Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1998

Partial Redundancy Elimination for Access Path Expressions

Antony L. Hosking
Purdue University, hosking@purdue.edu

National Nystrom
David Whitlock
Quintin Cutts

Amer Diwan

Report Number:
98-044

Hosking, Antony L.; Nystrom, National; Whitlock, David; Cutts, Quintin; and Diwan, Amer, "Partial
Redundancy Elimination for Access Path Expressions" (1998). Department of Computer Science
Technical Reports. Paper 1431.

https://docs.lib.purdue.edu/cstech/1431

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARTIAL REDUNDANCY ELIMINATION
FOR ACCESS PATH EXPRESSIONS

Antony Hosking
Nathaniel Nystrom
David Whitlock
Quitin Cutts
Amer Diwan

CSD TR #98-044
December 1998

International Workshop on Aliasing in Ohjeci-Oriented Systems, Lisbon, Portugal, June 1999

Partial Redundancy Elimination for Access Path Expressions

Antony L. Hosking Nathaniel Nystrom David Whitlock

Department of Computer Sciences

Purdue Universily
West Lafayette, IN 47907-[398, USA

Quintin Cutts
Department of Computing Science
University of Glasgow
Glasgow G12 8QQ, Scotland

Abstract

Pointer traversals pose significant overhead to the ex-
ecution of object-oriented programs, since every ac-
cess Lo an object’s state requires a pointer dereference.
Eliminating redundant pointer traversals reduces both
instructions executed as well as redundant memory ac-
cesses lo relieve pressure on the memory subsystem, We
describe an approach to elimination of redundant access
expressions that combines partial redundancy elimina-
tion (PRE} with type-based alias analysis (TBAA). To
explore the potential of this approach we have imple-
mented an optimization framework for Java class files
incorporating TBAA-based PRE over pointer access ex-
pressions. The framework is implemented as a classfile-
lo-classfile transformer; oplimized classes can then be
run in any standard Java execulion environment. Our
experiments demonstrate improvements in the execu-
tion of optimized code for several Java benchmarks run-
ning in diverse exccution environments; the standard
interpreted JDK virlwal machine, a vidual machine us-
ing “just-in-time" compilation, and native binaries com-
piled off-line (“way-ahead-of-time™). We isolate the im-
pact of access path PRE using TBAA, and demonstrate
that Java’s requirement of precise exceplions can notice-
ably impact code-motion optimizations like PRE.

1 Introduction

Pointer truversals pose significant overhead to the exe-
cution of object-oriented programs, since every access
1o an object’s state requires a pointer dereference. Ob-
Jects can refer to other objects, forming graph structures,
and they can be modified, with such modifications vis-
ible in future accesses. Just as common subexpressions
often appear in numerical code, common access expres-
sions are likewise often encountered in object-ariented
code. Where two such expressions redundantly com-
pute the same value il is desirable to avoid repeated
computation of that value by caching the result of the
first computation in a temporary variable, and reusing
il from the temporary at the later occurrence of the ex-
pression. Eliminating redundant computations in this
way certainly eliminates redundant CPU overhead, Per-
haps just as important for modern machine architec-
tures, eliminating redundant access expressions also has
the effect of eliminating redundant memory references,

Amer Diwan
Department of Computer Science
Stanford University
Stanford, CA 94305-9030, USA

which are often the source of large performance penal-
ties incurred in the memory subsystem,

In this paper we evaluate an approach to elimina-
tion of common access expressions that combines par-
tial redundancy elimination (PRE) [Morel and Renvoise
1979] with type-based alias analysis (TBAA) |Diwan
et al. 1998]. To explore the potential of this approach
we have built an optimization framework for JTava class
files incorporating TBA A-based PRE for access expres-
sions, and measured its impact on the performance of
several benchmark programs. An interesting aspect of
the optimization framework is that it operates entirely as
a bytecode-to-bytccode translator, sourcing and target-
ing Java class files. Our experiments compare the ex-
ecution of optimized and unoptimized classes for sev-
eral SPARC-based cxecution environments: the inter-
preted JDK reference virtual machine, the Solaris 2.6
virtual machine with “just-in-time” (JIT) compilation,
and native binaries compiled off-line (“way-ahead-of-
time”} to C and thence to native code using the Solaris
C compiler.

We have measured both the static and dynamic im-
pact of bytecodc-level PRE optimization for a sel of
Java benchmark applications, including static code size,
bytecode execution counts, native-instruction exceution
counts, and elapsed time. The results demonstrate gen-
eral improvement on all measures for all execution en-
vironments, although some benchmarks have degraded
performance in certain environments,

The remainder of the paper is organized as follows.
Section 2 introduces the approach to elimination of
redundant access path expressions based on partial-
redundancy elimination and type-based alias analysis.
Section 3 describes our implementation of the analysis
and optimization framework that supports transforma-
tion of Java class files using TBAA-based PRE. Sec-
tion 4 describes our experimental imethodology for eval-
vation of TBAA-based PRE for several Java benchmark
applications. The experimenial results are reported and
interpreted in Seetion 5. We conclude with a discussion
of related work and speculate on directions for future
work.

Table 1: Access cxpressions

[Notation | Name | Variable accesscd |

p.t Field access | Ficld £ of class in-
stance 1o which p
refers

pli] Array access | Component with sub-
script § of array Lo
which p refers

2 PRE for Access Expressions

Our analysis and optimization framework revolves
around PRE over object access expressions. We adopt
standard terminology and notations uscd in the specifi-
cation of the Java programming language to frame the
analysis and optimization problem,

2.1 Terminology and notation

The following definitions paraphrase the Java specifica-
lion [Gosling et al. 1996]. An ebject in Java is either a
class instance or an array, Reference values in Java are
pointers to these objects, as well as the null reference.
Both objects and arrays are created by expressions that
allocate and initialize storage for them. The operators
on references to objects are ficld access, method invoca-
tion, casts, type comparison (instanceof), equality
operators and the conditional operator. There may be
many references to the same object. Objects have muta-
ble state, stored in the variabic fields of class instances
or the variable elements of arrays. Two variables may
refer 10 the saine object: the state of the object can be
modified through the reference stored in one variable
and then the altered state observed through the other.
Access expressions refer 1o the variables thal comprise
an abject’s stale. A field access expression refers to a
field of some class instance, while an array access ex-
pression refers 1o a component of an array. Table | sum-
marizes the (wo kinds of access expressions in Java. We
adopt the tern access parh [Larus and Hilfinger 1988;
Diwan et al. 1998] to mean a non-empty sequence of
accesses. For example, the Java expression a.b[i].c is
an access path. Without loss of generality, our notation
assumes that distinct fields within an object have differ-
ent names (i.e., fields that override inherited fields of the
same name from superclasses are trivially renamed).

A variable is a storage location and has an asscciated
type, somelimes called its compile-time type. Given an
access path p, then the compile-time type of p, written
Type(p), 1s simply the compile-time type of the variable
itaccesses. A variable always contains a value that is as-
sigiment compatible with its type. A value of compile-
time class Lype S is assignment compatible with class
type 7 if S and T are the same class or § is a subclass
of T. A similar rule holds for array variables: a value
of compile-time array type S[] is assignment compati-

a a a a
b b b b
a+b te—a+b ta+b
a+b f
(a) Before PRE (b} After PRE

Figure 1: PRE for arithmetic expressions

ble with array type T[] if type S is assignable to type
T. Interface types also yield rules on assignability: an
interface type § is assignable to an interface type T only
if T' 15 the same interface as S or a superinterface of §;
a class type S is assignable to an interface type T if S
implements 7. Finally, array types, interface types and
class Lypes are all assignablc to class type Object.
For our purposes we say that a type S is a subtype of
atype T if S is assignable to T.! We write Subtypes(T)
1o denote all subtypes of type T, including 7. Thus,
an access path p can legally access variables of type

Subtypes(Type(p)}.

