183 research outputs found

    Closed-Loop, Open-Source Electrophysiology

    Get PDF
    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents

    Searching for plasticity in dissociated cortical cultures on multi-electrode arrays

    Get PDF
    We attempted to induce functional plasticity in dense cultures of cortical cells using stimulation through extracellular electrodes embedded in the culture dish substrate (multi-electrode arrays, or MEAs). We looked for plasticity expressed in changes in spontaneous burst patterns, and in array-wide response patterns to electrical stimuli, following several induction protocols related to those used in the literature, as well as some novel ones. Experiments were performed with spontaneous culture-wide bursting suppressed by either distributed electrical stimulation or by elevated extracellular magnesium concentrations as well as with spontaneous bursting untreated. Changes concomitant with induction were no larger in magnitude than changes that occurred spontaneously, except in one novel protocol in which spontaneous bursts were quieted using distributed electrical stimulation

    Investigating computational properties of a neurorobotic closed loop system

    Get PDF
    This work arises as an attempt to increase and deepen the knowledge of the encoding method of the information by the nervous system. In particular, this study focuses on computational properties of neuronal cultures grown in vitro. Through a neuro-robotic close-loop system composed of either cortical or hippocampal cultures (plated on micro-electrode arrays) on one side and of a robot controlled by the cultures on the other side, it has been possible to analyze experimental dataopenEmbargo per motivi di segretezza e/o di proprietĂ  dei risultati e/o informazioni sensibil

    Improvement of acquisition and analysis methods in multi-electrode array experiments with iPS cell-derived cardiomyocytes

    Get PDF
    AbstractIntroductionMulti-electrode array (MEA) systems and human induced pluripotent stem (iPS) cell-derived cardiomyocytes are frequently used to characterize the electrophysiological effects of drug candidates for the prediction of QT prolongation and proarrhythmic potential. However, the optimal experimental conditions for obtaining reliable experimental data, such as high-pass filter (HPF) frequency and cell plating density, remain to be determined.MethodsExtracellular field potentials (FPs) were recorded from iPS cell-derived cardiomyocyte sheets by using the MED64 and MEA2100 multi-electrode array systems. Effects of HPF frequency (0.1 or 1Hz) on FP duration (FPD) were assessed in the presence and absence of moxifloxacin, terfenadine, and aspirin. The influence of cell density on FP characteristics recorded through a 0.1-Hz HPF was examined. The relationship between FP and action potential (AP) was elucidated by simultaneous recording of FP and AP using a membrane potential dye.ResultsMany of the FP waveforms recorded through a 1-Hz HPF were markedly deformed and appeared differentiated compared with those recorded through a 0.1-Hz HPF. The concentration–response curves for FPD in the presence of terfenadine reached a steady state at concentrations of 0.1 and 0.3ÎŒM when a 0.1-Hz HPF was used. In contrast, FPD decreased at a concentration of 0.3ÎŒM with a characteristic bell-shaped concentration–response curve when a 1-Hz HPF was used. The amplitude of the first and second peaks in the FP waveform increased with increasing cell plating density. The second peak of the FP waveform roughly coincided with AP signal at 50% repolarization, and the negative deflection at the second peak of the FP waveform in the presence of E-4031 corresponded to early afterdepolarization and triggered activity.DiscussionFP can be used to assess the QT prolongation and proarrhythmic potential of drug candidates; however, experimental conditions such as HPF frequency are important for obtaining reliable data

    MeaBench: A toolset for multi-electrode data acquisition and on-line analysis

    Get PDF
    We present a software suite, MeaBench, for data acquisition and online analysis of multi-electrode recordings, especially from micro-electrode arrays. Besides controlling data acquisition hardware, MeaBench includes algorithms for real-time stimulation artifact suppression and spike detection, as well as programs for online display of voltage traces from 60 electrodes and continuously updated spike raster plots. MeaBench features real-time output streaming, allowing easy integration with stimulator systems. We have been able to generate stimulation sequences in response to live neuronal activity with less than 20 ms lag time. MeaBench is open-source software, and is available for free public download at http://www.its.caltech.edu/~pinelab/wagenaar/meabench.html

    Pemodelan Perhitungan Indeks Lost Of Load Probability untuk N Unit Pembangkit pada Sistem Kelistrikan Opsi Nuklir

    Full text link
    Perhitungan LOLP dapat dilakukan secara manual ataupun dengan bantuan program. Perhitungan secara manual membutuhkan waktu yang lebih lama dan ketelitian dibandingkan dengan menggunakan bantuan program. Tujuan penelitian ini adalah untuk membuat sebuah model perhitungan indeks LOLP yang lebih sederhana, fleksibel (dapat digunakan untuk N jumlah pembangkit), dan waktu perhitungan yang lebih cepat. Program perhitungan LOLP menggunakan bantuan program Matlab. Penelitian dilakukan dengan langkah sebagai berikut: pembuatan source code pada Matlab, perhitungan indeks LOLP dengan data masukkan yang digunakan, dan validasi hasil perhitungan. Validasi dilakukan dengan cara bencmarking terhadap hasil perhitungan penelitian sebelumnya. Hasil penelitian menunjukkan bahwa model perhitungan indeks LOLP untuk N unit pembangkit pada sistem kelistrikan opsi nuklir telah berhasil dibuat dengan mempertimbangkan aspek kesederhanaan data masukkan, fleksibilitas, dan waktu yang lebih cepat. Hasil perhitungan dapat dinyatakan valid dengan selisih yang kurang dari 1% jika dibandingkan dengan hasil pada penelitian sebelumnya yang telah menghitung indeks LOLP dengan cara manual

    A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells

    Get PDF
    Microelectrode arrays (MEAs) have proved to be useful tools for characterizing electrically active cells such as cardiomyocytes and neurons. While there exist a number of integrated electronic chips for recording from small populations or even single cells, they rely primarily on the interface between the cells and 2D flat electrodes. Here, an approach that utilizes residual stress‐based self‐folding to create individually addressable multielectrode interfaces that wrap around the cell in 3D and function as an electrical shell‐like recording device is described. These devices are optically transparent, allowing for simultaneous fluorescence imaging. Cell viability is maintained during and after electrode wrapping around the cel and chemicals can diffuse into and out of the self‐folding devices. It is further shown that 3D spatiotemporal recordings are possible and that the action potentials recorded from cultured neonatal rat ventricular cardiomyocytes display significantly higher signal‐to‐noise ratios in comparison with signals recorded with planar extracellular electrodes. It is anticipated that this device can provide the foundation for the development of new‐generation MEAs where dynamic electrode–cell interfacing and recording substitutes the traditional method using static electrodes
    • 

    corecore