routers in the NoC, and where com-
munication between these is performed using asynchronous
request-acknowledge based communication protocols [24]. In
both the mesochronous and the GALS-approach some form of
synchronization is needed when signals enter a clock-domain
(IP-block, NA or router).

An extension of the GALS approach is to implement the
entire NoC as an asynchronous circuit [24], [7], [25]. In this
way no clock domain extends across the entire chip, and
synchronization is only required when data enters the clock-
domain of an IP-core. Other advantages of an asynchronous
NoC is that its dynamic power consumption when idle is zero,
and that its implementation can be made insensitive to gate and
wire delays, which according to the International Technology
Roadmap for Semiconductors are becoming increasingly dif-
ficult to estimate and model. The latter may result in faster
circuits and hence higher bandwidth.

ClockA

Clock B

Request

nData

Acknowledge

Fig. 2. Transfer of data between two clock domains requires a protocol and
synchronization of the control signals–here Request and Acknowledge.

Control logic

M
U
X

delays, FFs, FSM
Control logic:

n n

Data

Clock

Data

(a)

n n

Data

Clock

Data

(b)

Fig. 3. Mesochronous synchronizers delay input data or select one of two
clock phases for sampling the input data. More details may be found in [15].

IV. S

A. Synchronizing asynchronous inputs

When communicating data from one clock domain to an-
other, some kind of protocol is required along with circuitry
to synchronize the signals implementing the protocol. Fig-
ure 2 shows a possible implementation for the most general
situation where nothing is known about the clock signals in
the two clock domains. If a dual-flip-flop-synchronizer does
not provide a sufficiently low failure rate, additional flip-flops
may be added. If the circuit in one domain is implemented
using asynchronous techniques, then signals into this domain
need not be synchronized. The overhead in terms of area
and power is limited, but the overhead in terms of latency is
considerable (i.e. one or more clock cycles for each protocol
signal event which needs to be synchronized). The interface
shown in figure 2 is thus capable of transferring one data word
for every 2-4 clock cycles. By synchronizing blocks of data it
is possible to amortize the latency across several data items,
but area and power will increase.

B. Synchronizing mesochronous inputs

A synchronizer for a mesochronous input can do one of
the following: delay the local clock such that its phase "fits"
the timing of the input data, or delay the input data to "fit"
the local clock. Both solutions require several variable delay
elements. Two basic designs from [15] are shown in figure 3.
Since a router node for a NoC communicate with several
other modules (routers or NAs) the solution which adjusts
the delay of the clock is not possible. As an alterative to
using analogue delay elements we mention that by using
multiplexers and registers clocked on the up-going edge of
the clock and registers clocked on the down-going edge of
the clock signal is possible to delay the data in increments
of a half clock period. In any case the overhead in terms of
latency is modest, but the overhead in terms of area and power
is considerable. Furthermore some initialization is necessary
to adjust the delays.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 18, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

C. Discussion

The bottom line is that synchronization is expensive–for
asynchronous inputs mostly in terms of latency, and for
mesochronous inputs mostly in terms of power. As both are
critical for a NoC implementation, this observation suggests
that the most realistic solutions are a globally synchronous
NoC or a NoC built using asynchronous circuitry. The next
section addresses the latter.

V. A NC DTU
A. Introduction

In addition to the above mentioned advantage of avoiding
synchronization overhead, asynchronous implementations of
routers and links offer a number of additional benefits: (1)
Since they make use of self-timed and data-driven control they
always operate at the maximum speed possible, and they can
be pipelined aggressively if this is needed. (2) The latency
of an end-to-end connection is minimized, partly because of
the fewer synchronizers and partly because the connection
behaves like a fall-through FIFO, whereas a clocked NoC
behaves like a clocked shift register. (3) An asynchronous NoC
has zero dynamic power consumption in those parts of the
NoC that are idle. In real-life applications where communi-
cation requirements fluctuate a lot, this leads to lower power
consumption. (4) Flow-control, which needs to be explicitly
implemented in clocked NoCs, is inherent in asynchronous
implementations. The handshaking overhead associated with
asynchronous design is therefore less significant in a NOC
implementation, than it is in other applications.

Finally we note that an asynchronous router will need a
to arbitrate among flits contending for the same output port
or output buffer. This may cause metastability in the arbiter
and hence added latency, but only when a conflict actually
occurs, and in these situations the latency is limited to the
time actually taken to recover from metastability. On average
the added latency is therefore negligible, which is in contrast
to the worst case latency of a clock domain synchronizer.

