209 research outputs found

    Personal area technologies for internetworked services

    Get PDF

    A personal distributed environment for future mobile systems

    Get PDF
    A Personal Distributed Environment (PDE) embraces a user-centric view of communications that take place against a backdrop of multiple user devices, each with its distinct capabilities, in physically separate locations. This paper provides an overview of a Personal Distributed Environment and some of the research issues related to the implementation of the PDE concept that are being considered in the current Mobile VCE work programme

    Investigation of an intelligent personalised service recommendation system in an IMS based cellular mobile network

    Get PDF
    Success or failure of future information and communication services in general and mobile communications in particular is greatly dependent on the level of personalisations they can offer. While the provision of anytime, anywhere, anyhow services has been the focus of wireless telecommunications in recent years, personalisation however has gained more and more attention as the unique selling point of mobile devices. Smart phones should be intelligent enough to match user’s unique needs and preferences to provide a truly personalised service tailored for the individual user. In the first part of this thesis, the importance and role of personalisation in future mobile networks is studied. This is followed, by an agent based futuristic user scenario that addresses the provision of rich data services independent of location. Scenario analysis identifies the requirements and challenges to be solved for the realisation of a personalised service. An architecture based on IP Multimedia Subsystem is proposed for mobility and to provide service continuity whilst roaming between two different access standards. Another aspect of personalisation, which is user preference modelling, is investigated in the context of service selection in a multi 3rd party service provider environment. A model is proposed for the automatic acquisition of user preferences to assist in service selection decision-making. User preferences are modelled based on a two-level Bayesian Metanetwork. Personal agents incorporating the proposed model provide answers to preference related queries such as cost, QoS and service provider reputation. This allows users to have their preferences considered automatically

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Multimedia session continuity in the IP multimedia subsystem : investigation and testbed implementation

    Get PDF
    Includes bibliographical references (leaves 91-94).The advent of Internet Protocol (IP) based rich multimedia services and applications has seen rapid growth and adoption in recent years, with an equally increasing user base. Voice over IP (VoIP) and IP Television (IPTV) are key examples of services that are blurring the lines between traditional stove-pipe approach network infrastructures. In these, each service required a different network technology to be provisioned, and could only be accessed through a specific end user equipment (UE) technology. The move towards an all-IP core network infrastructure and the proliferation of multi-capability multi-interface user devices has spurred a convergence trend characterized by access to services and applications through any network, any device and anywhere

    EVM as generic QoS trigger for heterogeneous wieless overlay network

    Full text link
    Fourth Generation (4G) Wireless System will integrate heterogeneous wireless overlay systems i.e. interworking of WLAN/ GSM/ CDMA/ WiMAX/ LTE/ etc with guaranteed Quality of Service (QoS) and Experience (QoE).QoS(E) vary from network to network and is application sensitive. User needs an optimal mobility solution while roaming in Overlaid wireless environment i.e. user could seamlessly transfer his session/ call to a best available network bearing guaranteed Quality of Experience. And If this Seamless transfer of session is executed between two networks having different access standards then it is called Vertical Handover (VHO). Contemporary VHO decision algorithms are based on generic QoS metrics viz. SNR, bandwidth, jitter, BER and delay. In this paper, Error Vector Magnitude (EVM) is proposed to be a generic QoS trigger for VHO execution. EVM is defined as the deviation of inphase/ quadrature (I/Q) values from ideal signal states and thus provides a measure of signal quality. In 4G Interoperable environment, OFDM is the leading Modulation scheme (more prone to multi-path fading). EVM (modulation error) properly characterises the wireless link/ channel for accurate VHO decision. EVM depends on the inherent transmission impairments viz. frequency offset, phase noise, non-linear-impairment, skewness etc. for a given wireless link. Paper provides an insight to the analytical aspect of EVM & measures EVM (%) for key management subframes like association/re-association/disassociation/ probe request/response frames. EVM relation is explored for different possible NAV-Network Allocation Vectors (frame duration). Finally EVM is compared with SNR, BER and investigation concludes EVM as a promising QoS trigger for OFDM based emerging wireless standards.Comment: 12 pages, 7 figures, IJWMN 2010 august issue vol. 2, no.

    WI-FI ALLIANCE HOTSPOT 2.0 SPECIFICATION BASED NETWORK DISCOVERY, SELECTION, AUTHENTICATION, DEPLOYMENT AND FUNCTIONALITY TESTS.

    Get PDF
    The demand for high mobile data transmission has been dramatically enlarged since there is a significant increase at the number of mobile communication devices that capable of providing high data rates. It is clearly observed that even the next generation cellular networks are not able to respond to this demand to provide the required level of mobile data transmission capacity. Although, WLAN responses to this demand by providing upwards of 600 Mbps data rates it is not convenient in terms of cellular like mobility and requires user intervention anytime of reconnection to a hotspot. Therefore, the need for a new technology took place and IEEE has introduced a new amendment to IEEE 802.11 standards family which is called as IEEE 802.11u. Based on IEEE 802.11u amendment, WFA developed WFA Hotspot 2.0 Specification and started to certify the Wi-Fi devices under Passpoint certification program. This new technology developed to provide Wi-Fi capable devices simply identify, select and associate to a Hotspot without any user intervention in a highly secure manner. As Hotspot 2.0 Specification is quite new in the market it has been a challenging work to reach some academic papers; however, IEEE 802.11u standard, Internet sources, white papers published by different companies/organizations and discussions with telecommunication experts have made this master thesis to achieve its goals. This thesis work provides a great resource for the network operators to have a great understanding of the Hotspot 2.0 Specification in terms of theory, network element requirements and deployment by providing a good understanding of the system functionality. In this paper, a comprehensive theoretical background that addresses to WLAN technology, Passpoint elements, and IEEE 802.11u based network discovery, selection and authentication is provided. Besides, Hotspot 2.0 network deployment scenarios with network core element requirements are designed and Passpoint functionality tests are performed under different scenarios by describing a comprehensive setup for the testing.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Review of network integration techniques for mobile broadband services in next generation network

    Get PDF
    Next Generation Network (NGN) is intended at integrating the existing heterogeneous wireless access networks in order to produce a composite network that provides users with ubiquitous broadband experience. Currently, it has been established that Long Term Evolution (LTE) network, as a backbone network, provides broadband capacity with high efficiency, reduced latency and improved resource provisioning. Resource provisioning on this backbone network is not without its limitation as more mobile broadband services (MBBs) are evolving and users demand for mobility is on the increase. This paper, therefore, reviewed the different integration techniques for the heterogeneous networks that use LTE network as backbone that supports mobile broadband services.Keywords: MBB, NGN, LTE, SIP, Qo
    • 

    corecore