2.2 Partial redundancy elimination

Qur approach to optimization of access expressions is
based on application of partial redundancy elimination
(PRE} [Morel and Renvoise 1979]. To our knowledge
this is the first time PRE has been applied to access
paths, PRE is a powerful global optimization technique
that subsumes the morc standard common subexpres-
sion elimination (CSE). PRE eliminates computations
that are only partially redundang; that is, redundant only
on some, but not all, paths 1o some later re-computation,
By inserting evaluations on those paths where thc com-
putation does not occur, the later re-cvaluation can be
eliminated and replaced instead with a use of the pre-
computed value. This is illustrated in Figure L. In Fig-
ure 1(a), both a and & are available along each palh
to the merge point, where expression a + b is cvalu-
ated. However, this evaluation is partially redundant
since a + b is available on one path 1o the merge but not
both. By hoisting the second evaluation of a + b into
the path where it was not originally available, as in Fig-
ure 1(b), a4+ b need only be evaluated once along any
path through the program, rather than twice as before.

Consider the fava access expression a.b[i].c, which
translates to Java bytecode of the form:

aload a ; load local variable a
getfield b ; load field b of a
iload i ; load local variable 1
aaload ; index array b
getfield ¢ ; load field c of b[i]

'The 1erm “sublype” is not used i all in the official Java langnage
specification [Gosling et al. 1998], presumably 1o aveid conlusing the
type hierarchy induced by the subtype relation with class and interface
hicrarchies.

a G a a

ab[:]c H—ab[;]c H—ab[r

\l/ \l/

a.bli].c !
{a) Before PRE {b) After PRE

Figure 2: PRE for access expressions

Traversing the access path requires successively loading
the pointer at each memory location along the path and
traversing it to the next location in the sequence. Be-
fore applying PRE 1o access path expressions, one must
first disambiguate memary references sufficiently to be
able safely 1o assume that no memory location along the
access path can be aliased (and so modified) by some
lexically distinct access path in the program. Consider
the example in Figure 2. The expression a.b[i).c will be
redundant at some subsequent reevaluation so long as
no store occurs to any one of @, a.b, i, a.b[i] or a.b[i].c
on the code path between the first evaluation of the ex-
pression and the second. In other words, if there are
explicit stores to a or § (local variables cannot be aliased
in Java} or potential aliases to any one of a.b, «.5[i] or
a.bli).c through which those locations may be modified
between the first and second evaluation of the cxpres-
sion, then that second evaluation cannot be treated as
redundant.

2.3 Type-based alias analysis

Alias analysis refincs the set of possible variables to
which an access path may refer. Two distinct access
paths are said to be possible aliases if they may refer to
the same variable. Without alius analysis the optimizer
Inust conservatively assume that all access paths are
possible aliases of each other. In general, alias analy-
sis in the presence of references is slow and requires the
code for the entire program 1o work. Type-based alias
analysis (TBAA) [Diwan et al. 1998] offers one possi-
bility for overcoming these limitations. TBAA assumes
a type-safe programniing langrage such as Java, since
it uses type declarations to disambiguate references. It
works in linear time and does not require that the en-
tire program be available. Rather, TBAA uses the type
syslem to disambiguate memory references by refining
Lhe rype of variables to which an access path may refer,
since only type-compatible access paths can alias the
same variable in a type-safe language such as Java. The
compile-time type of an access path provides a simple
way 1o do this: two access paths g and ¢ may be aliases
only if the relation TypeDecl(p,q) holds, as defined by

TypeDeci(AP(,AP1)]
Subtypes(Type{AP1Y) N Subtypes(Type{AP,)) # 0 '

Table 2: FieldTypeDeci(AP(,AP,)

Case | AP | AP: | FieldTypeDec{ AP, AP7) |

1 P p Lrue

2 p£ |q.g | (£=g)ATypeDeci(p,q)
3 p.f |qli] | falsc

4 | pll | qli) | TpeDeci(p,q)

5 p g TypeDecl(p,q)

A more precise alias analysis will distinguish accesses
(o fields that are the same type yet distinct. This more
precise relation, FieldTypeDecl(p,q), is defined by in-
duction on the structure of p and g in Table 2. Again,
two access paths p and g may be aliases only if the re-
lation FieldTypeDecl(p,4) holds. Tt distinguishes ac-
cesses such as f.£ and t.g that TypeDect misses. The
cases in Table 2 determine that;

[. Identical access paths are always aliascs

2. Two field accesses may be aliases if they access the
same field of polentially the same object

3. Array accesses cannot alias field accesses and vice
versa

4. Two array accesses may be aliases if they may ac-
cess the same array (the subscript is ignored)

3. All other pairs of access expressions (when none
of the above apply) are possible aliases if they have
common subtypes

2.3.1 Analysing Incomplete Programs

Java dynamically links classes on demand as they arc
needed during execution. Moreaver, Java permits dy-
namic loading of arbitrary named classes that are stat-
ically unknown. Also, code for native methods cannot
easily be analysed. To maintain class compatibility, no
class can nake static assumptions about the code that
implements another class. Thus, alias analysis must
make conservative assumptions about the effects of stat-
ically unavailable code. Fortunately, both TypeDecl and
FieldTypeDecl require only the compile-time types of
access expressions to determine which of them may be
aliases. Thus, they are applicable to compiled classes
in isolation and optimizations that use Lhe static alias
information lhey derive will not violate dynamic class
compatibility.

Diwan et al. [1998] further refine TBAA for closed
world situations: those in which all the code that might
execule in an application is available for analysis. The
refinement enumerates all the assignments in a program
to determine more accurately the types of variables to
which a given access path may refer. An access path
of type T may yield a reference to an object of a given
subtype S only if there exist assignments of references
of type S to variables of type T. Unlike TypeDec!, which
always merges the compile-lime type of an access path

with all of its subtypcs, Diwan's closed world refine-
ment nerges a type T’ with a subtype S only if there
1s at least one assignment of a rcference of type § to a
variable of type T' somewhere in (he code.

In general, Java's use of dynamic loading, not to men-
tion the possibility of native methods hiding assign-
ments from the analysis, precludes such closed world
analysis. Of course, it is possible 1o adopt a closed
world medel for Java if onc is prepared to restrict dy-
namic class loading only to classes that are known srati-
cally, and 1o support analysis (by hand or automatically)
of the effects of native methods, Note that a closed
world model will require re-analysis of the entire clo-
sure if any one class is changed to include a new assign-
menl.

2.4 Java constraints on optimization

Java's thread and exception models impose several con-
strainis on oplimization. First, exceptions in Juva are
precise: when an exception is thrown all effects of state-
ments prior to the throw-point must appear to have taken
place, while the effects of statements after the throw-
point must not. This imposes a significant constraint
on code-motion optitizations such as PRE, since code
with side-effects (including possible exceptions) cannot
be moved relative to code that may throw an exception.?
In regions of the code where program analysis can show
that exceptions will not occur code motion is uncon-
strained. For example, the first access 1o an object via
a given reference ensures that subsequent accesses vin
thal reference cannot throw a null pointer exception.

