4,707 research outputs found

    Myopic or Farsighted? An Experiment on Network Formation

    Get PDF
    Pairwise stability (Jackson and Wolinsky, 1996) is the standard stability concept in network formation. It assumes myopic behavior of the agents in the sense that they do not forecast how others might react to their actions. Assuming that agents are farsighted, related stability concepts have been proposed. We design a simple network formation experiment to test these theories. Our results provide support for farsighted stability and strongly reject the idea of myopic behavior.Network Formation, Experiment, Myopic and Farsighted Stability

    Topology Control Multi-Objective Optimisation in Wireless Sensor Networks: Connectivity-Based Range Assignment and Node Deployment

    Get PDF
    The distinguishing characteristic that sets topology control apart from other methods, whose motivation is to achieve effects of energy minimisation and an increased network capacity, is its network-wide perspective. In other words, local choices made at the node-level always have the goal in mind of achieving a certain global, network-wide property, while not excluding the possibility for consideration of more localised factors. As such, our approach is marked by being a centralised computation of the available location-based data and its reduction to a set of non-homogeneous transmitting range assignments, which elicit a certain network-wide property constituted as a whole, namely, strong connectedness and/or biconnectedness. As a means to effect, we propose a variety of GA which by design is multi-morphic, where dependent upon model parameters that can be dynamically set by the user, the algorithm, acting accordingly upon either single or multiple objective functions in response. In either case, leveraging the unique faculty of GAs for finding multiple optimal solutions in a single pass. Wherefore it is up to the designer to select the singular solution which best meets requirements. By means of simulation, we endeavour to establish its relative performance against an optimisation typifying a standard topology control technique in the literature in terms of the proportion of time the network exhibited the property of strong connectedness. As to which, an analysis of the results indicates that such is highly sensitive to factors of: the effective maximum transmitting range, node density, and mobility scenario under observation. We derive an estimate of the optimal constitution thereof taking into account the specific conditions within the domain of application in that of a WSN, thereby concluding that only GA optimising for the biconnected components in a network achieves the stated objective of a sustained connected status throughout the duration.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Mapping and assessment of ecosystems and their services. Urban ecosystems

    Get PDF
    Action 5 of the EU Biodiversity Strategy to 2020 requires member states to Map and Assess the state of Ecosystems and their Services (MAES). This report provides guidance for mapping and assessment of urban ecosystems. The MAES urban pilot is a collaboration between the European Commission, the European Environment Agency, volunteering Member States and cities, and stakeholders. Its ultimate goal is to deliver a knowledge base for policy and management of urban ecosystems by analysing urban green infrastructure, condition of urban ecosystems and ecosystem services. This report presents guidance for mapping urban ecosystems and includes an indicator framework to assess the condition of urban ecosystems and urban ecosystem services. The scientific framework of mapping and assessment is designed to support in particular urban planning policy and policy on green infrastructure at urban, metropolitan and regional scales. The results are based on the following different sources of information: a literature survey of 54 scientific articles, an online-survey (on urban ecosystems, related policies and planning instruments and with participation of 42 cities), ten case studies (Portugal: Cascais, Oeiras, Lisbon; Italy: Padua, Trento, Rome; The Netherlands: Utrecht; Poland: Poznań; Spain: Barcelona; Norway: Oslo), and a two-day expert workshop. The case studies constituted the core of the MAES urban pilot. They provided real examples and applications of how mapping and assessment can be organized to support policy; on top, they provided the necessary expertise to select a set of final indicators for condition and ecosystem services. Urban ecosystems or cities are defined here as socio-ecological systems which are composed of green infrastructure and built infrastructure. Urban green infrastructure (GI) is understood in this report as the multi-functional network of urban green spaces situated within the boundary of the urban ecosystem. Urban green spaces are the structural components of urban GI. This study has shown that there is a large scope for urban ecosystem assessments. Firstly, urban policies increasingly use urban green infrastructure and nature-based solutions in their planning process. Secondly, an increasing amount of data at multiple spatial scales is becoming available to support these policies, to provide a baseline, and to compare or benchmark cities with respect to the extent and management of the urban ecosystem. Concrete examples are given on how to delineate urban ecosystems, how to choose an appropriate spatial scale, and how to map urban ecosystems based on a combination of national or European datasets (including Urban Atlas) and locally collected information (e.g., location of trees). Also examples of typologies for urban green spaces are presented. This report presents an indicator framework which is composed of indicators to assess for urban ecosystem condition and for urban ecosystem services. These are the result of a rigorous selection process and ensure consistent mapping and assessment across Europe. The MAES urban pilot will continue with work on the interface between research and policy. The framework presented in this report needs to be tested and validated across Europe, e.g. on its applicability at city scale, on how far the methodology for measuring ecosystem condition and ecosystem service delivery in urban areas can be used to assess urban green infrastructure and nature-based solutions

