
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1998

Partial Redundancy Elimination for Access Path Expressions Partial Redundancy Elimination for Access Path Expressions

Antony L. Hosking
Purdue University, hosking@purdue.edu

National Nystrom

David Whitlock

Quintin Cutts

Amer Diwan

Report Number:
98-044

Hosking, Antony L.; Nystrom, National; Whitlock, David; Cutts, Quintin; and Diwan, Amer, "Partial
Redundancy Elimination for Access Path Expressions" (1998). Department of Computer Science
Technical Reports. Paper 1431.
https://docs.lib.purdue.edu/cstech/1431

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARTIAL REDUNDANCY ELIMINATION
FOR ACCESS PATH EXPRESSIONS

Antony Hosking
Nathaniel Nystrom

David Whitlock
Quitin Culls
AmerDiwan

CSD TR #98-044
December 1998

lmemurionul Workshop 011 Aliasing ill Ohjecl-Oriemed Systems, Lisbon, Ponugal, June 1999

Partial Redundancy Elimination for Access Path Expressions

Antony L. Hosking Nathaniel Nystrom David Whitlock
Department of Computer Sciences

Purdue UniversiLY
West Lafayette, IN 47907- [398, USA

Quintin Cutts Amer Diwan
Department of Computing Science Department of Computer Science

University of Glasgow Stanford University

Glasgow Gl2 8QQ, Scotland Stanford, CA 94305-9030, USA

Abstract

Pointer traversals pose significant overhead to the ex
ecution of object-oriented programs, since every ac
cess Lo an object's state requires a pointer dereference.
Eliminating redundant pointer traversals reduces both
instructions executed as well as redundant memory ac
cesses to relieve pressure on the memory subsystem. We
describe an approach to elimination of redundant access
expressions that combines partial redundancy elimina
tion (PRE) with type-based alias analysis (TBAA). To
explore the potential of this approach we have imple
mented an optimization framework for Java class files
incorporating TBAA-ba~ed PRE over pointer acces~' ex
pressions. The framework is implemented as a classfile
Lo-classfile transformer; opLimized classes can then be
run in any standard Java execution environment. Our
experiments demonstrate improvements in the execu
tion ofoptimized code for several Java benchmarks run
ning in diverse execution environments: the standard
interpreted JOK virLual machine, a virtual machine us
ing "just-in-time" compilation, and native binaries com
piled off-line ("way-ahead-of-time"). We isolate the im
pact of access path PRE using TBAA, and demonstrate
that Java's requirement of precise exceptions can notice
ably impact code-motion optimizations like PRE.

1 Introduction

Pointer traversals pose significant overhead to the exe
cution of object-oriented programs, since every access
to an object's state requires a pointer dereference. Ob
jects can refer to other objects, fomling graph structures,
and they can be modified, with such modifications vis
ible in future accesses. Just as common subexpressions
often appear in numerical code, common access expres
sions are likewise often encountered in object-oriented
code. Where two such expressions redundantly com
pute the same value it is desirable to avoid repeated
computation of that value by caching the result of the
first computation in a temporary variable, and reusing
it from the temporary at the later occurrence of the ex
pression. Eliminating redundant computations in this
way certainly eliminates redundant CPU overhead. Per
haps just as important for modern machinc architec
tures, eliminating redundant access expressions also has
the effect of eliminating redundant memory references,

which are often the source of large performance pcnal
ties incurred in the memory subsystem.

In this paper we evaluate an approach to elimina
tion of common access expressions that combines par
tial redundancy elimination (PRE) [Morel and Rcnvoise
1979] with type-based alias analysis (TBAA) lDhvan
et al. 1998]. To explore the potential of this approach
we have built an optimization framework for Java elass
files incorporating TBAA-based PRE for access expres
sions, and measured its impact on the performance of
several benchmark programs. An interesting aspect of
the optimizaLion framework is that it operates entirely as
a bytecode-to-bytccode translator, sourcing and target
ing Java class files. Our experiments compare the ex
ecution of optimized and unoptimized classes for sev
eral SPARC-based execution environments: the inter
preted JOK reference virtual machinc, the Solaris 2.6
virtual machine with ''just-in-time'' (ill) compilation,
and native binaries compiled off-line ("way-ahead-of
time") to C and thence to native code using the Solaris
C compiler.

We have measured boLh the static and dynamic im
pact of bytecodc-Ievel PRE optimizat"lon for a seL of
Java benchmark applications, including static code size,
bytecode execution counts, native-instruction execution
counts, and elapsed time. The results demonstrate gen
eral improvement on all measures tor all execution en
vironmenL~, although some benchmarks have degraded
performance in certain environments.

The remainder of thc paper is organized tls follows.
Section 2 introduces the approach to elimination of
redundant access path expressions ba~ed on partial
redundancy elimination and type-based alias analysis.
Section 3 describes our implementation of the analysis
and optimization framework that supports transforma
tion of Java cla~s files using TBAA-based PRE. Sec
tion 4 describes ourexper"lmental methodology for eval
uation ofTBAA-based PRE for several Java benchmark
applications. The experimental results are reponed and
interpreted in Section 5. We conclude with a discussion
of related work and speculate on directions for future
work.

(b) After PRE

a
b

t<-a+b
Table 1: Access expressions

I Notation I Name I Variable accesscd I
p.f Field access Field f of class in"

stance [0 which p
refers

pi;] Array access Component with sub-
scripL ; of array Lo

which prefers

o 0

b b
a+b

~/
~

o+b
(a) Before PRE

o
b

H-a+b

~/
~

2 PRE for Access Expressions

Our analysis and optimization framework revolves
around PRE over object access expressions. We adopt
slandanl terminology and notations uscd in the specifi
cation of the Java programming language to frame the
analysis and optimization problem.

2.1 Thrminology and notation

The following definitions paraphrase the Java specifica
Lion [Gosling et al. 1996J. An object in Java is eithcr a
class i/lstance or an array. Reference values in Java are
poillter~' to these objects, as well as the null reference.
Both objects and arrays are created by expressions thaI
allocate and initializc storage for them. The operators
on references to objecLs arc field access, method invoca
tion, casts, type comparison (instanceof), equality
operators and the conditional operator. There may be
many references to the same object. Objects have muta
ble state, stored in the variablc fields of class instances
or the variable elements of arrays. Two variables may
refer to the same object: the state of the object can be
modified through the referencc stored in one variable
and then the altered state observed through the other.
Access expressiolls refer to the variables that comprise
an objccl's state. Afield access expression refers to a
field of some elass instancc, while an array access ex
pressioll refers to a component of an array. Table I sum
marizes the Lwo kinds of access expressions in Java. We
adopt the term access parh lLarus and Hilfinger 1988;
Diwan et al. 1998J to mean a non-empty sequence of
accesses. For example, the Java expression a.b[i].c is
an access path. Without loss of generality, our nOLation
assumes that distinct fields within an object have differ
ent names (Le., fields that override inherited fields of the
same name from superclasses are trivially renamed).

A variable is a storage location and has an associated
type, someLimes called its compife-rime type. Given an
access path p, then the compile-time lype of p, written
T)'pe(p) , is simply the compile-time type of the variable
it accesses. A variable always contains a valuc that is as
sigillI/em compatibfe with its typc. A value of compile
time class Lype S is assignment compatible with class
type T if Sand T arc the same class or S is a subclass
of T. A similar rule holds for array variables: a value
of compile-time array type S[] is assignment compati-

Figure 1: PRE for arithmctie expressions

ble with array lype T[) if type S is a.~signable to type
T. Interface types also yield rules on assignability: an
interface type S is assignable to an interface type T only
if T is the same interface as S or a superinterfaee of S;
a class type S is assignable to an interface type T if S
implements T. Finally, array types, interface types and
class types are all assignablc to class type obj ect.

For our purposes we say that a type S is a subt)'pe of
a type T if S is assignable to T. 1 We write SlIbtype~'(T)

to denote all subtypes of type T, including T. Thus,
an access path p can legally access variables of type
SlIbrypes(Type(p)).