Second, the thread model prevents movement of
dceess expressions across (possible) synchronization
points, Explicit synchronization points occur at mon-
ilorenter/monitorexit bytecodes. Also, without inter-
procedural control-Aow analysis every method inveca-
tion represents a possible synchronization point, since
the callee, or a method invoked inside the callee, may
be synchronized. Thus, calls and synchronization points
are places at which PRE must assume ail non-local vari-
ables may be modified, either inside the call or through
Lhe actions of other threads. Common access expres-
sions cannot be considered redundant across these syn-
chronization points.

Naturally, one must also respect the velatile dee-
laration modifier, which forces synchronization of the
variable's state across threads on every access.

3 Implementation

The Java virtual machine (VM) specification { Lindholm
and Yellin 1996] is intended as the interface between
Java compilers and Java execution environments. Its

*Of course n optimizing Java implementation coudd simulate pre-
cise exceplions, even while performing unmestricted code hoisting, by
arranging to hide any such speculative execulion Irom the user-visible
state of the Java progmm (sce page 205 of Gosling et al, [1996]).

standard class file format and instruction set permit mul-
tiple compilers to inter-operate with multiple VM im-
plementations, enabling the cross-platform delivery of
applications that is Java’s hallmark. Conforming class
files generated by any compiler will run in any Java VM
implementation, no matter if that implementation inter-
prets bytecodes, performs dynamic “just-in-time” trans-
[ation to native code (JIT), or precompiles Java class
files to native object files.

The bytecodes of the Java VM specification serve as a
convenient target for optimization of Java applications.
As the only constant in a sea of Java compilers and vir-
tual machines, targeting the Java class files for analysis
and optimization has several advantages. First, program
improvements accrue even in the absence of source code
for both libraries and applications, and independently of
the source-language compiler and VM implementation.
Sccond, Java class files retain enough high-level type
information to enable many recently-developed type-
based analyses and optimizations for object-oriented
languages. Finally, analysing and oplimizing bytecode
can be performed off-line, permitting JIT compilers to
focus on Fast native code generation rather than expen-
sive analysis. Indeed, off-linc analysis may expose op-
portunilies for fast low-level JIT optimizalions. Thus,
we have chosen to implement a framework for TBAA-
based PRE over access expressions based on classfile-
to-classfile transformation.

Qur Java class file optimization taol is called BLOAT
(Bytecode-Level Optimization and Analysis Tool}. The
analysis and optimization framework implemented in
BLOAT is based on several recent developments in the
field. Notably, we use control flow graphs and static
single assignment (SSA) form as the basic intermediate
representation [Cytron et al. 1991; Wolfe 1996; Briggs
et al. [998]. On this foundation we have built several
standard optimizations such as dead-codc elimination
and copy/constant propagation, and SSA-based value
numbering [Simpson 1996], as well as type-based alias
analysis [Diwan et al. 1998] and the SSA-based algo-
rithm for PRE of Chow el al. [1997].

3.1 SSA form

SSA form provides a concisce representation of the use-
definition relationships among (he program variables.
Efficient global optimizations can be constructed based
on this form, including dead store elimination [Cytron
etal. 1991], constant propagation [Wegman and Zadeck
19%1], value numbering [Alpern et al. 1988; Rosen
et al. [988; Cooper and Simpson 1995; Simpson 1996;
Briggs et al. 1997], induction variable analysis [Gerlek
et al, 1995] and global code motion [Click 1995]. Opti-
mization algorithms basced on SSA all exploit its sparse
representation for improved speed and simpler coding
of combined local and global optimizations,

3.2 SSA-based PRE

Prior to the work of Chow et al. [1997], PRE lacked an
SSA-based formulation. As such, optimizers that used
5SA were forced to convert to a bit-veclor represen-
tation for PRE and back to SSA for subsequent SSA-
based optimizations. Chow et al, [1997] removed this
impediment wilh an approach (SSAPRE) that retains
the SSA representation throughout PRE. The specific
details of thetr algorithm are not relevant here, save to
say that the algorithmic complexity is respectable; for a
program of size nn, SSAPRE’s total time is O{n{E + V)),
where E and V are the number of edges and nodes in the
contro] How graph, respectively.

3.3 Analysis

For each method in a class, BLOAT first builds a
contro| flow graph over the bytecode instructions and
then transforms each basic block inlo expression trees.
The (rees are constructed through a simulation of the
operand stack.

Two simple transformations are then applied to ease
later analyses and optimizations. The first converts
methods that initialize static arrays from the form emit-
ted by the IDK javac compiler, comprising a straight-
line sequence of array stores for every element of the
array, into a form more amenable to later analysis, con-
sisting of a loop that reads from a static string defined
in the constant pool of the class. This transformation
eliminates the unnccessarily large basic blocks emitied
for static array initializers in such core classes as Char-
acter, significantly culling the time for later analysis
of these initializers. The second transformation iden-
tifies loops [Havlak 1997] and converts each “while”
loop into a “repeat’” loop preceded by an “iP* condi-
tional. This provides a convenient place immediately
after the “ii” to hoist loop-invariant code out of the loop
body. Code that is loop-invariant apart from possibly
throwing exceptions can thus be treated as invariant in
the new loop body and will be eliminated by PRE.,

After construction of the control How graph both lo-
cal and operand stack variables are converted 10 SSA
form. This requires computation of the dominator
tree and dominance frontier ol the control flow graph
[Cywron et al. 1991]). We also remove crirical edges
in the graph by inserting empty basic blocks on such
edges. Critical edge removal is required 10 provide a
place 1o insert code during PRE and when translating
back from SSA form.

Java bytecode has twe forms of control flow which
complicate S8A construction: exception handlers and
method-local subroutines. To suppert exception han-
dling, we must propagate local variable information
from the protected area 1o the exception handler. We
exlend SSA to more easily distinguish all values of a
variable that are live within the protected region.

Subroutings within a method are formed with the jsr
and ret bytecodes. The jsr bytecode pushes the current
program counter, a value of type relurnAddress, onto

the operand stack and branches to the subroutine. The
ret bytecode loads a saved returnAddress from a local
variable and resumes control at that code location. To
permit verification of jSr subroutines the Java VM spec-
ification imposes a restriction that each jSr can have at
most one corresponding ret. This allows cach jsr to be
ticd to the ret that returns 1o it. Thus, for SSA construc-
lion we treat each subroutine such that, if a vartable is
not redefined within (he subroutine, the use-definition
information for the variable is propagated from each
jsr site to its corresponding return site. This avoids
unnecessarily merging informatton from multiple paths
through the subroutine. Qur SSA-based solution is es-
sentially Lhe same as the “variable splitting™ approach
proposed by Agescn et al. [1998] in support of accurate
garbage collection.

TBAA uses the compile-time type ol every cxpres-
sion in the methad, but local and operand stack variables
in Java bytecode are not declared. Thus, afier SSA con-
struclion we infer their Lypes using an intra-procedural
variation of the algorithm of Palsberg and Schwarlzbach
[1994].

PRE operates by recognizing common subexpres-
sions. Rather than basing cyuivalence of expressions
purely on their lexical equivalence, we use the SSA-
based value numbering approach of Simpson [1996].
We assign value numbers to every first-order cxpres-
sion. These are expressions for values that cannot be
aliased, such as the contents of method local variables,
conslants, and non-access expressions over these. Using
value numbering avoids the need for repetitive iteration
of PRE interleaved with constant/copy propagation.

