6,068 research outputs found

    Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    Get PDF
    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed

    Hardware accelerated redundancy elimination in network system

    Get PDF
    With the tremendous growth in the amount of information stored on remote locations and cloud systems, many service providers are seeking ways to reduce the amount of redundant information sent across networks by using data de-duplication techniques. Data de-duplication can reduce network traffic without the loss of information, and consequently increase available network bandwidth by reducing redundant traffic. However, due to the heavy computation required for detecting and reducing redundant data transmission, de-duplication itself can become a bottleneck in high capacity links. We completed two parts of work in this research study, Hardware Accelerated Redundancy Elimination in Network Systems (HARENS) and Distributed Redundancy Elimination System Simulation (DRESS). HARENS can significantly improve the performance of redundancy elimination algorithm in a network system by leveraging General Purpose Graphic Processing Unit (GPGPU) techniques as well as other big data optimizations such as the use of a hierarchical multi-threaded pipeline, single machine Map-Reduce, and memory efficiency techniques. Our results indicate that throughput can be increased by a factor of 9 times compared to a naive implementation of the data de-duplication algorithm, providing a net transmission increase of up to 3.0 Gigabits per second (Gbps). DRESS provides further acceleration to the redundancy elimination in network system by deploying HARENS as the server\u27s side redundancy elimination module, and four cooperative distributed byte caches on the clients\u27 side. A client\u27s side distributed byte cache broadcast its cached chunks by sending hash values to other byte caches, so that they can keep a record of all the chunks in the cooperative distributed cache system. When duplications are detected, a client\u27s side byte cache can fetch a chunk directly from either its own cache or peer byte caches rather than server\u27s side redundancy elimination module. Our results indicate that bandwidth savings of the redundancy elimination system with cooperative distributed byte cache can be increased by 12% compared to the one without distributed byte cache, when transferring about 48 Gigabits of data

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Dynamic Rate Adaptation for Improved Throughput and Delay in Wireless Network Coded Broadcast

    Get PDF
    In this paper we provide theoretical and simulation-based study of the delivery delay performance of a number of existing throughput optimal coding schemes and use the results to design a new dynamic rate adaptation scheme that achieves improved overall throughput-delay performance. Under a baseline rate control scheme, the receivers' delay performance is examined. Based on their Markov states, the knowledge difference between the sender and receiver, three distinct methods for packet delivery are identified: zero state, leader state and coefficient-based delivery. We provide analyses of each of these and show that, in many cases, zero state delivery alone presents a tractable approximation of the expected packet delivery behaviour. Interestingly, while coefficient-based delivery has so far been treated as a secondary effect in the literature, we find that the choice of coefficients is extremely important in determining the delay, and a well chosen encoding scheme can, in fact, contribute a significant improvement to the delivery delay. Based on our delivery delay model, we develop a dynamic rate adaptation scheme which uses performance prediction models to determine the sender transmission rate. Surprisingly, taking this approach leads us to the simple conclusion that the sender should regulate its addition rate based on the total number of undelivered packets stored at the receivers. We show that despite its simplicity, our proposed dynamic rate adaptation scheme results in noticeably improved throughput-delay performance over existing schemes in the literature.Comment: 14 pages, 15 figure

    A robust coding scheme for packet video

    Get PDF
    A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented

    Partial Redundancy Elimination for Access Path Expressions

    Get PDF

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated
    corecore