2.2 Partial redundancy elimination

Our approach to optimization of access expressions ·IS

based on application of partiaf redullda/lC)' elimil/arioll
(PRE) [Morel and Renvoise 1979]. To our knowledge
this is the first time PRE has been applied to access
paths. PRE is a powerful global optimization technique
Lhat subsumes the more standard common suhexpres
sion elimination (CSE). PRE eliminates computations
that are only partially redundant; that is, redundant only
on some, but not all, paths to somelaterrc-compulation.
By inserting evaluations on those paths where the com
putation docs not occur, the later re-evaluation can be
eliminated and replaced instead with a use of the pre
computed value. This is illustrated in Figure 1. In Fig
ure l(a), both a and b are available along each palh
to the merge point, where expression a + b is evalu"
ated. However, Lhis evaluation is partially redundant
since a+h is available on one path to the merge but not
both. By hoisting the second evaluation of a +b into
the path where it was not originally available, as in Fig
ure I(b), a +b need only bc evaluated once along any
path through the program, ralher Ihan twice as before.

Consider the Java access expression a.b[i].c, which
translates to Java bytecode of the form:

aload a load local variable a
getfield b load field b of a
iload i load local variable i
aaload index array b
getfield c load field c of b[i]

IThe lerm "sublypc" is not used al all in Ihe official Java language
spccilkatloll [Gosling el a1. 19961. prc.,umably 10 avoid cunrusing lhe
type hier.rrchy induced by Ihe subtype relation wilh class and imerface
hierarchies.

- , -
I P P 'rue
2 p.f q.g (f = g) A TypeDecl(p,q)
3 p.f q[n false
4 p[i] qU] I)'peDee!(p,q)
5 p q TypeDecl(p,q)

Table 2: FiefdTypeDecl(AP l ,AP2)

~ FieldTypeDecl(AP l AP.,) I

(b) After PRE

a a
i i

1(- a.b[iJ.c t r a.b[i]'c

~/
~

a a
i i

a.b[iJ.c

~/
~

a.b[i].c

(a) Before PRE

Figure 2: PRE for access expressions

Traversing the access path requires successively loading
(he pointer at each memory location along the path and
traversing it to the next location in the sequence. Be
fore applying PRE to access path expressions, one must
first disambiguate memory references sufficiently to be
able safely to assume that no memory location along the
access path can be aliased (and so modified) by some
lexically distinct access path in the program. Consider
the example in Figure 2. The expression a.b[iJ.c will be
redundant at some subsequent reevaluation so long as
no store occurs to anyone of {/, a.b, i, a.b[i] or a.b[iJ.c
on the code path between the first evaluation of the ex
pression and the second. In other words, if there are
explicit stores to a or i (local variables cannot be alia.~ed

in Java) or potcntial aliases to anyone of a.b, a.b[iJ or
a.b[iJ.c through which those locations may be modified
between the first and second evaluation of thc expres
sion, then that second evaluation cannot be treatcd as
redundant.

A more precise alias analysis wm distinguish accesses
10 fields thal are the same type yet distinct. This more
precise relation, FieldI)'PeDecl(p,q), is defincd by in
duction on the structure of p and q in Table 2. Again,
two access paths p and q may be aliases only if the re
lalion FiefdTypeDecl(p,q) holds. It distinguishes ac
cesses such as t.f ami t.g that I)'peDee! misses. The
cases in Table 2 determine that:

1. Identical access paths arc always aliases

2. Two field accesses may be aliases if they access the
same field of polentially the same object

3. Array accesses cannot alias field accesses and vice
versa

4. Two array accesses may be aliases if they may ac
cess the same array (the subscript is ignored)

5. All other pairs of access expressions (when none
of the above apply) are possible aliases if they have
common subtypes

2.3 lYPe~based alias analysis

Alias analysis refincs the set of possible variables to
which an access path may refer. Two distinct access
paths arc said to be possiblc aliases if they may refer to

the same variable. Without alias analysis the optimizer
must conservatively assume that all access paths are
possible aliases of each other. In general, alias analy
sis in the presence of references is slow and requires the
code for the entire program to work. Type-based alias
analysis (TBAA) [Diwan et al. 19981 offers one possi
bility for overcoming these limitations. TBAA assumes
a type-safe programming language such as Java, since
it uses type declarations to disambiguate references. It
works in linear time and does not require that the en
tire program be available. Rather, TBAA uses the type
system to disambiguate memory references by refining
the type of variables to which an access path may refer,
since only type-compatible access paths can alias the
same variable in a type-safe language such as Java. The
compile-time type of an access path provides a simple
way to do this: two access paths p and q may be aliases
only if the relation TypeDed(p,q) holds, as defined by

I TypeDed(AP"AP2) I
ISII!Jrypes(I)'Pe(APJ) nSubfypes{I)'pe{AP2» =I- 0 ,

2.3.1 Analysing Incomplete Programs

Java dynamically links classes on demand as they arc
needed during execution. Moreover, Java pemlits dy
namic loading of arbitrary named classes that are stat
ically unknown. Also, code for native methods cannot
easily be analysed. To maintain class compatibility, no
class can make static assumptions about the code that
implements another cla.~s. Thus, alias analysis must
make conservative assumptions about the effects of stal
icany unavailable code. Fortunately, both TypeDec1 and
FieldTypeDec/ require only the compile-time types of
access expressions to determine which of them may be
aliases. Thus, they are applicable to compiled classes
in isolation and optimizations that use the static alias
information they derive will not violate dynamic class
compatibility.

Diwan et al. [19981 further refine TBAA for dosed
world situations: those in which all the code that might
execute in an application is available for analysis. The
refinement enumerates all the assignments in a program
to determine Illore accurately the types of variables to

which a given access path may refer. An access path
of type T may yield a reference to an object of a given
subtype S only if there exist assignments of references
o[typeS to variables of type T. Unlike TypeDecl, which
always merges lhe compile-time type of an access path

with all of its subtypes, Diwan's closed world refine
ment merges a type T with a subtype S only if there
is at least one assignmenL of a reference of type S to a
variable of type T somewhere in the code.

In general, Java's use ofdynamic loading, not to men
tion the possibility of native methods hiding assign
ments from the analysis, precludes such closed world
analysis. Of course, it is possible to adopt a closed
world model for Java if one is prepared to restrict dy
namic class loading only to classes that are known stati
cally, and to support analysis (by hand or automatically)
of the effects of native methods. Note that a closed
world model will require re-analysis of the entire clo
sure ifany one class is changed to include a new assign
ment.

2.4 Java constraints on optimization

Java's thread and exception models impose several con
straints on optimization. First, exceptions in Java are
precise: when an exception is thrown all effects of sLate
ments prior to the throw-point must appear to have taken
place, while the effects of statements after the throw
poiOl must not. This imposes a significant constraint
on code-motion optimizations such as PRE, since code
with side-effects (including possible exceptions) cannD!
be moved relative to code that may throw an exception.2

In regions of the code where program analysis can show
that exceptions will not occur code motion is uncon
strained. For example, the first access to an object via
a given refercnce ensures that subsequent accesses via
thaL reference cannot throw a null pointer exception.

Second, the thread model prevents movement of
access expressions across (possible) synchronization
points. Explicit synchronization poims occur at mon
ilorenter/monitorexit bytecodes. Also, without inter
procedural control-flow analysis every method invoca
tion represents a possible synchronization point, since
the callee, or a method invoked inside the callee, may
besynehronized. Thus, calls nnd synchronizntion points
are plnces nt which PRE must assume all non-local vari
ables may be modified, eiLher inside the call or through
Lhe actions of other threads. Common access expres
sions cannOl be considered redundant across these syn
chronization points.

Naturally, one must also respect the volatile dec
laration modifier, which forces synchronization of Lhe
variable's state across threads on evel)' nccess.