Finally, we identity alias definition points: those code
locations where polentially-aliased variables may be
modifted. For example, an assignment to a (non-local)
variable redefines every access expression that may alias
that variable. Calls and monitor synchronization points
redefine al access expressions.

3.4 Optimization

Alter the analyses, BLOAT performs the following op-
timizations:

|. Partial redundancy elimination. BLOAT imple-
ments the SSA-based PRE algorithm of Chow et al.
[1997], extended to support TBAA-based PRE ol
access paths by treating alias definition points for a
piven access expression as redefining that expres-
sion. This forces reevaluation of the expression af-
ter the alias definition point. We also resirict PRE-
induced code motion to respect the constraints on
Java optimizations due to precise exceptions and
threads, except that where analysis shows a given
bytecode will never throw an exception we are free
to move code wilh respect Lo that bylecode.

2. Constant/copy propagation. This is based on stan-
dard techniques for constant [olding, algcbraic
simplification and copy propagation [Wolfe [996].

3. Dead code elimination. This is the standard SSA-
based algorithm [Cyuron et al. 1991].

3.5 Code generation

Following the optimizations, SSA temporaries are
mapped back o Java VM local variables, before gen-
eration of bytecode instructions from the (optinized)
intermediate code trees. Liveness analysis and regis-
ter coloring with coalescing [Chaitin 1982; Briggs et al.
[994] ensure a good allocation, packing as many SSA
variables into the same physical local variable as pos-
sible. Priority is given to coalescing loop-nested local
variables ahead of others. Peephole eptimizations re-
move redundant Ioad and store bytecodes for better uti-
lization of the operand stack,

4 Experiments

To evaluate PRE for access path expressions we ook
several Java programs as benchmarks, optimized them
with BLOAT and compared the results of the oplimiza-
tion with their unoplimized counterparts, using several
slatic and dynamic performance metrics, To isolate the
effects of access path PRE we considered 3 successively
more powerful levels of optimization: PRE over scalar
expressions, TBA A-based PRE aver both scalar and ac-
cess expressions, and TBAA-based PRE that does not
respect Java's precise cxception requirements. Each op-
timization level subsumes all optimizations that are per-
lormed by lower level opiimizations. In the following
we will refer 1o results for the unoptimized code as
base, and 1o the successive levels of PRE-based opti-
mization as pre, tbaa and loose, respectively.

41 Platform

Our experiments were run under Solaris 2.5.1 on a
Sun Ultra 2 Model 2200, with 256Mb RAM, and two
200MHz UltraSPARC-I processors, each with 1Mb ex-
ternal cache in addition to their on-chip instruction
and data caches. The UltraSPARC-I data cache is
a I6Kb write-through, non-allocating, direct-mapped
cache with two 16-byte sub-blocks per line, It is virtu-
ally indexed and physically tagped. The 16Kb instruc-
tion cache is 2-way set-associative, physically indexed
and tagged, and organized into 512 32-byte lines.

4.2 Benchmarks

The benchmarks we use are summarized in Table 3.

4.3 Execution environments

We took measurements for three different Java execu-
tion environments: the standard Java Development Kit
(JDK) version 1.1.6, the Solaris 2.6 SPARC JDK with
JIT version 1.1.3 (JIT) and Toba version 1.I {Toba)
[Proebsting et al. 1997]. In cach environment we ran

Table 3: Benchmarks

| Name [Description | Size®]

Crypt Java implementation of the | 650
Unix crypt utility

Huffman | Huffman encoding 435

Idea File encryption tool 2284

Ilex Scanner generator 7287

ITB Abstract syntax tree builder 22317

Linpack | Standard Linpack benchmark | 584

LZW Lempel-Ziv-Welch file com- | 314
pression utility

Neural Neural network simulation 1227

Tiger Tiger compiler [Appel 1998] | 19018

“Lines of source code (including comments).

ali four variants (base, pre, thaa and loose) of the
classes for each benchmark. Where Java source code
for a benchmark was available, it was compiled using
the standard JDK [.1.6 javac compiler (without the -O
optimization flag since in many cases this generates er-
roneous coile; our observations indicate that this flag has
little impact on the performance of our benchmarks).

4.3.1 JDK

JDK is the standard |.1.6 Java virtual machine, It uses
a portable threads package rather than the native So-
laris threads and thc bytecede interpreter loop is im-
plemented in assembler. We optimized the class files
of each benchmark against the JDK version 1.1.6 corc
Java classes [Gosling et al. 1996] at cach optimization
level, to form the closure of optimized classes necessary
to execute the benchmark in JDK. Similarly the unop-
timized benchmark classes were run against the unopli-
mized core classes.

432 JIT

JIT refers to the Solaris 2.6 SPARC IDK with IIT ver-
sion 1.1.3. This VM translaies a method’s bytecodes
to native SPARC instruction on first execution of the
method, along with the following optimizations:

. elimination of some array bounds checking

. elimination of common subexpressions within

blocks
. elimination of empty mcthods

. some register allocation for locals
. no flow analysis
. limited inlining

[= R, I S L R %

Interestingly, programmers are encouraged to perform
the following optimizations by hand [SunSoft 1997):

. move loop invariants ouside the loop

. make loop tests as simple as possible

. perform loops backwards

. use only local variables inside loops

. move conslant conditionals outside loops

hods Lo b —

. combine similar loops
- nest the busiesl loop, if loops are interchangeable
. unrell loops, as a last resort

- avoid conditional branches _ i
. cache values that arc expensive to {etch or compute

pre-compute values known at compile time

— OO 00] T

These suggestions likely reveal deficiencies in the cur-
rent JIT compiler which our oplimizations may address
prior to JIT execution.

We used the same scts of class files as for IDK for
execution in the JIT environment.

4.3.3 Toba

Toba compiles Java class files to C, and thence to na-
tive code using the host system’s C compiler. The Toba
run-time sysiem supports native Solaris threads, and
garbage collection using the Boehm-Demers-Weiser
conservitive garbage collector [Bochm and Weiser
1988). We started with the sume sets of classes as for
JDK for execution in Toba. These class files were then
compiled to native code using the SunPro C compiler
version 4.0, with the -O2 compiler optimization flag. C
optimization level 2 performs basic local and global op-
timization, incleding induction variable elimination, al-
gebraic simplification, copy propagation, constant prop-
agation, loop-invariant optimization, register allocation,
basic block merging, tail recursion elimination, dead
code climinalton, tail call elimination and complex ex-
pression expansion. We use this level since it does nol
“oplimize references”, nor “trace the elfect of pointer
assigniments”, and therefore will best reveal the impact
of our pointer optimizations.

4.4 Metrics

For each benchmark we took measurements for both the
optimized and unoptimized classes. We use both static
and dynamic metrics 1o expose the elfects of optimiza-
tion:

¢ siatic code size: this is the size in bytes of the
benchmark-specific (non-library) class files (ex-
cluding debug symbols) for JTDK/JIT, and static cx-
ccutables for Toba

s bytecodes executed: dynamic per-bytecode execu-
tion frequencies, obtained via an instrumented ver-
sion of the C-coded interpreter loop in the JDK
source release

s globally redundant (i.e., cross-activation)
bylecode-level memory accesses: dynamic
per-bytecode counts of all accesses that reload
values from unmodified variables, also obtained
via the instrumented JDK VM

¢ native SPARC instructions executed: dynamic per-
instruction execution frequencies using the Shade
performance analysis toolkit [Cmelik and Keppel
1994]

¢ counts of significant performance-related events:

— processar cycles o measure clapsed time

— instructipn buffer stalls due w instruclion
cache misses

— darta cache reads
— data cache read misses

using software® that allows user-level access 1o the
UltraSPARC hardware cxecution counters

For the dynamic measurements each run consisls of two
iterations of the benchinark within a given execution
environment. The first iteration is to prime the envi-
ronment: loading class files, JIT-compiling them and
warming the caches, The second iteration is the one
measured.