At DTU we have experimented with different asynchronous
NoC applications. We have implemented an ultra-low power
NoC for an audio DSP application, and a full-featured general-
purpose NoC for large SoCs. We have used a data-flow design
style [24, Chapter 3] using handshake components like latch,
mux, demux, merge etc. and a mutex and a priority arbiter. Our
experience is that this design style, supplemented by special
speed-independent control circuits designed using Petrify [26],
fits nicely with the type of functionality which is required
to implement a NoC. In the following sections the two NoC
designs are briefly reviewed.

B. The audio DSP NoC

The application we considered is an industrial audio DSP
subsystem in which a number of filters and other processing
blocks are connected into some static topology where data
is streamed across communication channels connecting the
blocks. Some restricted form of multicast is also used. In order
to allow the same chip to be used in different applications

NA

to
DSP

blocks

Outputs
from
DSP

blocks

NA

DeMux
merge

Arbitrating

Input NAs
(Source routing)

Output NAs
(Synchronization)

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

Inputs

Fig. 4. Block diagram showing the fundamentals of the NoC for the audio
DSP subsystem. More details may be found in [13].

and/or in order to be able to support several use cases in
a given application, the original design is based on one big
crossbar switch implemented in the following way: Every
block broadcasts its output to the input of every other block
which may need the result. Multiplexers on the inputs of the
blocks then selects the proper input and the multiplexers are
controlled by data stored in a set of control registers. This
solution works fine for a moderate number of blocks but it
does not scale well.

The aim of the NoC design was to reduce the total wiring
in order to save power, and to provide a solution which
scales better with the number of blocks. The fundamental
ideas of the implementation are shown in figure 4. It consists
of some very simple network adapters, a tree structure of
arbitrating merge components and a tree structure of controlled
switches (i.e., demultiplexers). The network use source routing
and a packet header contain the control signals used when a
packet travels through the demultiplexer tree. These routes are
(pre)programmed into the source NAs using the same type
of configuration registers as used in the original design. The
actual implementation has a few added features including the
option to add data from several sources.

The asynchronous NoC was implemented using standard
cells in 0.130 micron technology and the audio DSP subsystem
was simulated with crossbar replaced by the NoC. Since the
NoC is asynchronous and since the DSP subsystem is clocked
using the same global clock, the design can be viewed as
a globally-synchronous locally-asynchronous design. Despite
the potential bottleneck where the roots of the two trees are
connected the NoC supports more than 10 data transfers in
one clock period, without any need for generating this higher
frequency clock. More details are available in [13]. Should
more bandwidth be needed, a different NoC topology offering
a higher bisection bandwidth may easily be implemented using
the same merge and switch components.

C. The MANGO NoC

MANGO is an acronym: Message-passing, Asynchronous,
Network-on-chip, providing Guaranteed services, over OCP-
interfaces. The MANGO NoC was developed to support the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 18, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

ports
Output

Split

Split

. . .
. . .

. . .
. . .

. . .
. . .

interface
Programming

. . . Merge

. . . Merge

. . .
. . .

. . .
. . .

Local port

router
BE

GS
router

P

. . .

1

P

. . .

1

Network Adapter

Output buffers

Input
ports

OCP interface

Fig. 5. Block Diagram of a MANGO router. For a 2D-mesh topology P=4.

communication requirements of larger SoCs. It provides both
connection-based GS-communication as well as connection-
less BE-communication, a routing node includes both a GS-
router and a BE-router, figure 5. The links are multiplexed
in order to provide a number of virtual channels between
neighboring nodes [8], [10]. A virtual channel connects to
either the GS router or the BE router. The routers use output
buffers only and flow control is established from one output
to the relevant output buffer in the next router. In this way the
flow control spans the link and the switch in the next router.
The design is significantly more complex than the audio DSP
NoC, and the details are beyond the scope of this paper. The
interested reader is referred to [7], [8], [9], [10], [11], [12],
[13]. A prototype router for a 2D-mesh topology (c.f., figure 1)
has been designed and implemented using standard cells in a
0.130 micron technology. The combined GS/BE router has
5 ports, each with 8 virtual channels per link and it uses
flits with 32 bit data. Its area is 0.188 mm2 and its speed is
795 M flits/sec per link (typical) and 515 M flits/sec per link
(worst case).

VI. C

The paper introduced the NoC-concept and the possible tim-
ing organizations for a NoC based SoC: globally-synchronous,
mesochronous, GALS and asynchronous. Following this the
paper presented the synchronizer circuits which are required
when implementing SoCs based on these timing organizations.
Based on this the paper argued for implementing the NoC
using asynchronous circuit techniques, and the paper presented
two asynchronous NoCs designed for two different applica-
tions. The paper has been written to support an invited talk at
the NORCHIP’2007 conference.

R

[1] William Dally. Route packets, not wires: On-Chip interconnection
networks. In Proceedings of the 2001 Design Automation Conference
(DAC-01), pages 684–689, New York, June 2001. ACM Press.