3 Implementation

The Java vinunl machine (VM) specification lLindholm
nnd Yellin 1996] is intended as the interface between
Java compilel;; and Javn execution environments. Its

20fCOUThe all optimizjllg Ja\"a implememalion L'Ollld ~illlulate pre
dsc cxceptlollS. even while pcrfomling unreslricted codc hoisting. by
arr.mgillg to hide any ~uch ~peculmi\"c execution from lhe u5cr-vi.,ible
Slate of the Java progmm (~ec raSe 205 of Goslillg ct aL. lJ996]).

sl<l.ndard class Jile formnt and inSlruction set permit mul
tiple compilers to inter-operate with multiple YM im
plementations, enabling the cross-platform delivery of
applications that is Java's hallmark. Conforming class
files generated by all)' compiler will run in 011)' Java VM
implementation, no matter if that implementation inter
prets bytecodes, performs dynamic "just-in-time" trans
Intion to native code (JIT), or precompilcs Java class
files to native object files.

The bytecodes of the Java VM specification serve a~ a
convenient target for optimization of Java applications.
As the only constant in a sea of Java compilers and vir
tual machines, targeting the Java class files for analysis
and optimization has several advantages. First, program
improvements accrue even in the absence of source code
for both libraries and npplications, and independenLly of
the source-language compiler and VM implementmion.
Second, Java c1a~s files retain enough high-level type
information to enable many recenlly-developed type
based analyses and optimizations for object-oriented
languages. Finally, annlysing and optimizing bytecode
can be performed off-line, permitting JIT compilers to
focus on fast native code generation rather than expen
sive analysis. Indeed, off-line analysis may expose op
portunities for fast low-level TIT optimizaLions. Thus,
we have chosen to implement a framework for TBAA
based PRE over nccess expressions based on c1assfile
to-classfile transformation.

Our Javn class file optimization tool is called BLOAT
(Bytecode-Level Optimization and Analysis Tool). The
analysis and optimization framework implemented in
BLOAT is based on several recent developmems in the
field. Notably, we use control How graphs and static
single assignmenL (SSA) form as the basic intermediate
representation [Cytron et al. 1991; Wolfe 1996; Briggs
et al. 1998]. On this foundation we have built several
standard optimizations such as dend-code elimination
and copy!constant propagntion, and SSA-based value
numbering [Simpson 1996J, as well as t)'pe-based alias
anafysis [Diwan et al. 19981 and the SSA-based algo
rithm for PRE of Chow eL al. [1997].

3.1 SSAform

SSA form provides a concise representation of the use
definition relationships among the program variables.
Efficienl global optimizations can be constructed hased
on this form, including dead store elimination [Cytron
et al. 19911, constant propagation [Wegman and Zndeck
1991], value numbering lAlpern el al. 1988; Rosen
et al. 1988; Cooper and Simpson 1995; Simpson 1996;
Briggs et al. 1997], induction variable analysis [Gerlek
et al. 1995] and global code moLion [Click 1995]. Opti
mization algorithms based on SSA all exploit its sparse
representation for improved speed and simpler coding
of combined local and global optimizations.

3.2 SSA-based PRE

Prior to the work of Chow ct al. [1997], PRE lacked an
SSA-hased formulation. As such, optimizers that used
SSA were forced to convert 10 a bit-vector represen
tarion for PRE and back to SSA for subsequent SSA.
based optimizations. Chow et al. [1997] removed this
impediment wiLh an approm:h (SSAPRE) that retains
the SSA representation throughout PRE. The specific
details of their algorithm are not relevant here, save to
say that the algorithmic complexity is respectable: for a
program of size II, SSAPRE's tolal time is 0(1/(£ +V)),
where E and V are the number of edges and nodes in the
control flow graph, respectively.

3.3 Analysis

For each method in a class, BLOAT first builds a
control flow graph over the bytecodc instructions and
then transforms each basic block inLo expression trees.
The Lrces are constructed through a simulation of the
operand stack.

Two simple transformations arc then applied to ease
later analyses and optimizations. The first converts
methods that initialize stalic arrays from the form emit
ted by the JDK javac compiler, comprising a straight
line sequence of array stores for every element of the
array, into a form more amenable to later analysis, con
sisting of a loop thal reads from a static string defined
in the constant pool of the class. This transformation
eliminates the unnecessarily large basic blocks emitted
for slatic array inilializers in such core classes as Char
acter, significantly CULLing the time for later analysis
of these initializcrs. The second transformation iden
tifies loops [Havlak 1997J and converts each "while"
loop into a "repeat" loop preceded by an "if' condi
tional. This provides a convenient place immediately
after the "ir' to hoist loop-invariant code out of the loop
body. Code that is loop-invariant apart from possibly
throwing exceptions can thus be treated as invariant in
the new loop body and win be eliminated by PRE.

After construction of the controillow graph both lo
cal and operand stack variables are converted to SSA
form. This requires computation of the dominator
tree and dominance frontier of the control flow graph
[Cytron et al. 199\). We also remove critical edges
in the graph by inserting empty basic blocks on such
edges. Critical edge removal is required to provide a
place to insert code during PRE and when translaLing
back from SSA form.

Java bytecodc has two forms of control flow which
complicate SSA construction: exception handlers and
meLhod-local subroutines. To support exception han
dling, we must propagate local variable information
from the protected area 10 the exception handler. We
extend SSA to more easily distinguish all values of a
variable that arc live within the protected region.

Subroutines wilhin a method are formed with the jsr
and ret bYlecodes. The jsr bytccode pushes the current
program counter, a value of type reLurnAddress, onto

the operand Stack and branches to the subroutine. The
ret bytecode loads a saved returnAddress from a local
variable and resumes control at that code location. To
permit verification of jsr subroutines the JaVa VM spec
ification imposes a restriction thm each jsr can have at
most one corresponding ret. This allows each jsr to be
tied to the ret that returns to it. Thus, for SSA construc
Lion we treat each subroutine such that, if a variable is
not redefined within the subroutine, the usc-definition
information for the variable is propagated from each
jsr site to its corresponding return site. This avoids
unnecessarily merging information from multiple paLhs
through the subroutine. Our SSA-based solution is es
sentially the same as the "variable splitting" approach
proposed by Agescn et al. L1998] in suppon of accurate
garbage collection.

TBAA uses the compile-time type of every expres
sion in the method, but local and opcrand stack variables
in Java bytecode are not declared. Thus, after SSA con
strucLion we infer their typcs using an intra-procedural
variation of the algorithm ofPalsberg and SchwarLzbach
[1994].

PRE operates by recognizing common subexpres
sions. Rather than basing equivalence of expressions
purely on their lexical equivalencc, we use the SSA
based value numbering approach of Simpson LI996].
We assign value numbers to every jir~'f-order expres
sion. These are expressions for values that cannot be
alia~ed, such as the contents of method local variables,
consLants, and non-access expressions over lhese. Using
value numbering avoids the need for repetitive iteration
of PRE interleaved with constamJcopy propagation.

Finally, we identify alias defini!ion points: those code
locations where pOLentially-alia~ed variables may be
modified. For example, an assignment to a (non-local)
variable redefines every access expression that may alias
that variable. Calls and monitor synchronization points
redefine all access expressions.

3.4 Optimization

After the analyses, BLOAT performs the following op
timizations:

I. Partial redulldancy elimillarioll. BLOAT imple
ments the SSA-based PRE algorithm of Chow et al.
LI997], extended to suppon TBAA-based PRE of
access paths by treating alias definition points for a
given access expression as rcdefining that expres
sion. This forces reevaluation of the exprcssion af
ter the alias definition point. We also restrict PRE
induced code motion to respect the conStraints on
Java optimizations due to precise exceptions and
threads, except that where analysis shows a given
bytecode will never throw an cxccption we are free
to move code with respect Lo that bytecode.

2. CO/lstallrlcopy propagation. This is ba-;ed on stan
dard techniques for consLant folding, algebraic
simplification and copy propagation LWolfe 1996].

Table 3: Benchmarks

Description

Lmes of source cod~ (mcludmg comm~nls).