The physically addressed instruclion cache on the
UlraSPARC means that programs can exhibit widely
varying exccution times from one invocation to the next,
since each invocation may have quite different map-
pings from virtual 1o physical addresses thar result in
randomized instruction cache placement. Thus, the
elapsed time and cache-related metrics were obtained
for 10 scparate runs and the results averaged. We ran
each benchmark with sufficient heap space to eliminate
the need for garbage collection, and verified that no col-
lections occurred during benchmarking.

5 Results

Our presentation normalizes all oplimization results
with respect to the base metrics. Reporting the results
in this way exposes Lhe relative effects of 1he succes-
sive levels of optimization. Error bars in our graphs
represent 90% confidence intervals; these display the
variation in performance due ta factors beyond our con-
irol, such as the varying virtual-to-physical page map-
pings. Grouped by benchmark, the adjacent columns in
the graphs represent the transition 1o higher optimiza-
tion levels from hase, through pre and |baa to loose,
In the following discussion we consider each execu-
tion environmentin turn: JDK, then JIT, and lastly Toba.

5.1 JDK

Figure 3(a} illustrates the anticipated increase in dy-
namic bytecode execution counts for many of the
benchmarks, mainly due to introduction of extra loads
from and stores 1o temporaries introduced by PRE for
partially-redundant expressions whose values are not
used on all paths. As we shall see, execution envi-
ronments that map method local variables Lo registers
(e.g., JIT and Toba) do not seffer unduly from this over
head. The impact on clapsed time for interpretation by
the JDK (Figure 3(b)) can be severe {notably for Huff-
man and Tiger), though for some benchmarks the ex-
tra load and store bytecedes are offset by elimination
of partially-redundant code and replacement of many
expensive long [0ad/store bytecode forms with their
cheaper short alternatives.

3See hup:orww.cs.msu,cduwf~eobody/

(a) Bytecodes executed

S Ssg, 2533 E3,

ITIETTYITE]
I

asd|

Ol ot £ L et gty

[T

DLFRFFTH I

T

3
£
E
5
=
1
¥

{b) Time (cycles)

] 3
7828 B35

CYTTIEEATES

T 07

[IRIRHT

FETIIT
PR RS g | | ()

U 1ot | Ukl romy
T

R

=

an
e ja 1th

{c) Data reads

I EEE]

Upt cound § Unopd rommt

= b

[~y

Figure 3: IDK metrics

Figure 4 highlights these conversions. The effect is
most notable with LZW where the frequency of (he load
bytecodes decreases from 119 Lo 19 of the total byle-
codes executed and the frequency of loadn increases
from 20% to 28%. These effeets result in less overhead
in the interpreter’s bytecode dispatch loop. The impact
on data cache reads (remember, bylecodes are dala) is
revealed in Figure 3(c). The large increasc in stores for
Linpack is due to PRE’s elimination of significant num-
bers of redundant arithmetic expressions.

The most dramatic effects of PRE over access paths
are directly revealed in the resulis for the access byte-
codes given in Figure 5. Here, we show the total number
of access bylecades performed, broken down into glob-
ally redundant versus non-redundant accesses. The non-
redundant accesses are those that must always be per-
formed, The globally redundant accesses represent op-
porlunity for optimization; with perfect inter-procedural
control flow and aliasing information all such accesses

(a) load vs. loadn

e=
2223 e
10-] [
H
E
£
=1
% na-
E
%
[~
oL BIEHY MR BISH :
vhypd hulfman akes Jlex linpack Lew noyral Tger
o load_n
a load
(b) store vs. storen
=35
L=
R
E
=
L5
B
3
=)
g4
E
2
=]
24 .5i-
el
o et e B

Figure 4: Replacing load/store with short forms

could be removed. It is remarkable how many of these
are removed by our purely intra-procedural analysis.
All benchmarks see a decrcase, ofien significant, in the
frequency of geffield bytecades (Figure 5(u)) due 10
TBAA-based PRE over redundant access expressions
(lbaa). The dramatic reduction for Neural represents
a reduction of redundant getfield operations from 9%
of total bytecodes executed Lo 5% of total bylecodes.
Linpack’s reductions are similar, but geffields represent
just 0.02% of towal bylecodes executed so the impact is
minimal. Relaxing Java's precise exception requirement
(locse} yields little benefit for geffield.

The array intensive benchmarks (Huffman, Linpack,
and Neural) obtain noticeable reductions in arrayload
frequency (Figure 5(b)). Interestingly, relaxing Java’s
precise exceptions gives significant improvement for
both Linpack and Neural, because freedom from con-
cern over precise delivery of array out of bounds excep-
tions, provides more opportunity for PRE-based code
mation. The Huoffman, Linpack, and Neural bench-
marks, which have heavy array usc (4%, 9%, and 11%,
respectively), see an climination of 4-7% of the array-
load bytecodes for TBAA-based PRE with precise ex-
ceptions (tbaa). Relaxing exception delivery (loose)
sees reductions in arrayloads increase to a peak of 22%
for Neural. Further improvement would accrue if array
subscripts could be disambiguated via range analysis on
the subscript expressions for use during array alias anal-
ysis. Few arrayload bytecodes are eliminated in any of

(a) geffield bytecodes

B3 B8 o8 53 ER &% £, 58 =2
1D TR T T e=—TT T ST — T T T BT ——
I ez ({E2 Fle2 [1M 2
= = - dA1'kE== |°]- R =
FH : H
z B
£ .
= | :P=
= B2
§ o3 :
z
)
n.uJ
ey hulfman hka Jkex ith linpack low reurdd g
O miunbn
= non-redumlan
(b} arrayload bylecodes
= e EEEm R =
o 5288 5233 5958 ER 5523 55, SE=8
E; 0.5 1
&
nn
eyt hulfman 1dea jlex I ek bew
A redundant
= ot -redundan
(c) getstatic bytecodes
B8 BE &EsE3 23 83
1.0~ — T T
i
B
El
E 04
1 U M
[314] ﬁ_l s =L
wrypd hulfman blea e jtb linpak lrw noural tiger
O mbundang
2 non-redumlan

Figure §: Access bylecodes executed

the other benchmarks, primarily because they their ar-
ray accesses are hidden inside method calls to library
classes, etc.

The most dramatic gains are for gelslatic accesses
(Figure 5(c)), primarily because almost all such ac-
cesses are plobally redundant. That we come close to
the limit in eliminating almost all redundant accesses
for Crypt and Huffman demonstrates the effectiveness
of even simple alias analyses such as TBAA. The bench-
marks where PRE doesn’t eliminate many getstatics do
not have many to begin with.