[2] Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC
paradigm. Computer, 35(1):70–78, January 2002.

[3] A. Jantsch and H. Tenhunen, editors. Networks on Chip. Kluwer
Academic Publishers, 2003. ISBN 1-4020-7392-5.

[4] W. J. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Elsevier Science Publishers, 2003.

[5] G. De Micheli and L. Benini (Editors). Networks on Chips: Technology
and Tools. Morgan Kaufmann Publishers, 2006.

[6] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of network-on-chip. ACM Computing Surveys, 38(1):1–51, 2006.

[7] T. Bjerregaard and J. Sparsø. A Router Architecture for Connection-
Oriented Service Guarantees in the MANGO Clockless Network-on-
Chip. In Proc. Design Automation and Test in Europe (DATE), pages
1226–1231. IEEE Computer Society Press, 2005.

[8] T. Bjerregaard and J. Sparsø. Virtual channel designs for guaranteeing
bandwith in asynchronous network-on-chip. In 22nd Norchip Confer-
ence, pages 269–272. IEEE, 2004.

[9] T. Bjerregaard and J. Sparsø. A Scheduling Discipline for Latency
and Bandwidth Guarantees in Asynchronous Network-on-chip. In Proc.
International Symposium on Asynchronous Circuits and Systems, pages
34–43. IEEE Computer Society Press, 2005. (Best paper award).

[10] T. Bjerregaard and J. Sparsø. Implementation of Guaranteed Services in
the MANGO Clockless Network-on-Chip. IEE Proceedings: Computing
and Digital Techniques, 153(4):217–229, 2006.

[11] T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sparsø. An OCP com-
pliant network adapter for GALS-based SoC design using the MANGO
network-on-chip. In Proceedings of the International Symposium on
System-on-Chip (SoC’05), pages 171–174. IEEE, November 2005.

[12] T. Bjerregaard and J. Sparsø. Packetizing OCP Transactions in the
MANGO Network-on-Chip. In 9th EUROMICRO Conference on Digital
System Design (DSD’06). IEEE Computer Society Press, pp. 657-664
2006.

[13] M. B. Stensgaard, T. Bjerregaard, J. Sparsø, and J. H. Pedersen. A
simple clockless Network-on-Chip for a commercial audio DSP chip.
In 9th EUROMICRO Conference on Digital System Design (DSD’06).
IEEE Computer Society Press, pp. 641-648 2006.

[14] Open Core Protocol (OCP) Specification, Release 2.0, 2003.
http://www.ocpip.org.

[15] W. J. Dally and J. W. Poulton. Digital Systems Engineering. Cambridge
University Press, 1998.

[16] M. Dallosso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini.
Xpipes: a latency insensitive parameterized network-on-chip architecture
for multi-processor SoCs. In Proc. International Conf. Computer Design
(ICCD), pages 536–539. IEEE Computer Society Press, 2003.

[17] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal
network on chip: Concepts, architectures, and implementations. IEEE
Design and Test of Computers, 22(5):414–421, Sept-Oct 2005.

[18] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. The Nostrum backbone
- a communication protocol stack for networks on chip. In Proceedings
of the VLSI Design Conference, pages 693–696, Mumbai, India, January
2004.

[19] The International Technology Roadmap for Semiconductors. ITRS 2005
Edition. http://www.itrs.net/, 2005.

[20] B. Mesgarzadeh, C. Svensson, and A. Alvandpour. A new mesochronous
clocking scheme for synchronization in SoC. In Proc. Int’l. Symp.
Circuits and Systems, pages II.605–II.608, 2004.

[21] F. Mu and C. Svensson. Self-tested self-synchronization circuit for
mesochronous clocking. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, 48(2):129–140, 2001.

[22] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Sys-
tems. PhD thesis, Stanford University, October 1984.

[23] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical
design of globally-asynchronous locally-synchronous systems. In Proc.
International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, pages 52–59, April 2000.

[24] J. Sparsø. Asynchronous circuit design – a tutorial. In J. Sparsø and
S. Furber, editors, Principles of asynchronous circuit design – A systems
perspective, chapter 1-8, pages 1–152. Kluwer Academic Publishers,
2001. 337 pages.

[25] R. Dobkin, V. Vishnyakov, E. Friedman, and R.Ginosar. An asyn-
chronous router for multiple service levels networks on chip. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 44–53. IEEE Computer Society Press, 2005.

[26] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alexandre Yakovlev. Petrify: a tool for manipulating
concurrent specifications and synthesis of asynchronous controllers. In
XI Conference on Design of Integrated Circuits and Systems, Barcelona,
November 1996.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 18, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