Crypt Java implementation of the 65U
Unix crypt utility

Huffman Huffman encoding 435
Idea File encryption tool 2284
lLex Scanner generator 7287
ITB Abstract syntax tree builder 22317
Linpack St'lOdard Linpack benchmark 584
LZW Lempcl-Ziv-Welch file COIO- 314

pression utility
Neural Neural network simulation 1227
Tiger Tiger compiler LAppel1998J 19018

" .

I Name
3.5 Code generation

3. Dead code elimi,wt;O/l. This is the standard SSA
based algorithm [Cytron et al. 1991].

Following the optimizations, SSA temporaries are
mapped back to Java VM local variables, before gen
eration of bytecode instructions from the (optimized)
intermediate code trees. Liveness analysis and regis
ter coloring with coalescing [Chaitin 1982; Briggs et a1.
[9941 ensure a good allocation, packing as many SSA
variables into the same physical local variable as pos
sible. Priority is given to coalescing loop-nested local
variables ahead of others. Peephole optimizations re
move redundant load and store bytccodes for bettcr uti
lization of the operand stack.

4 Experiments

To evaluate PRE for access path expressions we took
several Java programs as benchmarks, optimized them
with BLOAT and compared the results of the optimiza
tion with their unopLimized counterparts, using several
sLatic and dynamic performance metrics. To isolate the
effeeLs of access path PRE we considered 3 successively
more powerful levels of optimization: PRE over scalar
ex.pressions, TBAA-based PRE over both scalar and ac
cess expressions, and TBAA-baseu PRE that docs not
respect Java's precisc exception requirements. Each op
timization leve[subsumes all optimizations that are per
fonned by lower level optimizations. In the following
we will refer to results for the unoptimized code as
base, anu 10 the successive levels of PRE-based opti
mization as pre, tbaa and loose, respectively.

4.1 Platform

Our experiments were run under SolariI'. 2.5. I on a
Sun Ultra 2 Model 2200, wiLh 256Mb RAM, and two
200MHz UltraSPARC-I processors, each with IMb ex
ternal cache in addition to their on-chip instruction
and data caches. The UltraSPARC-I data cache is
a 16Kb write-through, non-allocating, direct-mapped
cache with twO 16-byte sub-blocks per line. It is virtu
ally indexed and physically tagged. The 16Kb instruc
tion cache is 2-way set-nssociative, physically indexed
and tagged, and organized into 512 32-byte Jines.

4.2 Benchmarks

The benchmarks we use arc summarized in Table 3.

all four variants (base, pre, tbaa and loose) of the
classes for each benchmark. 'Where Java source code
for n benchmark wns available, it was compiled using
the standard JDK [.1.6 javac compiler (withoutlhc-O
optimization flag since in many cases this generates er
roneous code; our observations indicate that this flag has
little impact on the performance of our benchmarks).

4.3.1 JDK

JDK is the standard 1.1.6 Java virtual machine. It uses
a portable threads package rathcr than the native So
laris threads and thc bytecode interpreter loop is im
plemented in assembler. We optimized the class files
of each benchmark against the JDK version 1.1.6 core
Java classes [Gosling et a1. 1996] at cach optimization
level, to fonn the closure of optimized classes necessary
to execute the benchmark in JDK. Similarly the unop
timized benchmark classes were run against the unopLi
mized core classes.

4.3.2 JIT

TIT refers to the Solaris 2.6 SPARC JOK with TIT ver
sion 1.1.3. This VM translates a method's bytecodes
to native SPARC instruction on first execution of the
method, along with thc following optimizations:

I. elimination of some array bounds checking
2. elimination of common subexpressions within

blocks
3. elimination of empty methods
4. some regisLer allocation for locals
5. no flow analysis
6. limited inlining

4.3 Execution environments

We took measurements for three different Java execu
tion environments: the slandard Java Development Kit
(JDK) version 1.1.6, the Solaris 2.6 SPARC JDK with
JIT version 1.1.3 (JIT) and Toba version I. [(Toba)
[Proebsting et al. 1997]. In each environment we ran

Interestingly, programmers are encouraged to perform
the following optimizations by hand [SunSoft 1997]:

I. move loop invariants outside (he loop
2. make loop tests as simple as possible
3. perfonn loops backwards
4. use only local variables inside loops
5. move consLant conditionals outside loops

6. combine similar loops
7. nest the busiest loop, if loops are interchangeable
8. unroll loops, as a last resort
9. avoid conditional branches

10. cache values that arc expensive to fetch or compute
[I. pre-compute values known at compile timc

These suggestions likely reveal deficiencies in the cur
rem JIT compiler which our optimizations may address
prior to TIT execution.

We used the same sets of class files as for JDK for
execution in the TIT environment.

4.3.3 Toba

Toba compiles Java class files to C, and thence to na
tive code using the host system's C compiler. The Toba
run-time system supports native Solaris threads, and
garbage collection using the Boehm-Demers-Weiser
conservative garbage collector [Boehm and Weiser
1988J. We started with the same sets of classes as for
JDK for execution in Toba. These class files were lhen
compiled to nmive code using the SunPro C compiler
ver.;ion 4.0, with the -02 compiler optimizmion flag. C
optimization level 2 performs ba.~ic local and global op
timization, including induction variable elimination, al
gebraic simpl ification, copy propagation, constant prop
agation, loop-invariant optimization, register allocation,
basic block merging, tail recursion elimination, dead
code elimination, tail call elimination and complex ex
pression expansion. We use this level since it does not
"oplimize references", nor "trace the effect of pointer
assignments", and (herefore will best reveal the impact
of our pointer optimizations.

4.4 Metrics

For each benchmark we took measurements for both (he
optimized and unoptimi7.ed classes. We use both static
and dynamic metrics to expose the effects of optimiza
tion:

• static code size: this is the size in bytes of the
benchmark-specific (non-library) class files (ex
cluding debug symbols) for JDKlJlT, and static ex
ecutables for Toba

• bytecodes executed: dynamic per-bytecode execu
tion frcquencies, obtained via an instrumented ver
sion of the C-coded interpreter loop in the JDK
source release

• globally redundant (i.e., cross-activation)
bytecode-level memory accesses: dynamic
per-bytecode counts of all accesses that reload
values from unmodified variables, also obtained
via the instrumented JDK VM

• native SPARC instructions executed: dynmnic per
instruction execution frequencies using the Shade
pcrformance analysis toolkit [Cmelik and Keppel
1994]

• counts of significant performance-related events:

- processor cycles to measure elapsed time

- instruction buffer stalls due to instruction
cache misses

- data cache reads
- data cache read misses

using software) that allows user-level access to the
UltraSPARC hardware execmlon counters

For the dynamic measurements each run consists of two
iterations of the benchmark within a given execution
environment. The first iteration is to prime the envi
ronment: loading class files, JIT-compiling them and
wanning the caches, The second iteration is the one
measured.

The physically addressed instruction cache on the
illLraSPARC means that programs can exhibit widely
varying execution times from one invocation to the next,
since each invocation may have quite different map
pings from virtual 10 physical addresses that result in
randomized instruction cache placement. Thus, the
elapsed time and cache-related mctrics were obtained
for 10 separale runs and the results averaged. We ran
each benchmark with sufficient heap space to eliminate
the need for garbage collection, and verified that no col
lections occurred during benchmarking.

5 Results

Our presentation normalizes all optimization results
with respect to the base metrics. Rcporting the results
in this way exposes the relative effects of the succes
sive levels of optimization. Error bars in our graphs
represent 90% confidence intervals; these display the
variation in performance due to factors beyond our con
trol, such a~ the varying virtual-to-physical page map
pings. Grouped by benchmark, thc adjacent columns in
the grolphs represent the transition to higher optimiza
tion levels from base, through pre and lbaa to loose,

In the following discussion we consider each execu
tion environmenlin turn: JDK, then nT, ancllastly Tob<l.