52 JIT

The JIT environment is not influenced by conversion of
long bylecode forms 1o their short variants, since JIT
eliminates the bytccode dispatch overhead that we were
able to reduce for JDK. Nor, since JIT allocates focal

(a) Time (cycles)

&
1

Opt amumt§ Lined reumt

=
o

Dt count § Linerpd fomi

e
[_J1.TT]
&= o

Figure 6: JIT metrics

variables to registers, do the extra load and slore byte-
codes matter much since they are converted to register
accesses. The only exception to this is Linpack, which
we saw earlier suffers from the introduction of large
numbers of temperarics and corresponding stores. Un-
fortunately, the corresponding increase in contention for
register assignment of these (emporaries causes most
of them to remain in memory, with the loads turning
into real memory accesses. This may simply be a short-
coming of the register allacation technique used by JIT.
Thus, Linpack’s elapsed time performance afler PRE
is disappointing (Figure 6{a)). Of the other bench-
marks, only Crypt and Idea show marked improvement
in elapsed time, although they all have fewer memory
reads (Figure 6(b}). The marked improvement in Idea is
aresult of improved data read locality, resulting in many
fewer data cache misses.

5.3 Toba

With Toba all benchmarks bur Tiger show reductions in
data reads (Figure 7(b)). Thus, our optimizations ex-
pose opportunities that the C compiler cannot exploit
on its own at optitnization level 2. These are reflected in
reduced elapsed times (Figure 7(a)) for ail but Huffman,
Idea, LZW and Neural, which are unable 1o exploit the
reduction in data reads in the face of an uncooperative
instruction cache. This is an artefact of the hardware
platform, and cannot be blamed on the optimizer, since
it almost never increases code size, and actually is ef-
fective at reducing it.

(a) Time (cycles)

19 romsiel # Lt rimst

(b} Data reads
; 8855 82338 2Zzs B3,
| (-EE -

Ot ot Dt i

Figure 7: Toba metrics

6 Related work

The recent literature on alias analysis is extensive
[Chase et al. 1990; Landi and Ryder 1992; Choi ct al.
1993, Landi et al. 1993; Hununel et al. 1994; Deutsch
1994; Emami et al. 1994; Altucher and Landi 1995;
Wilson and Lam [995; Ruf 1995; Ghiya and Hendren
1996; Steensgaard 1996; Shapiro and Horwitz 1997;
Debray et al. 1998; Ghiya and Hendren 1998; Hasti and
Horwitz 1998; Japannathan et al, 1998]. As in Diwan
et al. [1998], our results are distinguished from prior
work by comprehensive evaluation of TBAA with re-
spect (o a particular optimization, in this case PRE over
access expressions, and metrics and upper bounds on re-
dundant ron-time memory accesses, as opposed 1o static
measurements.

Budimlic and Kennedy [1997] describe a bytecode-
to-bytecode optimization approach very similar (o ours.
They recover and optimize an SSA-based representation
of each class file, much as we do, performing dead code
climination and constant propagation on the SSA, lo-
cal optimizatjons on the control flow graph (local CSE,
copy propagation, and “register” allocation of lacals),
followed by peephole oplimization. They do nothing
like our PRE over access path expressions. Their per-
formance results are similar to ours, showing significant
imprevements for JIDK and JIT executien. In addition,
they consider the effects of two new interprocedural op-
limizations: objecrt inlining and code duplicarion. Sim-
ilar in some respects to the well-known approaches of
cloning and inlining, these optimizations yield factors of
two to five in performance improvement, so are consis-

tent with results reported elsewhere [Chambers and Un-
gar 1989; Chambers et al. 1989; Chambers and Ungar
1990; 1991; Chambers 1992; Dean et al. 1995; Dolby
1997, Dolby and Chicn 1998]

Cierniak and Li [1997] describe another similar ap-
proach to oplimization from Java class files, involving
recovery of sufficient high-level program structure to
enable essentially source-level transforinations of data
layouts to improve memory hierarchy utilization for a
particular larget machine. Their results are also con-
vincing, with performance improvements in a 11T envi-
ronment of up to a factor of two.

Our reading of Cierniak and Li [1997] and Budim-
lic and Kennedy [1997] is unable to determine to what
cxlent they respect Java's precise exception semantics
and its constraints on code motion. Still, both of 1hese
prior efforts are much more aggressive than us in the
transformations they are willing to apply. We hope that
TBAA-based PRE for access expressions will produce
results as spectacular as theirs when combined with
nore aggressive inter-procedural analyses, such as they
describe.

Added evidence for this comes from Diwan et al.
1 1998] in their work with elimination of common access
expressions for Medula-3. Their resulis indicate that ac-
cesses are often only partially-redundant across calls,
while their optimizer only eliminates fully redundant
access expressions. Ol course, our PRE-based approach
eliminates partial redundancies by definition. Diwan’s
results for elimination of fully redundant accesses with-
out inter-procedural analysis are broadly consistent with
ours.

Several recent papers have focused on register pro-
motion [Cooper and Lu 1997, Sastry and Ju 1998; Lo
el al. 1998): the identification of program regions in
which memory-allocated values can be cached in reg-
isters, These lechniques also address the issue of elimi-
nating redundant loads and stores by selectively promot-
ing values from memory into registers. Qur approach
differs in thal we perform analysis ard transformation
at a higher level than these other approaches, with full
knowledge of the types of the memory values being pro-
moted. We are currently working to understand the pre-
cise relationship between our approach and these lower
level techniques. Certainly, given the problems we have
with loading and storing of wemporarics in some bench-
marks, it seems that our approach might benefit from the
more selective placement of loads and stores that these
premation techniques employ.

7 Conclusions and Future Work

Our resulis reveal the promisc of optimization of Java
classes independently of 1he source-code compiler and
the runtime execution engine. In particular, we have
demonstrated improvements using TBAA-based PRE
over access path expressions, with dramatic reductions
in memory access operations. Applying interpracedural
analyses and optimizations should yield even more sig-

nificant gains as the context for PRE is expanded across
procedure boundaries, especially since Java program-
ming style promotes the use of many small methods
whose intraprocedural context is severely limited.

Under some circumstances Java's precise exception
model is overly constraining for code maotion optimiza-
tions such as PRE. Relaxing the constraints can provide
Inore opportunities for oplimization. More evidence is
needed whether precise exceptions are unnecessarily re-
strictive.

The implementation of further analyses and optimiza-
tions to BLOAT is under way and we are close to mak-
ing the tool more widely available. One application
domain we are now focusing on is analysis and opti-
mization of Java programs in a persistent environment
[Atkinson et al. 1996]. The structure access optimiza-
tions we have explored here prove parlicularly fruitful
in a persistent selting, where loads and stores carry ad-
ditional semantics, acling not just on virtual memory,
but also on persistent storage [Cutts and Hosking 1997;
Hesking et al. 1999; Cuts et al. 1999; Brahnmath et al.
1999],

References

AGESEN, 0., DETLEFS, D., AND Moss, J. E. B, 1998. Garbage
colleclion and togal variable type-precision and liveness in
Java virtual machines. See PLIY | 1998], 269-279.

ALPERN, B,, WEGMAN, M. N., AND ZADECK, F, K, |988.
Deteciing equality of values in programs. See POPL [1985].
1-11.

ALTUCHER, R. Z. AND LANDI, W, 1995. An cxicnded form of
must alias analysis for dynamic allocation. In Conference
Record af the ACM Symposium on Principles of
Propranmming Languages {dan.). 74-84,

APPEL. A. W. 1998, Modern Compiler Implemeniation in Jave.
Cambridge University Press,

ATKINSON, M, P, DaynEs, L., JORDAN, M.)., PRINTEZIS, T..
AND SPENCE, 5. 1996. An onthoponally persistent fava.
ACM SIGMOD Record 25, 4 (Dec.), 68-75,

BOEHM, H.-]. AND WEISER, M. 1988. Garbage collection in an
uncooperalive environment. Sofrweare: Practice and
Experience 18,9 (Scpt.), 807-820.

