36,021 research outputs found

    Performance limits for channelized cellular telephone systems

    Get PDF
    Studies the performance of channel assignment algorithms for “channelized” (e.g., FDMA or TDMA) cellular telephone systems, via mathematical models, each of which is characterized by a pair (H,p), where H is a hypergraph describing the channel reuse restrictions, and p is a probability vector describing the variation of traffic intensity from cell to cell. For a given channel assignment algorithm, the authors define T(r) to be the amount of carried traffic, as a function of the offered traffic, where both r and T(r) are measured in Erlangs per channel. They show that for a given H and p, there exists a function TH,p(r), which can be computed by linear programming, such that for every channel assignment algorithm, T(r) ≤ TH,p(r). Moreover, they show that there exist channel assignment algorithms whose performance approaches TH,p (r) arbitrarily closely as the number of channels increases. As a corollary, they show that for a given (H,p) there is a number r0 , which also can be computed by linear programming, such that if the offered traffic exceeds r0, then for any channel assignment algorithm, a positive fraction of all call requests must be blocked, whereas if the offered traffic is less than r0, all call requests can be honored, if the number of channels is sufficiently large. The authors call r0, whose units are Erlangs per channel, the capacity of the cellular system

    Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

    Full text link
    We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph GG embedded on a surface of genus gg and a designated face ff bounded by a simple cycle of length kk, uncovers a set FE(G)F \subseteq E(G) of size polynomial in gg and kk that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of ff. We apply this general theorem to prove that: * given an unweighted graph GG embedded on a surface of genus gg and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal Steiner tree TT for SS and that has size polynomial in gg and E(T)|E(T)|; * an analogous result holds for an optimal Steiner forest for a set SS of terminal pairs; * given an unweighted planar graph GG and a terminal set SV(G)S \subseteq V(G), one can in polynomial time find a set FE(G)F \subseteq E(G) that contains an optimal (edge) multiway cut CC separating SS and that has size polynomial in C|C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution

    COVID-19: Analytics Of Contagion On Inhomogeneous Random Social Networks

    Full text link
    Motivated by the need for novel robust approaches to modelling the Covid-19 epidemic, this paper treats a population of NN individuals as an inhomogeneous random social network (IRSN). The nodes of the network represent different types of individuals and the edges represent significant social relationships. An epidemic is pictured as a contagion process that changes daily, triggered on day 00 by a seed infection introduced into the population. Individuals' social behaviour and health status are assumed to be random, with probability distributions that vary with their type. First a formulation and analysis is given for the basic SI ("susceptible-infective") network contagion model, which focusses on the cumulative number of people that have been infected. The main result is an analytical formula valid in the large NN limit for the state of the system on day tt in terms of the initial conditions. The formula involves only one-dimensional integration. Next, more realistic SIR and SEIR network models, including "removed" (R) and "exposed" (E) classes, are formulated. These models also lead to analytical formulas that generalize the results for the SI network model. The framework can be easily adapted for analysis of different kinds of public health interventions, including vaccination, social distancing and quarantine. The formulas can be implemented numerically by an algorithm that efficiently incorporates the fast Fourier transform. Finally a number of open questions and avenues of investigation are suggested, such as the framework's relation to ordinary differential equation SIR models and agent based contagion models that are more commonly used in real world epidemic modelling.Comment: 23 pages, 2 figure