5.1 JDK

Figure 3(a) illustrates the anticipated increase in dy
namic bytecode execution counts for many of the
benchmarks, mainly due to introduction of extra loads
from and stores to temporaries introduced by PRE for
partially-redundaOl expressions whose values are not
used on all pmhs. As we shall see, execution envi·
ronments thal map method local variables LO registers
(e.g., JIT and Toba) do not suffer unduly from this over
head. The impact on elapsed lime for interpretation by
the JDK (Figure 3(b)) can be severe (notably lor Huff
man and Tiger), though for some benchmarks the ex
tra load and store bytecodes are offset by elimination
of partially-redundant code and replacement of many
expensive long load/store bytecode torms with their
cheaper short alternatives.

JSee hllp:/"vww.c.~.Il1<;u,ctlul-cnbotlyl

Figure 3: JDK merries

(e) Data reads

.. §~-- §§s§ §~;-; §~~~ §§~~ §;li~2 §;l>o: g •.. 8~~~

0
,

~il• 0 0
, · 0 0 ! . ; =, 0

0 ·, , ·
! I J J

,,
0

,,
~

, , ,
!

,
; · E

0,"' 0 J ·
· 0 !, , · 0 0 0

i ·
II,.

· ! · · .00
J

0 ·, , ·
, · . ji 0

0

0
0 , ·, · ,

o. .. • ,, 00 · · . ,, 00 J , 0
,

,"" huIT",,' - ." J" '.o,... .. -". .~

<:II~

-~"'".....-

could be removed. It is remarkable how many of these
are removed by our purely intra-procedural analysis.
All benchmarks see a decrc~~e, oflen significant, in the
frequency of getfield bytecodes (Figure 5(a)) due to
TBAA-based PRE over redundant access expressions
(Ibaa). The dramatic reduct"lon for Neural represents
a reducLion of redundant getfield operations from 9%
of total bytecodes executed Lo 5% of total byLecodes.
Linpack's reductions are similar, but getfields represem
just 0.02% of total byLecodcs cxecuted so thc impact is
minimal. Relaxing Java's precisc exception requirement
(loose) yields lillie benefit for getfield.

The array inLensive benchmarks (Huffman. Linpack,
and Neural) obtain noticeable reductions in arrayload
frequency (Figure S(b». Interestingly, relaxing Java's
precise exceptions gives significant improvement for
both Linpack and Neural, bccause freedom from con
cern over precise delivery of array out of bounds excep
tions, provides more opportunity for PRE-based code
mOlion. The Huffman, Linpack, and Neural bench
marks, which have heavy array usc (4%, 9%, and 11 %,
respectively), see an elimination of 4-7% of the array
load bytecodes for TBAA-bused PRE with precise ex
ceplions (tbaa). Relaxing exception delivery (loose)
sees reductions in arrayloads increase to a peak of 22%
for Neural. FurLher improvement would accrue if array
subscripts could be disambigumed via range analysis on
lhe subscript expressions for use during array alias anal
ysis. Few arrayload bylccodcs are eliminated in any of

Figure 4: Replacing load/slore wilh shorL forms

<»1" hulfnw> 1&. jl" j1b lin~,",k I,w "",,,,1 ",""

o no", n
o~"

(b) store vs. storen

(a) load vs. load"

,,.
l

(b) TIme (cycles)

§~~~
,

8E!~~' ~~;<'i §~§~ §~~'$ i-~~~ .' . :'
· ·!· ,

0

I ·· ·· ,
1· ,

·· , , , 1 ~
,,

i 0 ~ i , j ! • · : :

~ !
, :i:

i !
· , , ,I

, 1 •
· ,

lliI· · , .·, 0 , , , ,- ,- •• j,"I"" ~ - ,,~

(al Bytecodes executed

'" " s::
~§~§ 8~~- 8~-~ §'$;i"

,
§~ .., ".,, ,

1 " 0· , ,
0

, ·, · , ,
0

· 0
,

III
0 0 ,
· i liIiII 1,"1
· · · I, . 0

· · 1· , 0 ; i·- ,- ,. ,~. ~ - -

Figure 4 highlighLS these conversions. The effect is
most notable wilh LZW where the frequency of the load
byteeodes decreases from II % La I% of the total byLc
codes executed and the frequency of loadll increases
from 20% to 28%. These effcCl~ result in less overhead
in [he interpreter's byrecode dispatch loop. The impact
on data cache rcads (remember, bytecodes are daLa) is
revealed in Figure 3(c). The large increase in stores for
Unpack is due to PRE's elimination of significant num
bers of redundant arithmetic expressions.

The most dramatic effects of PRE over access paths
are directly revealed in the results for the access byte
codes given in Figure 5. Here, we show the tola! number
of access bytecodes performed, broken down into glob
ally redundant versus non-redundamaccesses. The non
redundam accesses are those that must always be per
formed. The globally redundant accesses represenL op
portunity for optimization; with perfect inler-procedural
control flow and aliasing information all such accesses

§~:>~
83~3.' ...

!,
·

! . ·· 0 ·• ., 0 · · ,,, ·..
~· ,

"" ·
"" ""Jf....

c~

c~

.,~

"'."..

; =

.1

11:11 .~, .

Figure 6: JIT metrics

.
. '

(b) Data reads

(a) Time (cycles)

(c) getstatic bytecodes

(b) arrayload bytecodcs

(a) getfield bytecodes

IU,-,-,,,,,,L

~
!
~ IU,
i

-~

1
!
o

10.'
,;

b
rnn.n l..lLLCU,,",WW.u-CU.llWW.u-CU.llLLW.u-CU=

0)1' hulfm'"..... jb Jtb IInr.d J",. fl<Wol to,"'"

Figure 5: Access bytccodes executed

the olher benchmarks, primarily because they their ar
ray accesses are hidden inside method calls to library
classes, etc.

The most dramatic gains arc for gelslatic accesses
(Figure 5(c)), primarily because almost all such ac
cesses arc globally redundanl. That we come close to
the limit in eliminating almost all redundant accesses
for Crypt and Huffman demonstrates the effectiveness
ofeven simple aUns analyses such as TEAA. The bench
marks where PRE doesn't eliminate many getstatics do
not have many to begin with.

5.2 JIT

The rrr cnvironment is nOl influenced by conversion of
long bytecode forms 10 their short variants, since JIT
eliminates Ihe bytecode dispatch overhead thal we were
able to reduce for JDK. Nor, since TIT allocates local

variables to registers, do the exira load and store byte
codes matter much since they are converted to register
accesses. The only exception to this is Linpack, which
we saw earlier suffers from the introduction of large
numbcrs of temporaries and corresponding stores. Un
fortunately, the corresponding increase in contention for
register assignment of these temporaries causes most
of lhem to remain in memory, with the loads turning
into real memory accesses. This may simply be a short
coming of the register allocation technique used by JIT.
Thus, Linpack's elapsed time performance after PRE
is disappointing (Figure 6(a)). Of the other bench
marks, only Crypt and Idea show marked improvcment
in elapsed time, although they all have fewer memory
reads (Figure 6(b)). The marked improvement in Idea is
a result of improved data read locality, resulling in many
fewer data cache misses.

5.3 Tob.

With Toba all benchmarks but Tiger show reduclions in
data reads (Figure 7(b)). Thus, our optimizations ex
pose opportunities that Ihe C compiler cannot exploit
on its own at optimization level 2. These arc reflected in
reduced elapsed times (Figure 7(a)) for all but Huffman,
Idea, LZW and Neural. which arc unable to exploit the
reduction in data reads in the face of an uncooperative
instruction cache. This is an artefact of the hardware
platfonn, and cannot be blamed on the optimizer. since
it almost never increases code size. and actually is ef
fective at reducing it.

--

,
. -;

~ ,~ ,.

(b) Dam reads

Figure 7: Taba mercies

6 Related work

The recent literature on alias analysis is extensive
lChasc ct al. 1990; Landi and Ryder 1992; Choi ct al.
1993; Landi el al. 1993; Hummel et al. 1994; Deutsch
1994; Emami ct a1. 1994; Altucher and Landi 1995;
'Wilson and Lam [995; Ruf 1995; Ghiya and Hendren
1996; Steensgaard 1996; Shapiro and Horwitz 1997;
Debray et ~li. 1998', Ghiya and Hendren 1998; Hasti and
Horwitz 1998; Jagannnlhan ct al. 1998]. As in Diwan
et al. [1998], our results are distinguished from prior
work by comprehensive evaluation of TBAA with re
spect 10 a particular optimization, in this case PRE over
access expressions, and metrics and upper bounds on re
dundam run-time memory accesses, as opposed to static
measurements.