BraHNMATY, K., NYSTROM, N., lIOSKING, A, L., AND
CuTTs, Q. 1999. Swizzle barrier optimizations for
orthogonal pemsisience in Java. In Proceedings of the Thind
Intermational Workshop an Persistence and Java (Tiburon,
Califomia, August 1998), 1. Morrison, M. Jordon, and
M. Atkinson, Eds. Advances in Persistent Objeel Systems.
Morgan Kaufinann, 268-278.

BRIGGS. P., COOPER, K, [}, HARVEY, T. 1., ANI» SIMPSON,
L. T, 1998. Practical improvements to the construction and
destruction of static single assignment fonm. Sofrware,
Practice and Experience 28, 8 (July), 859-381.

BRIGGS, P.. COOPER. K, D.. AND SiMPsON, L, T, 1997. Value
numbcring, Sefovare: Practice and Experience 27. 6 (Tune),
701-724.

BriGas, P., Coorcr, K, D, AND TORCZON, L, 1994,
Improvemenis 1o graph coloring register allocation. ACMH
Truns, Program. Lang. Syst. 16, 3 (May), 428-455,

BupiMmLIC, Z, AND KENNEDY, K. 1997, Optimizing Java:
Theory and practice, Sufoware: Practice and Experience 9. 6
{Junc), 445463,

CHAITIN, G. J. 1982, Register allocatton and spilling via graph
coloring. In Proceedings of the ACM Symposium on
Compiler Canstruction (Boston, Massachusetis, Junc), ACM
SIGPIAN Notices 17, 6 {(June). 98-105.

CHAMBERS, C. 1992. The desipgn and implementmion of the
SELF compiler, an aplimizing compiler for object-obented
programming linguages, Ph.D. thesis, Stanford University,

CHAMBERS, C, AND UNGAR, D). 1989, Customization:
Optimizing compiler technology for SELF, a
dynamically-typed ohjcel-oriented progrmmming language,
In Proceedings of the ACM Conlerence on Pragramming
Language Desipn and Tmplemeniation (Portland, Cregon,
Tune). ACM SIGPLAN Notices 24, 7 {July), 146-160.

CHAMBERS, C. AND UNGAR. D. 1990, Tterative Lype analysis
and exiended message spliving; Optimizing
dynamically-typed objecl-oriented programs. Sec PLDI
[1990], 150-164.

CHAMBERS, C. AND UNGAR, D. 1991, Making purc ohject
oriented langunges practical. In Proceedings of the ACM
Confercnce on Object-Oriented Programming Systems.
Languages, and Applications (Phocnix, Arizona, OcL). ACA
SIGPLAN Notices 26, 11 (Now.), 1-15.

CHAMBERS. C., UNGAR, D._ AND LEE, E. 1989. An cflicient
implemeniation of Sclf, a dynamically-typed objecl-oriented
language based an prototypes. In Proceedings of the ACM
Conference on Object-Oriented Propramming Systems.,
Languages, and Applications (New Orleans, Lowisiana,
Qct). ACM SIGPLAN Notices 24, 10 (0ct.), 49-70.

CHASE, D. R., WEGMAN. M., aND ZADECK. F. K. 1990.
Analysis of pointers and structures. Sce PLDI [1990).
296-310.

CHo1, 1.-D.. BURKE, M.. anxn CARINL, P, 1993, Efficicnt
fow-scnsilive lerprocedural computation of
pointer-induced aliases nnd side effeets, In Conference
Recond of the ACM Symposimn on Principles of
Progranming Languuges (Charlesion, South Carolina. Jan.).
232-245,

Crow, F..Clax, 5., KENNEDY, R., L1U, 5,-M.. Lo, R.. AND
Tu, P. 1997. A rew alporithen {or padial edundancy
climination bascd on SSA form. Sec PLDI [1997]. 273-286.

CIERNIAK, M, AND LI, W. 1997, Oplimizing Java bytecodes. |
Concurrency: Practice and Experience 9. 6 (June). 427-3444, i

CLiCK, C. 1995, Global code metion/ytobal value numbcering.
Sce PLDI [1995], 246-257.

CMELIK, B, AND KEPPEL, . 1994, Shade: A last
instruclion-set simulator for execution profiling, In
Proceedings of the ACM Conference on the Measurement
and Modeling of Compuler Sysicms (Mashville, Tennessee.
May}. ACM ACM SICGMETRICS Performance Evaluarion
Review 22, 1 (May), 128-137,

Conference Record of' the ACM Symposium on Principles ol
Programming Languages 1996b. Conference Record of the
ACM Symposinn an Principles of Programming Langnages
{St, Petersburg Beach, Flarida, Jan.).

Conference Record of the ACM Symposium on Principles of
Programming Languages 1998a. Conference Record of the
ACM Sympasium on Principles of Programming Langiages
{Sun Diego. Calilomia, Tan.).

CooPER. K. AND Lu, J, 1997, Regisicr prometion in C
programs. See PLDI [1997), 308-319.

COOPER, K, AND SIMPSON, L. T. 1995, SCC-hased value
numbering. Tech, Rep, CRPC-TR95636-5, Rice University,
OCel,

CuTTs, Q. AND HOSKING, A. L. 1997, Analysing, profiling and
optimising orthogonal persisicnce for Java In Proceedings of
the Second Internutional Workshop on Persistence and Java
{Hall Moon Bay, Califomia, Aug.), M. P. Atkinson and M. J.
Jordan, Eds, Sun Microsysiems Laboratorics Technical
Repon 97-63, 107-115.

CuTTs. Q., LEXNON, 8., AND HOSKING. A. L. 1995,
Reconciling buffer management with persisience
aplimisalions. Sce Momisan elal. [1999], 51-63.

CYTRON, R., FERRANTL, J.. ROSEN, B. K., WEGMAN, M_N,,
AND ZADECK, F. K. 1991, Eflicien!ly compuling siatic
single assignment form and the program dependence graph.
ACM Trans, Program, Lang. Syst. 13, 4{0ct), 451490,

DEAN_J., CHAMBERS. C., AND GROVE, D. 1995, Sclective
specialization for objecl-orienied languages. Sec PLDI
[1995], 93102,

DEeBRAY, 5.. MUTH, R., AND WEIPPERT, M. 1998. Alias
analysis of executable code, See Conference Record of the
ACM Symposium on Principles of Progmmming Langunges
[1998a]. 12-24.

DeuTsCiL, A, 1994, Interprocedural may-alias analysis for
pointers: Beyond k-limiting. Sce PLIDT [1994], 230-241.

IwAN, A.. MCKINLEY, K. 8., anD Moss, J. E. B. 1998,
Type-bascd alias analysis. Sce PLDI [1998], 106-117.

Dorny, 1. 1997. Avtomatic inline allocation of objects, See
PLDI[1997], 7-17.

DoLBY, I. AND CHIEN. A. A. 1998, An evaluation of aulomatic
object inling allocation Lechnigues. In Proceedings of the
ACM Confercnee an Qbject-Oriented Progmmiming
Systems, Languages, and Applications (Vancouver, Brlish
Columbia, OcL), ACM SIGPLAN Nerices 33, 10{Ocr), 1-20.

