In this paper we provide theoretical and simulation-based study of the
delivery delay performance of a number of existing throughput optimal coding
schemes and use the results to design a new dynamic rate adaptation scheme that
achieves improved overall throughput-delay performance.
Under a baseline rate control scheme, the receivers' delay performance is
examined. Based on their Markov states, the knowledge difference between the
sender and receiver, three distinct methods for packet delivery are identified:
zero state, leader state and coefficient-based delivery. We provide analyses of
each of these and show that, in many cases, zero state delivery alone presents
a tractable approximation of the expected packet delivery behaviour.
Interestingly, while coefficient-based delivery has so far been treated as a
secondary effect in the literature, we find that the choice of coefficients is
extremely important in determining the delay, and a well chosen encoding scheme
can, in fact, contribute a significant improvement to the delivery delay.
Based on our delivery delay model, we develop a dynamic rate adaptation
scheme which uses performance prediction models to determine the sender
transmission rate. Surprisingly, taking this approach leads us to the simple
conclusion that the sender should regulate its addition rate based on the total
number of undelivered packets stored at the receivers. We show that despite its
simplicity, our proposed dynamic rate adaptation scheme results in noticeably
improved throughput-delay performance over existing schemes in the literature.Comment: 14 pages, 15 figure