Budimlic and Kennedy fl997] describe a bytecode
to.bytecode optimization approach very similar to ours.
They recover and optimize an SSA-based representation
ofeach cln.~s file, much as we do, perfonning dead code
elimination and coostant propagation on the SSA, lo
cal optimizations on the cOnlrol flow graph (local CSE,
copy propagation, and "register" allocation of locals),
followed by peephole optimization. They do nothing
like our PRE over access path expressions. Their per
formance results are similar to ours, showing significant
improvements for 1DK and TIT execution. In addition.
they consider the effects of two new interprocedural op
timizations: objecr il/fil/ing and code duplicarioll. Sim
·lIar in some respects to the well-known approaches of
cloning and inlining, these optirnizationsyield factors of
two to five in perfonnance improvement, so are consis-

tent with results reported elsewhcre [Chambers and Un
gar 1989; Chambers et al. 1989: Chambers and Ungar
1990; 1991; Chambers 1992; Dean et al. 1995; Dolby
1997; Dolby and Chien 1998]

Cierniak and Li [1997J describe another similar ap
proach to optimization from Java cln.~s files, involving
recovery of sufficienl high-level program structure to
enable essentially source-level transformations of data
layouts to improve memory hierarchy utilization for a
particular target machine. Their results are also con
vincing, with perfonnance improvements in a JIT envi
ronmenl of up to a factor of two.

Our reading of Cierniak and Li [19971 and Budim
lic and Kennedy [1997J is unable to determine to what
extent they respect Java's precise exception semantics
and its conSlfainL~ on code motion. Still, both of these
prior efforts are much more aggressive than us in the
transfonnations they are wilUng to apply. We hope that
TBAA-based PRE for access expressions will produce
results as spectacular as theirs when combined with
more aggressive inter-procedural analyses. such as they
describe.

Added evidence for this comes from Diwan et al.
ll998J in their work with elimination ofcommon access
expressions for Modula-3. Their results indicate that ac
cesses are often only parlially"redundant across calls,
while thcir optimizer only eliminates fully redundant
access expressions. Of course, our PRE-based approach
eliminates partial redundancies by definition. Diwan's
results for elimination of fully redundant accesses with
out inter-procedural analysis are broadly consistent with
ours.

Several recent papers have focused on regisrer pro
motioll [Cooper and Lu 1997; Sastry and Ju 1998; Lo
et al. 1998]; the identification of program regions in
which memory-allocated values can be cached in reg
isters. These techniques also address the issue of elimi
nating redundant loads and stores by selectively promot
ing values from memory into registers. Our approach
differs in that we perfoml analysis and transformation
at a higher level than these other approaches, with full
knowlcdge of the types of the memory values being pro
moted. We are currently working to understand the pre
cise relationship between our approach and these lower
level techniques. Certainly, given the problems we have
with loading and storing of temporaries in some bench
marks, it seems that our approach might benefit from the
more selective placement of loads and stores that these
promotion techniques employ.

7 Conclusions and Future Work

Our resulL~ reveal the promise of optimization of Java
classes independently of the source-code compiler and
the runtime execution engine. In particular, we have
demonstrated improvements using TBAA-based PRE
over access path expressions, with dramatic reductions
in memory access operations. Applying interprocedural
analyses and optimizations should yield even morc sig"

nificam gains as the context for PRE is expanded across
procedure boundaries, especially since Java program
ming style promotes the use of many small methods
whose intraprocedural context is severely limited,

Under some circumstances Java's precise exception
model is overly constraining for code motion optimiza
tions such a~ PRE. Relaxing the constraints can providc
more opportunities for optimization. More evidence is
needed whether precise exceptions are unnecessarily re
strictive.

The implementation of further analyses and optimiza
tions to BLOAT is under way and we are close to mak
ing the tool more widely available, One application
domain we are now focusing on is analysis and opti
mization of Java programs in a persistcnt environmcnt
[Atkinson et al. 1996J, The structure access optimiza
tions we have explored here prove parLicularly fruitful
in a persistent seLting, where loads and stores carry ad
ditional semantics, acting not just on virtual memory.
but also on persistent storage [Cutts and Hosking 1997;
Hosking et a1. 1999; Cutts et a1. 1999; Brahnmath et ai,
1999],

References
AGESEN, 0" Df.TLEFs. D .• AND Moss. J. E. B, 1998. Garl>agc

colkclion lliId local variable type-precision lliId Jiven~"s in
Java Virtual machin~,. See PLDI li9981. 269-279.

Al,PERN, B., WF.GMAN,M. N.,AND ZADECK, F, K, 1988.
Dcl~cling equaliLy of values in progrmns. See POPL [19881.
I-II.

AI:I'UCHER, R. Z. AND LANDT, W, 1995. An eXLended fonn of
rnusl alias lliIalySIS for dynnmie allocation. In COllfere>rn!
ReCIJrdafrfJe ACM SyJl/pO"ill'" 011 I'rindples rif
Pmgrnlllllljrl~ wngrmges (Jnn.). 74-84,

AI'I'EI.. A. W. 1998. M(}{lern Compiler ImplemelJlUlion hllu\'(l.
Cambridge University Prc."s,

ATKINSON, M, P., DAYNES, L., JORDAN. M. J., PRINTEZlS, T..
AND SPENCE, S. 1996. An orthogonally persislelll Java.
ACM SIGMOD Ruord25, 4 (Dec.), 68-75,

BOEHM, H.-J. AND WEISF.R, M. 1988. Garbage eoll~clion in an
uneooperalive cnvironmclIl. 5rif/ll"Ure: Praclice dnd
Erperiellce 18, 9 (Sepl.l, 807-820.

BRAHNMATll, K., NYSTRO~t,N., HOSKING, A, L., AND
CUTIS, Q, 1999. Swizzle barrieroplimizmions for
onhogonal persi~lene~ in Java. In Pme'eedirlgs ofrile Tllinl
ImenllJli(J1wllVorkshoJ! rm PerSrSl/!IICe dud lul'u (Tiburon,
Crlifomia, AugusL 1998), R. Morrison. M. Jordan, mid
M. Atkinson, Eds. Advances in P~rsislelll Objecl Sysl~ms.

Morgan Kaufman", 268-278.

BRIGGS. P., COOI'ER, K, D., HARVEY, T. J" ANI) SIMPSON,
L, T, 1998. Pr:lelicru impro\'em~nls 10 lbe eon.llruelion and
lI~muelion of slnlie single a,~igmnenl fonn. SOff\I'llre:
Pmc/ice nlld Erperience 28, 8 (July), 859-881.

BRIGGS, P.. COOPER. K. D,. AND SIMPSON, L, T, 1997. Value
numbering, Srym-ore: Pmclie'e und &;perieuce 27. 6 (June),
701-724.

BRIGGS, P" COOPER, K, D" ,\ND TORCZON, L, 1994.
Impro\"emenL~ to gr..ph coloring regisler .:lllOC"lion. ACM
Trwrs, Program. l.J.m;:. Sy.l'- 16. 3 (May). 428-455,

RVDlMLIC, Z. ,\NO KENNEDY, K. 1997, Optimizing Java:
Th~ory and praeliee, Sriftw/lre: Practice WId Etperience 9, 6
(June), 445-463,

CHAniN, G. J. 1982, Register alJocmion and spilling via grapb
coloring, In Proceedings of the ACM Symposium on
Compiler Construelion (Bo.Ilon, Malsa\."hus~lls, June), "CM
51GPfAN NOlie'es J7, 6 (June). 98-105.