    Parameterized Algorithms for Graph Partitioning Problems

    Get PDF
    In parameterized complexity, a problem instance (I, k) consists of an input I and an extra parameter k. The parameter k usually a positive integer indicating the size of the solution or the structure of the input. A computational problem is called fixed-parameter tractable (FPT) if there is an algorithm for the problem with time complexity O(f(k).nc ), where f(k) is a function dependent only on the input parameter k, n is the size of the input and c is a constant. The existence of such an algorithm means that the problem is tractable for fixed values of the parameter. In this thesis, we provide parameterized algorithms for the following NP-hard graph partitioning problems: (i) Matching Cut Problem: In an undirected graph, a matching cut is a partition of vertices into two non-empty sets such that the edges across the sets induce a matching. The matching cut problem is the problem of deciding whether a given graph has a matching cut. The Matching Cut problem is expressible in monadic second-order logic (MSOL). The MSOL formulation, together with Courcelle’s theorem implies linear time solvability on graphs with bounded tree-width. However, this approach leads to a running time of f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials. In this thesis we give a single exponential algorithm for the Matching Cut problem with tree-width alone as the parameter. The running time of the algorithm is 2O(t) · n. This answers an open question posed by Kratsch and Le [Theoretical Computer Science, 2016]. We also show the fixed parameter tractability of the Matching Cut problem when parameterized by neighborhood diversity or other structural parameters. (ii) H-Free Coloring Problems: In an undirected graph G for a fixed graph H, the H-Free q-Coloring problem asks to color the vertices of the graph G using at most q colors such that none of the color classes contain H as an induced subgraph. That is every color class is H-free. This is a generalization of the classical q-Coloring problem, which is to color the vertices of the graph using at most q colors such that no pair of adjacent vertices are of the same color. The H-Free Chromatic Number is the minimum number of colors required to H-free color the graph. For a fixed q, the H-Free q-Coloring problem is expressible in monadic secondorder logic (MSOL). The MSOL formulation leads to an algorithm with time complexity f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph and n is the number of vertices of the graph. In this thesis we present the following explicit combinatorial algorithms for H-Free Coloring problems: • An O(q O(t r ) · n) time algorithm for the general H-Free q-Coloring problem, where r = |V (H)|. • An O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is a complete graph on r vertices. The above implies an O(t O(t r ) · n log t) time algorithm to compute the H-Free Chromatic Number for graphs with tree-width at most t. Therefore H-Free Chromatic Number is FPT with respect to tree-width. We also address a variant of H-Free q-Coloring problem which we call H-(Subgraph)Free q-Coloring problem, which is to color the vertices of the graph such that none of the color classes contain H as a subgraph (need not be induced). We present the following algorithms for H-(Subgraph)Free q-Coloring problems. • An O(q O(t r ) · n) time algorithm for the general H-(Subgraph)Free q-Coloring problem, which leads to an O(t O(t r ) · n log t) time algorithm to compute the H- (Subgraph)Free Chromatic Number for graphs with tree-width at most t. • An O(2O(t 2 ) · n) time algorithm for C4-(Subgraph)Free 2-Coloring, where C4 is a cycle on 4 vertices. • An O(2O(t r−2 ) · n) time algorithm for {Kr\e}-(Subgraph)Free 2-Coloring, where Kr\e is a graph obtained by removing an edge from Kr. • An O(2O((tr2 ) r−2 ) · n) time algorithm for Cr-(Subgraph)Free 2-Coloring problem, where Cr is a cycle of length r. (iii) Happy Coloring Problems: In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a vertex is happy if all its incident edges are happy. we consider the algorithmic aspects of the following Maximum Happy Edges (k-MHE) problem: given a partially k-colored graph G, find an extended full k-coloring of G such that the number of happy edges are maximized. When we want to maximize the number of happy vertices, the problem is known as Maximum Happy Vertices (k-MHV). We show that both k-MHE and k-MHV admit polynomial-time algorithms for trees. We show that k-MHE admits a kernel of size k + `, where ` is the natural parameter, the number of happy edges. We show the hardness of k-MHE and k-MHV for some special graphs such as split graphs and bipartite graphs. We show that both k-MHE and k-MHV are tractable for graphs with bounded tree-width and graphs with bounded neighborhood diversity. vii In the last part of the thesis we present an algorithm for the Replacement Paths Problem which is defined as follows: Let G (|V (G)| = n and |E(G)| = m) be an undirected graph with positive edge weights. Let PG(s, t) be a shortest s − t path in G. Let l be the number of edges in PG(s, t). The Edge Replacement Path problem is to compute a shortest s − t path in G\{e}, for every edge e in PG(s, t). The Node Replacement Path problem is to compute a shortest s−t path in G\{v}, for every vertex v in PG(s, t). We present an O(TSP T (G) + m + l 2 ) time and O(m + l 2 ) space algorithm for both the problems, where TSP T (G) is the asymptotic time to compute a single source shortest path tree in G. The proposed algorithm is simple and easy to implement

    An initial approach to distributed adaptive fault-handling in networked systems

    Get PDF
    We present a distributed adaptive fault-handling algorithm applied in networked systems. The probabilistic approach that we use makes the proposed method capable of adaptively detect and localize network faults by the use of simple end-to-end test transactions. Our method operates in a fully distributed manner, such that each network element detects faults using locally extracted information as input. This allows for a fast autonomous adaption to local network conditions in real-time, with significantly reduced need for manual configuration of algorithm parameters. Initial results from a small synthetically generated network indicate that satisfactory algorithm performance can be achieved, with respect to the number of detected and localized faults, detection time and false alarm rate
    corecore