EMAMI, M., GIYA, R.. AND HENDREN, L. J. 1994,
ConlexI-sensitive inlcrprocedural poinis-1o analysis in the
presence of funciion pointers. Sce PLIDI | 1994}, 242-256.

GERLEK, M. P., STOLTZ. E., AND WOLFE. M. 1995, Beyond
induction variables: delecting and classifying sequences
using a demand-driven SSA form, ACM Trans. Program,
Lang. Syst. I7. I (Jan), B5-122,

GHiYa, R, AND HENDREX, L, I. 1996 15 it a tree, 2 DAG, ora
cyclic graph? a shape analysis for heap-directed pointers in c.
See Conference Record of th: ACM Symposium on
Principles of Programming Languages [1996b], 1-15.

Giuya, R, AND HENDREN. L.). 1998. Putling pointer analysis
lo work. See Conference Record of the ACM Symposium on
Principles of Programmiing Languapes [1998a), 121-133,

GOSLING, J,, JoY, B., AND STEELE, G. 1996, The Jma
Language Specificaiion. Addison-Wesley.

GOSLING. .. YELLIN, F.. AND TUE Java TEAM. 1996, The
dava Application Programming Interfuce. Vol, 1. Core
Packages. Addison-Wesley.

HasT1, R, AND HORWITZ, 5. 1998. Using stalic single
assignmenl form lo improve flow-insensitive poinler
analysis. Sce PLDI [1998], 97-105,

HavLAK, P. [997. Nesting of reducible and imreducible loops,
ACM Truns, Program. Lang. Sysi. 19, 4 (July), 557-567.

HOSKING. A. L., NYSTROM, N., CUTTS, Q.. AND
BRAHNMATH, K. [999, Optimizing the read and write
harriers for orthagonal persistence, See Morrison et al,
[1999], 149-159.

HUMMEL., |., HENDREN, L. J.. AND NICOLAU, A. 1994, A
gencral dota dependence test for dynamic, poinler-based data
slruclures. See PLDI [1994], 218-229.

JAGANNATHAN, 8., THIEMANN. P, WEEKS, 5.. AND WRIGHT.
A. 1998. Single and loving iL: Musl-alias analysis lor
higher-order languages. See Conference Record of the ACM
Symposium on Prnciples of Progmmming Languages
[1998a], 320-341.

LANDI, W. AND RYDER. B. G. 1992, A safe approximale
algorithm for intesprocedural pointer aliasing, In Proceedings
of the ACM Conference on Programming Language Design
and Tmplementation (San Frncisco, California, June). ACHM
SIGPLAN Newices 27, 7 (July). 235-248.

LANDI, W., RYDER, B, G.. AND ZHANG, 5, [993.
Interprocedural modification side efMect analysis with pointer
aliasing. In Proceedings of the ACM Conlerence on
Propramming Language Design and Implementation
(Albuquerque, New Mexico, June), ACM SIGPLAN
Notices 28, 6 (June), 56-67.

LARUS, J. R, AND HILFINGER, P. N. 1988. Detecting conflicls
hetween struclure accesses. In Proceedings of the ACM
Conference on Pragrumming Language Design and
Implementation (Adania, Georgia, June). 21-34,

LiNDHOLM, T. AND YELLIN, F. 1996. Tie Java Virtual Machine
Specification. Addison-Wesley.

Lo, R.. Cliow, F.. KENNEDY, R.. L1u, §,-M., AND TU, P,
1998, Register promotion by sparse pantial redundancy
climination of loads and stores. Sec PLDI [1998], 26-37,

MOREL. E. AND RENVOISE, C. 1979. Global optimization by
suppression of partial redundancics. Commin. ACM 22, 2
(Feb.), 96-103.

MORRISON, R, JORDAN, M., AND ATKINSON, M., Eds, 1999,
Proceedings of the Eightit International Workshop on
Persistent Object Sysiems (Tiburon, Califomnia,

Aupust [998). Advances in Persisicnt Ghjecl Systems.
Morgan Kaufmann,

PALSDERG, I, AND SCHWARTZEACH, M, T, 1994,
Object-Oricated Type Systems, Wiley.

PLDI1990. Proceedings of the ACM Conference on Pragramming
Langtipe Design and Implementation (While Plnins, New
York, June). ACM SIGPILAN Notices 25, 6 (Junc).

PLDL 1994. Praceedings of ihe ACM Conference an Programming
Language Design and tmplementation (Orlando, Florida,
Junc), ACM SIGPLAN Natices 29, 6 (June).

PLDI 1995. Proceedings of the ACM Conference un
Progrunening Language Design and Implementation (La
Jolla, California, Junc). ACM SIGPLAN Notices 30, 6 (Junc).

PLDI 1997. Proceedings of the ACM Cunference on
Prograwming Langiuge Design and fmplementarion {Las
Vegas, Nevada, June). ACM SIGPLAN Notices 32, 5 (May).

PLDU1998. Proceedings of the ACAM Conferenice on Programming
Languuge Design and Tmplementation (Moninial, Canada.
June). ACM SIGPIAN Netices 33, 5 (May).

POPL 1988, Conference Record of the ACM Svmposinm o
Principles of Programming Languages (San Diego,
Califomia, Jan).

PROEBSTING, T, A._ TOWNSEND. G.. BRIDGES, P, HARTMAN,
Y. H., NEWSHAM. T.. AND WATTERSON. 5. A. 1997, Toba:
Java for applicmions - a way ahead of time (WAT) compiler.
In Proceedings of the Third USENTX Conference un
Otjecr-Criented Technologies and Systems (Portland,
Orepon, Juac), USENIX. Scc
htp:ffwww.cs.arizona edufsumate/toba.

RosEr, B, K., WECGMAN, M, N.. AND ZADECK, F. K. 1988,
Global value numbers and redundant computations, Sce
POPL [1988], 12-27.

RuF, E. 1995, Context-inscnsilive alias analysis reconsidered.
See PLIM [1995], 13-22.

SASTRY, A, V. 5. AND Ju, R. D, C. 1998. A new algorithm lor
scalar register promution based on ssa form, See PLDI
[1998], 15-25.

SHAPIRO. M. AND HORWITZ. 5. 1997. Fast and accurle
flow-insensitive points-10 analysis, In Canference Record af
the ACM Sympusitm on Principles of Programming
Languages (Panis. France, Jan.}, 1-14.

StmpPSON. L, T. 1996. Valuc-driven redundancy eliminatien.
Ph.I. thesis. Rice University, Housten, Texas.

STEENSGAARD. B. 1996, Painis-to analysis in almost lincar
time. Sec Conlerenve Record of the ACM Symposinm on
Principles of Programming Languages [19%6b], 32-41.

SunSoft 1997, Juva On Solaris 2.6: A White Paper. SunSoll.

WEGMAN, M. N, AND ZADECK, F. K. 1991, Conslant
propagation with conditional branches. ACM Truns,
Program. Lung, Syst. 13, 2 (Apr). 181-210.

WiILson, R. P. AND Lans, M, 5. 1995. Efficicnt
contexl-sensilive pointer analysis for ¢ progmms. See PLD]
[1995], 1-13.

WOLFE, M, 1996. High Performance Compilers for Paratle!
Computing. Addison-Wesley.

	Partial Redundancy Elimination for Access Path Expressions
	Report Number:
	

	tmp.1307986960.pdf.wQyyE