CHAMU[;RS, C. 1992. The d~,jgn and implementalion oflhe
SELF compiler, an oplimizing compHer for objecl-oriemetl
programming languages, Ph,D. lht:.>is, Slanforll University,

CIlAMBERS, C, AND UNGAR, D. 1989. etmomiwtion:
Oplimizing compiler leclinology fllr SELF, a
dyoamically_lyped objcel-ori~nled progrummiog hlllguage,
In Proeeedjng~ oflhe ACM Conference on Progr..mming
Languag~ Design and Implementation (Portland, Oregon,
June). ACM SfGPUtNNolice,< U. 7 (July), 146-160.

CHA~IBF.RS,C. AND UNGAR. D. 1990, ll~ralive lypc analysis
:lnd eXlended m",,'sage splilling: Oplimizing
dynamicnlly-typed objcel·ori~lIled progrums. Sec PLDl
[l990j,150--164.

CHAMBERS, C. AND UNGAR, D.1991, Making purcobjccl
orieliled bnguagcs praclical. In Proceeding._ of lhe ACM
Conference on Obj~cl_Orielllcd Programming Sy~tellls.

L:lnguages, and Applientions (Pbocni~, Arizona, OcL,). ,ICM
SfGPfAN No/ires 26. II (Nov.), 1-15.

CHAMBERS. C., UNGAR, D .. AND LEE, E. 1989. AneITIcicnL
implemenlnlion of Self, a dynnmieally-typcd objecl·oriented
[nnguage bn."ed on prolOlypcs. In Pru<:eedings of the ACM
ConfcR:nce on Objecl·Ori~lll~dProgramming Sys!em.I,
l~lnguages, and Applicmions (Nl.'W Orleans, Louisiana,
OCl.). ACM SIGPfAN NOIicrs 24, 10 (Oct), 49-70.

CHASE, D. R., WEGMAN. M .. AND ZAIlECK. F. K. 1990.
Analysis of pointers and ~lruetures. Sec PLDT [19901.
296-310.

CHOT, J,-D.. BuRKE, M,. ANIl CARINI, P, 1993. Efficienl
f1ow-sensilive inlerproccdural ellmpulnlion of
poinl~r-induecdalln."t:S and side eITccL", In COIiferrrlce
Record rif/lre ACM S)'IIJ/wsiulII (Ill Principles rif
Pmgr(llmUirl~ wngll/lges (Charles lon, Sllulh Carolina. Jan.).
232-245,

CHOW, F.. CIJAN, S., KENNf.llY, R., LIll, S.-M,. LO, R., AND
Tu, P. 1997. A new algorilhm for p~l1ial redundancy
e1iminmion ba"ed on SSA foml. See PLDI [19971. 27J~286.

ClliRNIAK, M. AND Lt. W. 1997. Opllrni/.ing Java byteeOlIc.,_
CrmCllrrency: Pruclice wrd Experirrlcc 9, 6 (June). 427--444.

CLICK, C. 1995, Glob~l code mOlionlglob~1 value numbcring_
Se~ PLDI [i995J, 246-257.

CMEUK, B, ANIl KliPPEl., D. 1994, Shade: A fasl
in~lruclion-Sel simulnlor for ~x~cUlion profiling. In
Proceedings of lh~ ACM Conference on lh~ Measurement
and Madding ofCompuler Syslems (Na"hvil1~,Tennessee.
May). ACM ACM SIGMETR/CS Per/ofllllUJce £l'ul"mirl/l
Rel'iew 22. 1 (May), 12K-137,

Confcn:nee Record of the ACM Symposium on Principlt:S of
Progrnmming Languag~, 1996b. C"'ifereuce Record of IIII'
ACM SYIll[lo.<ium wr Principles ofPmwamming lmrgll/lges
(SI, Petersburg Beaeb, Aorida, Jan.).

Conference Rceord oflhe ACM Sympo,ium on Principl~s of
Pmgrnmming Languages 1998a_ CO/iferelice Urcrml rifllle
"CM S.I'mpo,<iul/J (Ill /'rinciples ofPmgrallllll;ng wnKlloges
(S~n Di~go. Califomb, J"n.).

COOPER, K. AND Lu, J, 1997. Itegisler pmlllDlion in C
progr..ms. Sec PLDI [1997J, 30!l--319.

COOPER, K, AND SIMPSON, L. T. 1995, SCC·ba"c\1 \"<llu~

numbering. Tech. Rep, CRPC-TR95636-S, Rice University,
Oel,

CUTIS, Q. AND HOSKING, A. L. 1997. Analy.ljng, profiling :Ind
oplimi.ling orthogonal persislence for Java- In Proceedi"gs of
rile SrcomJIJlIernmirll/ulllvrbiwp un PersiSlellCC rl1Jd lum
(HnlfMoon Bny, California, Aug,), M. P. Atkinson nnd M. J.
Jorllnn, Elk Sun Microsyslems LaboralOries Tecbnical
Rcpon 97-63, 107-115.

CUlTS, Q., LENNON, S" ,\NIl HOSKING. A. L. 1999_
Reconciling buffer managemenl Wilh pcp.;isl~nee

oplimisations. Sec Morrison ~l al. [1999J, 51-63.

CYTRON, R., FERRANTE. J .. ROSEN. B. K., WEG~tAN, M_ N.,
AND Z,\DECK, F. K. 199 I, Emcicnl1y compuling slatie
single assignm~nl foml and lbe progrom dependene.: gr.lph.
,\CM TruJlS, PmgrwlI. ulIlg. Sysr. J3, 4 (Oct), 451--490,

DEi\N. J., CHAMBERS. C., AND GROVE, D. 1995, Sekclivc
spcci~li~lion for objcct·orientcd l:mgu~ges. Scc PLDI
[1995],93-102.

DEBRAY, S., MUTH, R.. liND WEIPPERT, M. 1998. Alias
analysis of c~t:cul~blccode, See Confcrence Record oflhe
ACM Symposium on Principles of Progr.tOlOling Languagcs
11998a].12-24.

DEUTSCH, A. 1994.lnterproccdural may-alias ana[y~i~ for
poinlers: Bcyond k-limiling. Scc PLOT /1994], 230--241.

DIWAN, A.. MCKINLEY, K. S., AND MosS, J. E.Il. 1998,
Type-bascd alias analysis. Sce PLDl [1998], 106-117.

DOLBY, J. 1997. AUlOm~tic inline allocation of objccl~, Sec
PLDl [1997], 7-17.

DOLBY. 1. AND CHlEN. A. A. 1998, An evalumion of automatic
objccl inHne allocmion tcchniques. 10 Pro<.'\:edings of the
ACM Conferenc", on Object-Orienled I'rogr.unJlllng
Syslems, Languagc.~, and Applications (Vancouver, Brili,1J
Columbia, OCI.), ACM SIGPLIoN NOIice.~ 33. 10{Ocl.). 1-20.

EMAMI. M.. GIllYA. Roo liND HENDREN. L. J. 1994.
Conle.ll-sensilive interproecdur.ll poinlHo analysis in Ihe
pre,~ence of funcllon poinlers. Sec PLDl11994J. 242-256.

GERLEK, M. P., STOl.TZ. E., AND WOI.FE. M. 1995. Beyond
induction variabks: delecling and classifying sequences
using a demand·driven SSA form. ACM Trall.~. Pmgmm.
ulIlg. S)'.•I. 17. I (Jan_), 85-122.

Gf1I'r'A. R. AND HENDREN, L. 1. 1996.15 il alree, a DAG, ora
cyclic graph'! a shape ~nalysi5 for heap-direcled pointers in c.
See Conference Record Oflh", ACM Symposium on
Principles ofPrognlmming Languages [1996b], 1-15,

GlllYA. R, liND HENDREN. L. J. 1998. PUlling poinler analysis
10 work. Sec Conference Rceord oflhe ACM Symposium on
Prineiplc,~ of Programming Languages [1998a),121-133,

GOSLING, J .. JOY, B .• AND STF.F.LE. G. 1996. The Jm'u
I1mglluge Spnificmion. Addison-Wesley.

GOSLING, J .• YIOLLIS. F,. IINIl TIIEJAV,\ TEII~I.1996. Tile
JI/m IIpp/;curirm l'ro}:rw1lIuing IlIlerfl/u. Vol. I: Core
P.ncJ,:~ges. Addison·Wesley.