    Identification of microRNA precursors based on random forest with network-level representation method of stem-loop structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play a key role in regulating various biological processes such as participating in the post-transcriptional pathway and affecting the stability and/or the translation of mRNA. Current methods have extracted feature information at different levels, among which the characteristic stem-loop structure makes the greatest contribution to the prediction of putative miRNA precursor (pre-miRNA). We find that none of these features alone is capable of identifying new pre-miRNA accurately.</p> <p>Results</p> <p>In the present work, a pre-miRNA stem-loop secondary structure is translated to a network, which provides a novel perspective for its structural analysis. Network parameters are used to construct prediction model, achieving an area under the receiver operating curves (AUC) value of 0.956. Moreover, by repeating the same method on two independent datasets, accuracies of 0.976 and 0.913 are achieved, respectively.</p> <p>Conclusions</p> <p>Network parameters effectively characterize pre-miRNA secondary structure, which improves our prediction model in both prediction ability and computation efficiency. Additionally, as a complement to feature extraction methods in previous studies, these multifaceted features can reflect natural properties of miRNAs and be used for comprehensive and systematic analysis on miRNA.</p

    Self-tuning algorithms for the assignment of packet control units and handover parameters in GERAN

    Get PDF
    Esta tesis aborda el problema de la optimización automática de parámetros en redes de acceso radio basadas en GSM-EDGE Radio Access Network (GERAN). Dada la extensión del conjunto de parámetros que se puede optimizar, este trabajo se centra en dos de los procesos encargados de la gestión de la movilidad: el proceso de (re)selección de celda para servicios por conmutación de paquetes y el proceso de traspaso para servicios de voz por conmutación de circuitos

    Reliability Assessment and Optimization of Water Distribution Systems Explicitly Considering Isolation Valve Locations

    Get PDF
    Water distribution systems have changed the landscape of communities through two services: 1) providing water supply for domestic and industrial use, and 2) providing water required to fight fires. However, a substantial portion of the water infrastructure in the country, as many of other public assets built over 50 years ago, are now reaching the end of their useful life; which combined with rapid growth and changes in demographics have placed water distribution pipe networks at a state that requires revitalization. The aging infrastructure along with the growing threat of natural and man-made disruptions have led water utilities to place a greater emphasis on developing better strategies to minimize the impact on the system users when a failure event occurs (i.e., improve the reliability of the system). The proposed segment-based analysis considers valve location to estimate the number of pipes taken out of service to seclude the initial pipe break or element failure. The objective of the assessment is to identify critical segments (i.e., smallest set of pipes that can be secluded using the closest isolation valves) and critical valves in a set of real water distribution networks. The critical elements, the segments or valves that when taken out of service cause the greatest reduction in the supply delivered and the level of service provided, are identified using the performance metrics based on: loss of connectivity, and the failure to meet hydraulic and fire protection requirements. This type of assessment seeks to be a simple method to provide information on critical elements that considers the role of isolation valves, thus offering a more realistic view of the effects of a breakdown. This framework is then used to define valve locations that could offer the improvement in reliability for a given capital investment

    Data center resilience assessment : storage, networking and security.

    Get PDF
    Data centers (DC) are the core of the national cyber infrastructure. With the incredible growth of critical data volumes in financial institutions, government organizations, and global companies, data centers are becoming larger and more distributed posing more challenges for operational continuity in the presence of experienced cyber attackers and occasional natural disasters. The main objective of this research work is to present a new methodology for data center resilience assessment, this methodology consists of: • Define Data center resilience requirements. • Devise a high level metric for data center resilience. • Design and develop a tool to validate and the metric. Since computer networks are an important component in the data center architecture, this research work was extended to investigate computer network resilience enhancement opportunities within the area of routing protocols, redundancy, and server load to minimize the network down time and increase the time period of resisting attacks. Data center resilience assessment is a complex process as it involves several aspects such as: policies for emergencies, recovery plans, variation in data center operational roles, hosted/processed data types and data center architectures. However, in this dissertation, storage, networking and security are emphasized. The need for resilience assessment emerged due to the gap in existing reliability, availability, and serviceability (RAS) measures. Resilience as an evaluation metric leads to better proactive perspective in system design and management. The proposed Data center resilience assessment portal (DC-RAP) is designed to easily integrate various operational scenarios. DC-RAP features a user friendly interface to assess the resilience in terms of performance analysis and speed recovery by collecting the following information: time to detect attacks, time to resist, time to fail and recovery time. Several set of experiments were performed, results obtained from investigating the impact of routing protocols, server load balancing algorithms on network resilience, showed that using particular routing protocol or server load balancing algorithm can enhance network resilience level in terms of minimizing the downtime and ensure speed recovery. Also experimental results for investigating the use social network analysis (SNA) for identifying important router in computer network showed that the SNA was successful in identifying important routers. This important router list can be used to redundant those routers to ensure high level of resilience. Finally, experimental results for testing and validating the data center resilience assessment methodology using the DC-RAP showed the ability of the methodology quantify data center resilience in terms of providing steady performance, minimal recovery time and maximum resistance-attacks time. The main contributions of this work can be summarized as follows: • A methodology for evaluation data center resilience has been developed. • Implemented a Data Center Resilience Assessment Portal (D$-RAP) for resilience evaluations. • Investigated the usage of Social Network Analysis to Improve the computer network resilience
    corecore