HIISTI, R, ANf) HORWITZ, S. 1998. U~ins ~t::ltie single
assignmenl form 10 improve now-insensilive po]nl",r
analysis. Sec PLDI [19981, 97-105.

HAVLAK, P. [997. Nc.<;Ling of reducible and irreducible loops,
ACM TrollS, Program. wng. Sysl. 19. 4 (July). 557-567.

HOSKING.A. L .• NYSTROM, N .• CUTTS, Q.. liND
BRAHNMIITIJ, K. [999. Optimizing lhe read ~nd wrile
hllJTiers for orthogon.nl persistcnell, Sec MomsoJl cL al.
[1999],149-[59.

HUMMF.L, J .• HENDREN, L. J .. AND NrCOL,\U, A. 1994, A
gcnernldmadependenee It:.\t for dynamic, poinler-based dma
slruclUrc.,. Sec PLDII1994]. 218-229.

JAGANNIITH,\N. S .• THIEM liNN. P.• WEEKS, S.. AND WRIGHT.
A. 1998. Single :lnd lovins it: Must-:liias analysis for
higher-order langu~ges. Sec Conference Record of the ACM
Sympo,;ium on Principle\' of Progr.unm'mg Langu:lges
[1998aJ.329-341.

LANDI, W. AND RYDER. B. G. 1992, A safe approximme
::llgorilJun for interproccdur,d pointer a1i:L~ing. In Proceedings
of the ACM Conference on Programming l....lIIguage Design
andlmplementmion (S;ln Fr.mciseo. CalIfornia, June).IICM
S/GPLIoN Nnrices 27. 7 (July). 235-248.

LANDI, W., RYDER. B, G,. IISD ZIlANG, S. [993.
Inlerproccdund moditiemion side elTect analysis Wilh puimer
a1i<lSing. In Proceedings oflhe ACM Conference on
Programming Language DCliign and ImpiemenluLion
(Albuquerque, New Mexico, June). ACM S/GPLIoN
NfJli"es 28. 6 (June), 56--67.

LIIRUS, J. R. AND HILr-TNGER. P. N. 1988. Detccling conflicts
hclween SlnTClure ~ccesses. In Pmc:eedings of/lle IICM
Ctmference 011 Progfllnlmilll, WllgUl/gC Oe.•ign 111Id
Implcllrenlatiml (Allanla. Georgi~, June). 21-34.

LINDHOI.M, T. AND YELl,IN, F. 1996. TlleJUl'Il \/irll/al Mudline
SpecijimlifJn. Addison-Wc.,!ey.

Lo, R.. CHOW, Foo KENNEDY, R.. LItJ, S.-M., AND Tu. 1',
199H. Registcr promotion by sp.m;e panial redundancy
eliminalion ofloads and SIOI1:5. Sec PLDI [1998], 26--37,

MORl!L. E. AND RENVOISIO. C. 1979. Global opt'mi7"llion by
supprc.~"'on of partial redundaneic.~. Cmll/lUlII. ACM 22, 2
(Fcb.),96-103.

MORRISON, R.. JORDAN, M., liND ATKINSON, M .• Ed.~, 1999.
ProceedilJg.• lljllle Erg/ullll1/emaliOlwl \\'tlfksllop On
Persistelll Ob]eo'/ Syslellls (Tiburon, California.
Augusl [9911)_ Adv:lIlcc.~ in Persislem Ohjecl Systems.
Morgan Knufm:lIln,

PIILSDERG. J. liND SCHW,\RTZlJACH. M, I, 1994.
Ob]ecI·Orlen/ed Type SYS/CIIL<. Wiley.

PLDI 1990.l'racrct!l1lg.r 'if/lie ,1CM Cwiferellce WI Pmgmmmrllg
Lall}:lIugC De,rigll (lilt! Jmplemell/mion (Whilt: Plains. New
Yorli:. June). ACM SIGPl.AN No/icc.~ 25, 6 (June).

PLDI 1994. Pmceerlil1gs ofllle ACM COIiferem.-e OIl I'rogrammltlg
wngllage Oc..lg" alld Implell/elll<J/imr (Orlando, Rmida.
Junc).IICM SIGI'LIoN No/ices 29. 6 (June).

PLOT 1995. Proceeding.. of/lie IICM Cmiference "n
PmSfUmllli,rg wnguuge Desiglll/Ild Implelllemmio'l (La
Jolla, Callfomi~. June). ACM SIG/'L4.N No/ice.. 30. 6 (June).

PLOT 1997. I'rocccding.• (if llie ACM C"'iferellcc 011

Pra/:rulllmrng w,lguuMe OesrglJ /IIld Implemenrmion (La.'>
Veg>lS, Nevada, June). ACM SIGPI.AN Notlcc.\' 32, 5 (May).

PLOT 1998.Procccdi"g.. (ifille IICM Cmifert'l1cc Oil Pmgrt"'lllli'lg
Wllguuge Design OIlrllJllplellle'llmiol/ (Monllial, Canadn.
June). ACM SIGPlAN No/ices 33, :) (May).

POPL 19H8. COIifere,lcc ReCllrd ojille IICM Symposium 11I1

/'ri,lclplc.\"if PmgramlJllng l.nngllagcs (San Diego,
California. Jan_l.

PROEBSTING, T. A •• TOWNSEND. G.. BRIDGIIS. P.. HIIRHIAN,
J. H .. NEWSHAM. T.. IIND WATTERSON.S. A. 1997, Toba:
Java for applicmions - a way ahead of lime (\VAT) compiler.
In I'roceedillg,< of/lIe n,ird USEN/X CO/iferel/cc un
Objecr-OrielJled Technologies alld !'.).rle,,~< (Portland,
Oregon. June), USENIX. Sec
hup:J/www.es.arizona.eduisummr.l!loba.

ROSEN. B. K., WEGMAN. M, N .. liND ZADECK, F. K. 1988.
Global valuc numbers and redundant computalions. See
POPL [19881. 12-27.

RUF. E. 1995. Come~l-in5ensjli\'e ali:lS analysis reconsldt'red.
St'e PLDII1995].I3-22.

SASTRY. A. V. S. liND Ju. R. D, C, 1998. A new a1gorllhm fur
scalar regisler promulion based on ssa fonn. Set" PLDI
[1998],15-25.

SIlIIPIRO. M. AND HORWITZ. S. 1997. Fast and accunlle
l1ow-in>cn~ilive pOiNS'IO ana1y~i~.ln COIiferc,lce Rewrtl'if
I/le ACM !'.)'Jllp".r;WIl rill J'ril1cipl,'.• IJj PmgrWl1IlIing
wl/guage.. (Paris. Fr.lJlce. Jan.). 1-14.

SIMPSON. L, T. 1996. Value·drivcn redundancy cJiminalioll.
Ph.D. thesis, Rice Univel1iity, Houslon, TCX:L'_

STEENSGIIIIRIJ. B. 1996. Polnl'·lo analysis in almost lInear
lime. Sec ConfcrenL"C Record of the ACM Symposium on
Principles of Programllling Languages [1996b]. 32-41.

SunSofl 1997, JUl'I' 011 Solaris 2.6: II Whi,e Pllper. SunSofl.

WEG~IAN, M. N, liND ZIIDECK, 1-. K. 1991, Conslam
proJX1g~tion Wilh condilional br.lnches. ACM T/lJm,
Prograll/. Ln'lg. .'1)','1. 13, 2 (Apr.). 181-210.

WILSON, R. P. AND LAM. M. S. 1995. Efficient
conlCXl-,<;enSlll\'C poinler analysis for c programs. Sec PLDl
[19951,1-12.

WOLFE. M, 1996. Higlll'erfoOlwnre COlllpilersfor p,jrullel
COlI/fllI/lng. Addison-Wesley.

	Partial Redundancy Elimination for Access Path Expressions
	Report Number:
	

	tmp.1307986960.pdf.wQyyE

